将完善代码,实现动态分区分配算法模拟的空闲区查找算法:首次适应算法,循环首次适应算法,最佳适应算法,最坏适应算法。分区回收时,相邻空闲分区需要合并。
使用双向链表管理空闲区和已分配区。
实现4种分配算法以及回收算法。
已知申请内存和释放内存的序列,给出内存的使用情况。
要把申请内存和释放内存的序列可以存放在文本文件中。
设计简单的交互界面,演示所设计的功能。
#include<iostream>
#include<stdlib.h>
#include<windows.h>
using namespace std;
#define Free 0 //空闲状态
#define Busy 1 //已用状态
#define OK 1 //完成
#define ERROR 0 //出错
#define MAX_length 2048 //定义最大主存信息2048KB
#define Min_Size 10 //规定的不可分割的剩余分区的大小
int flag;//标志位
//函数声明
int myMalloc();//内存分配
int free(int); //内存回收
int Best_fit(int);//最佳适应算法
void printNode();//查看分配
int Init();//空闲分区的设置
int Combination();//合并碎片空间
typedef struct FreeArea //定义一个空闲区说明表结构
{
char name[30] ;
long size; //分区大小
long address; //分区地址
int state; //空闲标志
}Elem;
typedef struct LinkNode// 双向链表存储结构
{
Elem data;
struct LinkNode *prior; //前趋指针
struct LinkNode *next; //后继指针
}LinkNode, *LinkList;
LinkList block_first; //头结点
LinkList block_last; //尾结点
LinkNode *pn ; //循环首次适应算法中的指针
void menu(){ //打印操作界面
printf("\n");
printf("\t\t\t\t ***** 最佳适应算法的动态分区分配方式模拟 ***** \n");
printf("\t\t\t\t ┌───────────────────────────────────────────-┐\n");
printf("\t\t\t\t │ │\n");
printf("\t\t\t\t │ 1. 申请内存 │\n");
printf("\t\t\t\t │ │\n");
printf("\t\t\t\t │ 2. 释放内存 │\n");
printf("\t\t\t\t │ │\n");
printf("\t\t\t\t │ 3. 查看内存情况 │\n");
printf("\t\t\t\t │ │\n");
printf("\t\t\t\t │ 4. 合并碎片空间 │\n");
printf("\t\t\t\t │ │\n");
printf("\t\t\t\t │ 5.退出 │\n");
printf("\t\t\t\t └────────────────────────────────────────────┘\n");
printf("\t\t\t\t\t\t 请您选择(1-5):\t"); //打印想要进行的操作
}
int Init()//初始化内存状态设置(空闲分区的设置)
{
int Free_num; //空闲分区的个数
block_first = (LinkList)malloc(sizeof(LinkNode));
block_last = (LinkList)malloc(sizeof(LinkNode));
block_first->prior = NULL;
block_first->next = block_last;
cout << "请输入空闲分区数目:";
cin >> Free_num ;
int Size[Free_num];
printf("\n请分别输入这%d空闲分区大小(单位KB):\n",Free_num );
for(int i = 0; i < Free_num; i++)
{
cin >> Size[i];
if(Size[i] <= Min_Size) {
i--;
cout << "\n输入错误,请重输!\n";
}
int temp = 0;
temp = temp + Size[i];
if(temp >= MAX_length) {
i--;
cout << "\n输入错误,请重输!\n";
}
}
LinkList p = block_first;
for(int i = 0; i < Free_num; i++)
{
LinkList temp = (LinkList)malloc(sizeof(LinkNode));
temp->data.size = Size[i];
temp->data.state = Free;
if(p == block_first)
temp->data.address = 0;
else
temp->data.address = p->data.address + p->data.size;
temp->prior =p;
p->next = temp;
p = p->next;
}
block_last = p;
block_last->next = NULL;
pn = block_first->next;
return OK;
}
int myMalloc()//分配主存
{
int request = 0;
cout << "请输入需要分配的主存大小(单位:KB):"<<endl;
cin >> request;
if (request<0 || request == 0)
{
cout << "分配大小不合适,请重试!" << endl;
return ERROR;
}
if (Best_fit(request) == OK) cout << "分配成功!" << endl;
else cout << "内存不足,分配失败!" << endl;
return OK;
}
int Best_fit(int request)//最佳适应算法
{
int ch; //记录最小剩余空间
LinkList temp = (LinkList)malloc(sizeof(LinkNode));
temp->data.size = request;
temp->data.state = Busy;
LinkNode *p = block_first->next;
LinkNode *q = NULL; //记录最佳插入位置
cout << "请输入作业名:";
cin >>temp->data.name ;
while (p) //初始化最小空间和最佳位置
{
if (p->data.state == Free && (p->data.size >= request))
{
if (q == NULL)
{
q = p;
ch = p->data.size - request;
}
else if (q->data.size > p->data.size)
