在复现《Computational Efficient Refocusing and Estimation Method for Radar Moving Target With Unknown Time Information》这篇论文中,对于window Fractional Fourier transform算法的代码有些疑问,在估计结束时间时,为什么我在第96个脉冲(也就是结束时间3.28s)之后的脉冲的峰值全都是一样的,峰值不下降

下面是我的matlab代码:
clc; clear; close all;
seta1 = 2.805: 0.005: 3.78;
sp = 0: 0.25: 2;
tm = (0: 757 - 1) * 0.005;
for j = 1: length(seta1)
w2_t(j, :) = rectpuls(tm - 0.5 * (seta1(j) + 0.805), seta1(j) - 0.805 + 0.005); % (tm >= Tb) & (tm <= seta1)
end
w_t = rectpuls(tm - 0.5 * (3.28 + 0.805), 3.28 - 0.805 + 0.005); % (tm >= Tb) & (tm <= Te)
Sex_dechirp1 = w_t .* exp(-1j * 4 * pi * (804 + 75 .* (tm - 0.805) - 684) / 2);
for i = 1: length(sp)
for j = 1: length(seta1)
WFRFT_result(i, j, :) = frft(w2_t(j, :) .* Sex_dechirp1, sp(i));
end
end
[max_val, linear_idx] = max(WFRFT_result(:)); % 线性索引->行列索引
[p_idx, eta1_idx, rv_idx] = ind2sub(size(WFRFT_result), linear_idx);
figure;
subplot(2, 2, 1);
mesh(abs(w2_t));
subplot(2, 2, 2);
plot(abs(Sex_dechirp1));
subplot(2, 2, 3);
mesh(abs(w2_t .* Sex_dechirp1));
subplot(2, 2, 4);
plot(abs(squeeze(WFRFT_result(p_idx, :, rv_idx))));
disp("1")