我想要达到的结果
6核贝叶斯支持向量机
引自免费微信小程序:皆我百晓生
要构建一个包含6个核贝叶斯支持向量机(SVM)的Python代码,我们需要首先定义这六个核。在Python中,我们可以使用scikit-learn
库来进行这个任务。
pip install scikit-learn
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
import numpy as np
np.random.seed(42)
X = np.random.rand(50, 2) * [[1, 1], [5, -1]]
y = np.random.choice([-1, 1], size=50)
# 将类别标签转换为二进制表示
y = y.astype(int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
kernel_svr = SVC(kernel='linear', C=1, gamma='auto')
kernel_svc = SVC(kernel='rbf', gamma=0.7, C=1)
kernel_linear = SVC(kernel='linear', C=1, gamma='auto')
models = [
('Linear Kernel', kernel_linear),
('RBF Kernel (default)', kernel_svc),
('Polynomial Kernel (degree=3)', kernel_svr)
]
for name, model in models:
print(f'Using {name} with C={C}, gamma={gamma}')
# 训练模型
model.fit(X_train, y_train)
# 使用测试集进行评估
score = model.score(X_test, y_test)
print(f'Score: {score:.4f}')
# 输出分类器的参数
for param_name in dir(model):
if not param_name.startswith('_'):
print(f'{param_name}: {getattr(model, param_name)}')
这段代码将输出每个模型的得分,并显示每个模型的参数设置。根据您的需求选择合适的模型,并调整相应的参数。