{
q = p;
ch = p->data.size - request;
}
}
p = p->next;
}
if (q == NULL) return ERROR;//没有找到空闲块
else if (q->data.size - request <= Min_Size)
{
q->data.state = Busy;
for(int i = 0; i < 10; i++){
q->data.name[i] = temp->data.name[i];
}
return OK;
}
else
{
temp->prior = q->prior;
temp->next = q;
temp->data.address = q->data.address;
q->prior->next = temp;
q->prior = temp;
q->data.address += request;
q->data.size = ch;
return OK;
}
return OK;
}
int free(int flag)//主存回收
{
LinkNode *p = block_first;
for (int i = 0; i <= flag; i++)
if (p != NULL)
p = p->next;
else
return ERROR;
p->data.state = Free;
if(p == block_last){
if (p->prior != block_first && p->prior->data.state == Free )//与前面的空闲块相连
{
p->prior->data.size += p->data.size;//空间扩充,合并为一个
p = p->prior;
p->next = NULL;
block_last = p;
}
}
else{
if (p->prior != block_first && p->prior->data.state == Free )//与前面的空闲块相连
{
p->prior->data.size += p->data.size;//空间扩充,合并为一个
p->prior->next = p->next;//去掉原来被合并的p
p->next->prior = p->prior;
p = p->prior;
}
if (p->next != block_last && p->next->data.state == Free )//与后面的空闲块相连
{
p->data.size += p->next->data.size;//空间扩充,合并为一个
p->next->next->prior = p;
p->next = p->next->next;
}
if (p->next == block_last && p->next->data.state == Free )//与最后的空闲块相连
{
p->data.size += p->next->data.size;
p->next = NULL;
}
}
return OK;
}
int Combination() //实现紧凑,合并碎片
{
LinkNode *p = block_first->next;
int size = 0;
while(p){
if(p->data.state ==Free && p != block_last) //去除空闲分区
{
size =size + p->data.size ;
p->next->prior =p->prior ;
p->prior->next = p->next ;
}
else{
p->data.address = p->data.address - size; //改变地址
}
p = p->next;
}
if(block_last->data.state == Free){ //实现最后合并空闲分区
block_last->data.size += size;
}
else if(size != 0){ //将所有空闲分区合并放在最后一个分区后面
LinkList temp = (LinkList)malloc(sizeof(LinkNode));
block_last->next =temp;
temp->prior = block_last;
temp->next = NULL;
temp->data.size = size;
temp->data.address = block_last->data.address + block_last->data.size ;
block_last = temp;
temp->data.state = Free;
}
pn = block_first->next;
if(size == 0) //判断是否有碎片
{
return ERROR;
}
return OK;
}
void printNode()//显示主存分配情况
{
int num = 0;
printf(" 内存情况 \n");
cout << "======================================================\n\n";
LinkNode *p = block_first->next;
cout << "分区号\t起始地址\t分区大小\t状态\t作业名\n\n";
while (p)
{
cout << " " << num++ << "\t";
cout << " " << p->data.address << "\t\t";
cout << " " << p->data.size << "KB\t\t";
if (p->data.state == Free) {
cout << "空闲\n\n";
}
else {
cout << "已分配\t";
cout <<" "<<p->data.name <<"\n\n";
}
p = p->next;
}
cout << "======================================================\n\n";
}
void Operate(){
int choice; //操作选择标记
while (1)
{
menu();
scanf("%d",&choice);
if (choice == 1) myMalloc(); // 分配内存
else if (choice == 2) // 内存回收
{
int flag;
cout << "请输入您要释放的分区号:"<<endl;
cin >> flag;
free(flag);
}
else if (choice == 3) printNode();
else if(choice == 4)
{
if(Combination() == 0){
cout<<"无需合并碎片空间!"<<endl;
}
else{
cout<<"成功合并碎片!"<<endl;
}
}
else if (choice == 5) break; //退出
else //输入操作有误
{
cout << "输入有误,请重试!" << endl;
continue;
}
}
}
int main()//主函数
{
system("color 5E");
Init(); //初始化内存状态
Operate()
return 0;
}