Luo_sirsir 2025-06-09 14:47 采纳率: 0%
浏览 30

pyspark运行df.show()时报错py4j,但是已经利用conda安装过了py4j

import pyspark.sql as spark_sql
from pyspark.sql import SparkSession
spark = SparkSession.builder \
    .appName("Simple PySpark DataFrame Example") \
    .master("local") \
    .getOrCreate()
# 创建一个简单的 DataFrame
data = [("James", 30), ("Anna", 23), ("Robert", 45)]
columns = ["Name", "Age"]
df = spark.createDataFrame(data, columns)

以上代码均无报错,但是运行df.show时报错

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
Cell In[15], line 1
----> 1 df.show()

File c:\ProgramData\anaconda3\envs\lwy\lib\site-packages\pyspark\sql\dataframe.py:959, in DataFrame.show(self, n, truncate, vertical)
    953     raise PySparkTypeError(
    954         error_class="NOT_BOOL",
    955         message_parameters={"arg_name": "vertical", "arg_type": type(vertical).__name__},
    956     )
    958 if isinstance(truncate, bool) and truncate:
--> 959     print(self._jdf.showString(n, 20, vertical))
    960 else:
    961     try:

File c:\ProgramData\anaconda3\envs\lwy\lib\site-packages\py4j\java_gateway.py:1362, in JavaMember.__call__(self, *args)
   1356 command = proto.CALL_COMMAND_NAME +\
   1357     self.command_header +\
   1358     args_command +\
   1359     proto.END_COMMAND_PART
   1361 answer = self.gateway_client.send_command(command)
-> 1362 return_value = get_return_value(
   1363     answer, self.gateway_client, self.target_id, self.name)
   1365 for temp_arg in temp_args:
   1366     if hasattr(temp_arg, "_detach"):

File c:\ProgramData\anaconda3\envs\lwy\lib\site-packages\pyspark\errors\exceptions\captured.py:179, in capture_sql_exception.<locals>.deco(*a, **kw)
    177 def deco(*a: Any, **kw: Any) -> Any:
    178     try:
--> 179         return f(*a, **kw)
    180     except Py4JJavaError as e:
    181         converted = convert_exception(e.java_exception)

File c:\ProgramData\anaconda3\envs\lwy\lib\site-packages\py4j\protocol.py:327, in get_return_value(answer, gateway_client, target_id, name)
    325 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
    326 if answer[1] == REFERENCE_TYPE:
--> 327     raise Py4JJavaError(
    328         "An error occurred while calling {0}{1}{2}.\n".
    329         format(target_id, ".", name), value)
    330 else:
    331     raise Py4JError(
    332         "An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
    333         format(target_id, ".", name, value))

Py4JJavaError: An error occurred while calling o88.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 1 times, most recent failure: Lost task 0.0 in stage 2.0 (TID 2) (BF-202401010010 executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
    at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:203)
    at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
    at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
    at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:174)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:67)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
    at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
    at org.apache.spark.scheduler.Task.run(Task.scala:141)
    at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
    at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
    at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:750)
Caused by: java.net.SocketTimeoutException: Accept timed out
    at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
    at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:131)
    at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:535)
    at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:189)
    at java.net.ServerSocket.implAccept(ServerSocket.java:545)
    at java.net.ServerSocket.accept(ServerSocket.java:513)
    at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:190)
    ... 32 more

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2844)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2780)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2779)
    at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
    at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2779)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1242)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1242)
    at scala.Option.foreach(Option.scala:407)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1242)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3048)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2982)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2971)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:984)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2398)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2419)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2438)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:530)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:483)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:61)
    at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:4344)
    at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:3326)
    at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4334)
    at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:546)
    at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:4332)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:125)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:201)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:108)
    at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:66)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:4332)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:3326)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:3549)
    at org.apache.spark.sql.Dataset.getRows(Dataset.scala:280)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:315)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
    at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
    at java.lang.Thread.run(Thread.java:750)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
    at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:203)
    at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
    at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
    at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:174)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:67)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
    at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
    at org.apache.spark.scheduler.Task.run(Task.scala:141)
    at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
    at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
    at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
    at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
    at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:131)
    at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:535)
    at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:189)
    at java.net.ServerSocket.implAccept(ServerSocket.java:545)
    at java.net.ServerSocket.accept(ServerSocket.java:513)
    at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:190)
    ... 32 more
  • 写回答

6条回答 默认 最新

  • 阿里嘎多学长 2025-06-09 14:47
    关注

    阿里嘎多学长整理AIGC生成,因移动端显示问题导致当前答案未能完全显示,请使用PC端查看更加详细的解答过程

    问题解答

    你遇到的问题是:pyspark运行df.show()时报错py4j,但是已经使用conda安装过了py4j

    解决方案:

    1. 检查conda安装的py4j版本是否与pyspark版本兼容。可以使用conda list py4j命令查看当前安装的py4j版本。
    2. 如果py4j版本不兼容,可以卸载当前安装的py4j,然后使用conda install py4j命令安装兼容的版本。
    3. 如果你使用的是jupyter notebook,可以尝试重新启动jupyter notebook,或者使用%reset命令重置当前的python环境。
    4. 如果以上方法都不能解决问题,可以尝试使用spark.sparkContext._jvm来获取spark的jvm对象,然后使用spark.sparkContext._jvm来显示df的内容。

    代码示例:

    spark.sparkContext._jvm
    df.toPandas().head()
    

    这些方法都可以帮助你解决py4j错误的问题。

    评论

报告相同问题?

问题事件

  • 创建了问题 6月9日