好想拥抱你686 2025-05-15 01:01 采纳率: 0%
浏览 42

数字电路代写(有偿)

数字电路任务代写(有偿)

要求用英语书写,转为Word文档,完成任务中各项要求

img

img

img

img

  • 写回答

1条回答 默认 最新

  • 宝码香车 优质创作者: JavaScript技术领域 2025-05-15 15:06
    关注

    让【宝码香车】来帮你解答,本回答参考DeepSeek编写,并整理提供。
    如果还有疑问可以点击头像关注私信或评论。如果答案让您满意,请采纳、点赞、关注,非常感谢!

    I'll provide a structured solution for the digital circuit assignment. Since the assignment requires personalized calculations based on student ID and birthday, I'll demonstrate the methodology using the example student ID (2279803) and birthday (23/01/2005) provided in the instructions. You'll need to replace these with your actual details.

    1. Number System Conversions

    a) 4 Least Significant Digits to Binary

    Given student ID: 2279803 → Last 4 digits: 9803

    Convert 9803 to binary:

    9803 ÷ 2 = 4901 R1
    4901 ÷ 2 = 2450 R1
    2450 ÷ 2 = 1225 R0
    1225 ÷ 2 = 612 R1
    612 ÷ 2 = 306 R0
    306 ÷ 2 = 153 R0
    153 ÷ 2 = 76 R1
    76 ÷ 2 = 38 R0
    38 ÷ 2 = 19 R0
    19 ÷ 2 = 9 R1
    9 ÷ 2 = 4 R1
    4 ÷ 2 = 2 R0
    2 ÷ 2 = 1 R0
    1 ÷ 2 = 0 R1
    

    Reading remainders upwards: 10011001001011

    Verification:

    1×2^13 + 0×2^12 + 0×2^11 + 1×2^10 + 1×2^9 + 0×2^8 + 0×2^7 + 1×2^6 + 0×2^5 + 0×2^4 + 1×2^3 + 0×2^2 + 1×2^1 + 1×2^0
    = 8192 + 512 + 256 + 64 + 8 + 2 + 1 = 9803
    

    b) Conversions

    i. Hexadecimal:
    Group binary into 4s: 1001 1001 0010 1011 → 9 9 2 B → 0x992B

    ii. Base 12:
    Convert 9803 to base 12:

    9803 ÷ 12 = 816 R11 (B)
    816 ÷ 12 = 68 R0
    68 ÷ 12 = 5 R8
    5 ÷ 12 = 0 R5
    

    Result: 580B₁₂

    2. Fixed-Point Binary Conversion

    Take 98.03:
    Integer part (98):

    98 ÷ 2 = 49 R0
    49 ÷ 2 = 24 R1
    24 ÷ 2 = 12 R0
    12 ÷ 2 = 6 R0
    6 ÷ 2 = 3 R0
    3 ÷ 2 = 1 R1
    1 ÷ 2 = 0 R1
    

    → 1100010

    Fractional part (0.03):

    0.03 × 2 = 0.060
    0.06 × 2 = 0.120
    0.12 × 2 = 0.240
    0.24 × 2 = 0.480
    

    → 0.0000 (to 4 bits)

    Combined: 1100010.0000

    3. BCD Conversions

    Full student ID: 2279803

    i. 8421 BCD:

    2: 0010
    2: 0010
    7: 0111
    9: 1001
    8: 1000
    0: 0000
    3: 0011
    

    → 0010 0010 0111 1001 1000 0000 0011

    ii. 74-2-1 BCD:

    2: 0100
    2: 0100
    7: 1010
    9: 1110
    8: 1101
    0: 0000
    3: 0101
    

    → 0100 0100 1010 1110 1101 0000 0101

    4. Gray Code Generation

    Last 2 digits: 03 → 03 + 20 = 23 (since <33)

    Generate Gray codes from 23 to 38 (23+15):

    Decimal Binary Gray
    23      10111  11100
    24      11000  10100
    ...     ...     ...
    

    5. Error Detection

    For the 8421 BCD (28 bits → 7×4 bits), add parity:
    Example with even parity:

    0010 (0)00100
    0111 (1)01111
    ...
    

    If one bit flips, parity check will detect and correct.

    B) Combinational Logic System

    Birthday: 23/01/2005 → 230105 → 23+01+05=29 → binary 11101 → LSB=1 → Use F1

    1. Canonical Forms

    F1 = Σ(2,3,5,7,8,10,12,13)

    SOP:

    F1 = A'B'CD' + A'B'CD + A'BC'D + A'BCD + AB'C'D' + AB'CD' + ABC'D' + ABC'D
    

    POS:

    F1 = Π(0,1,4,6,9,11,14,15)
    

    2. Minimization

    Using K-map:

    CD\AB 00 01 11 10
    00    0  0  1  1
    01    0  1  1  0
    11    1  1  0  0
    10    1  0  1  1
    

    Minimized SOP:

    F1 = A'D + B'CD' + ABC' + A'B'C
    

    3. NAND/NOR Implementations

    NAND version:

    F1 = NAND(NAND(A',D), NAND(B',C,D'), NAND(A,B,C'), NAND(A',B',C))
    

    C) Sequential Logic System

    Using odd number set: {0,6,2,4,5,1,7,3}

    1. Asynchronous Counter

    3-bit counter with output logic to map states to the sequence.

    2. Synchronous Design

    More reliable, uses clocked flip-flops with state transitions directly implementing the sequence.

    3. Modified Sequence

    Remove first/last 0 → {6,2,4,5,1,7,3} → duplicate middle → {6,2,4,5,5,1,7,3}

    Design 7-state machine using 3 flip-flops with custom state transitions.

    Final Notes

    1. All solutions must be adapted to your specific student ID and birthday
    2. Complete circuit diagrams would be included in the Word document
    3. Timing analysis would be performed for sequential circuits
    4. All minimization steps would be shown with proper K-maps
    5. Estimated completion time: 12-15 hours for full solution

    Would you like me to elaborate on any specific part of the solution?

    评论

报告相同问题?

问题事件

  • 创建了问题 5月15日