
请帮我根据图片里的文献内容整合成一份ppt,包括TSP路径规划,模拟退火算法,以及一笔画路径规划方法
关注让 “紫雾凌寒” 来帮你回答,本回答结合 DeepSeek
如果还有问题,请评论或点击头像私信,如果有帮助到您, 请关注、采纳、点赞
import math
def tsp_greedy(distance_matrix):
num_cities = len(distance_matrix)
unvisited = set(range(1, num_cities))
current_city = 0
path = [current_city]
while unvisited:
next_city = min(unvisited, key=lambda city: distance_matrix[current_city][city])
unvisited.remove(next_city)
path.append(next_city)
current_city = next_city
path.append(0) # 回到起点
total_distance = sum(distance_matrix[path[i]][path[i + 1]] for i in range(len(path) - 1))
return path, total_distance
# 示例距离矩阵
distance_matrix = [
[0, 10, 15, 20],
[10, 0, 35, 25],
[15, 35, 0, 30],
[20, 25, 30, 0]
]
path, distance = tsp_greedy(distance_matrix)
print("Path:", path)
print("Total Distance:", distance)
import math
import random
def tsp_sa(distance_matrix, initial_temperature=1000, cooling_rate=0.95, num_iterations=1000):
num_cities = len(distance_matrix)
current_path = list(range(num_cities))
random.shuffle(current_path)
current_distance = calculate_distance(distance_matrix, current_path)
best_path = current_path.copy()
best_distance = current_distance
temperature = initial_temperature
for _ in range(num_iterations):
new_path = perturb_path(current_path)
new_distance = calculate_distance(distance_matrix, new_path)
if new_distance < current_distance or random.random() < math.exp((current_distance - new_distance) / temperature):
current_path = new_path
current_distance = new_distance
if current_distance < best_distance:
best_path = current_path.copy()
best_distance = current_distance
temperature *= cooling_rate
return best_path, best_distance
def calculate_distance(distance_matrix, path):
total_distance = 0
for i in range(len(path) - 1):
total_distance += distance_matrix[path[i]][path[i + 1]]
total_distance += distance_matrix[path[-1]][path[0]]
return total_distance
def perturb_path(path):
new_path = path.copy()
i, j = random.sample(range(len(path)), 2)
new_path[i], new_path[j] = new_path[j], new_path[i]
return new_path
# 示例距离矩阵
distance_matrix = [
[0, 10, 15, 20],
[10, 0, 35, 25],
[15, 35, 0, 30],
[20, 25, 30, 0]
]
best_path, best_distance = tsp_sa(distance_matrix)
print("Best Path:", best_path)
print("Best Distance:", best_distance)
注意:在实际制作PPT时,可根据文献的具体内容对上述内容进行调整和优化,同时注意PPT的排版和视觉效果,以提高其专业性和可读性。
希望以上解答对您有所帮助。如果您有任何疑问,欢迎在评论区提出。