C# using Windows.Devices.WiFi 错误 CS0234 命名空间“Windows”中不存在类型或命名空间名“Devices”(是否缺少程序集引用?) 20C

C# using Windows.Devices.WiFi 错误 CS0234 命名空间“Windows”中不存在类型或命名空间名“Devices”(是否缺少程序集引用?)

环境是WIN7上的VS2017,程序集里面没有Windows.Devices.WiFi,求解决方法

3个回答

Windows.Devices.WiFi 只有windows 10才能用,你要换用能实现你要的功能的替代品,不知道你要什么功能,请详细说下。

你这个是缺少 Windows.Devices.WiFi 这个dll 啊。 去下载一个 。再引用进来

这个是太平洋的下载链接
https://dl.pconline.com.cn/download/1602577.html

打开解决资源方案管理器,右键自己的项目,选择管理NuGet包。然后在浏览器搜索Windows.Devices.WiFi。接下来安装,不定看图谢谢!图片说明

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
C#using AForge.Video.FFMPEG;能录制视频但没有声音。
C#using AForge.Video.FFMPEG;能录制视频但没有声音。
第一次使用c#的asp.net,有不懂得地方
我在vs2017中写这个的时候,massagebox.show怎么都不对,说是上下文 中不存在这个,可这个不是文件中自带的吗,还是需要些其他什么的?麻烦大佬仔细说一下 ``` using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Mvc; using System.Data; using System.Data.SqlClient; using System.Text; namespace WebApplication1.Controllers { public class DefaultController : Controller { // GET: Default public void button1_Click(Object sender, EventArgs e) { string strcon = "Server=SKY-20191208FQQ;Trusted_Connection=true;DataBase=学生成绩管理系统"; SqlConnection conn = new SqlConnection(strcon); conn.Open(); if (conn.State == System.Data.ConnectionState.Open) MessageBox.Show("SQL Server 2012数据库连接成功"); conn.Close(); if (conn.State == System.Data.ConnectionState.Closed) MessageBox.Show("SQL Server 2012数据库连接关闭"); } } } ```
Typesetting 是怎么来实现的
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Typesetting 怎么写的呢
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Typesetting 程序的实现
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Sokoban 的问题
Problem Description Soko-ban is a Japanese word for a warehouse worker, and the name of a classic computer game created in the 1980s. It is a one-player game with the following premise. A single worker is in an enclosed warehouse with one or more boxes. The goal is to move those boxes to a set of target locations, with the number of target locations equalling the number of boxes. The player indicates a direction of motion for the worker using the arrow keys (up, down, left, right), according to the following rules. 1.If the indicated direction of motion for the worker leads to an empty location (i.e., one that does not have a box or wall), the worker advances by one step in that direction. 2.If the indicated direction of motion would cause the worker to move into a box, and the location on the other side of the box is empty, then both the worker and the box move one spot in that direction (i.e., the worker pushes the box). 3.If the indicated direction of motion for a move would cause the worker to move into a wall, or to move into a box that has another box or a wall on its opposite side, then no motion takes place for that keystroke. The goal is to simultaneously have all boxes on the target locations. In that case, the player is successful (and as a formality, all further keystrokes will be ignored). The game has been studied by computer scientists (in fact, one graduate student wrote his entire Ph.D. dissertation about the analysis of sokoban). Unfortunately, it turns out that finding a solution is very difficult in general, as it is both NP-hard and PSPACE-complete. Therefore, your goal will be a simpler task: simulating the progress of a game based upon a player's sequence of keystrokes. For the sake of input and output, we describe the state of a game using the following symbols: For example, the initial configuration diagrammed at the beginning of this problem appears as the first input case below. Input Each game begins with a line containing integers R and C, where 4 ≤ R ≤ 15 represents the number of rows, and 4 ≤ C ≤ 15 represents the number of columns. Next will be R lines representing the R rows from top to bottom, with each line having precisely C characters, from left-to-right. Finally, there is a line containing at most 50 characters describing the player's sequence of keystrokes, using the symbols U, D, L, and R respectively for up, down, left, and right. You must read that entire sequence from the input, even though a particular game might end successfully prior to the end of the sequence. The data set ends with the line 0 0. We will guarantee that each game has precisely one worker, an equal number of boxes and locations, at least one initially misplaced box, and an outermost boundary consisting entirely of walls. Output For each game, you should first output a line identifying the game number, beginning at 1, and either the word complete or incomplete, designating whether or not the player successfully completed that game. Following that should be a representation of the final board configuration. Sample Input 8 9 ######### #...#...# #..bb.b.# #...#w#.# #...#b#.# #...++++# #...#..## ######### ULRURDDDUULLDDD 6 7 ####### #..#### #.+.+.# #.bb#w# ##....# ####### DLLUDLULUURDRDDLUDRR 0 0 Sample Output Game 1: incomplete ######### #...#...# #..bb...# #...#.#.# #...#.#.# #...+W+B# #...#b.## ######### Game 2: complete ####### #..#### #.B.B.# #.w.#.# ##....# #######
Typesetting 使用程序来编写的方法
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Typesetting正确程序设计的思路
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
字符串点阵字模的一个运用问题,怎么使用C语言的程序的编写的过程去实现的呢?
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
二进制布尔表示的图形输出,怎么利用C语言程序编写设计的思维来实现代码?
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Typesetting
Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. PJ Here's another example. In this case, notice that the final glyph cannot be packed at all. Fiji After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. two slashes Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Toy Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. hidden pixels Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. hooks Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 x 1, the maximum dimension is 20 x 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
C# 使用System.Drawing.Bitmap有问题
using System; using System.Drawing; namespace yingguang { class Program { static void Main(string[] args) { Console.WriteLine("Hello World"); Bitmap tempBmp; } } } Program.cs(11,13): error CS0246: 未能找到类型或命名空间名“Bitmap”(是否缺少 using 指令或程序集引用?) 使用的是vscode 和 .Net core
C#中try...catch...finally初学,一个变量显示没有赋初始值?
当代码中有finally块时,代码如下: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using static System.Console; namespace ConsoleApplication13 { enum Orientation : byte { North = 1, South = 2, East = 3, West = 4 } class Program { static void Main(string[] args) { Orientation myDirection; for (byte myByte = 2; myByte < 10; myByte++) { try { myDirection = checked((Orientation)myByte); if ((myDirection < Orientation.North) || (myDirection > Orientation.West)) { throw new ArgumentOutOfRangeException("Value must between 1 and 4"); } } catch (ArgumentOutOfRangeException e) { WriteLine(e.Message); WriteLine("myDirection is assigned by default value, North"); myDirection = Orientation.North; } finally { WriteLine($" mydirection = {myDirection}"); } ReadKey(); } } } } 这时 WriteLine($" mydirection = {myDirection}");显示myDirection未赋值。 但是当将 finally { WriteLine($" mydirection = {myDirection}"); } 改为只剩下 WriteLine($" mydirection = {myDirection}"); 时,就可以正常运行了。 不清楚这个checked((Orientation)myByte)为什么在有finally块的时候没有成功赋值
The Sidewinder Sleeps Tonite
Problem Description Slitherlink is a type of logic puzzle made popular by Nikoli, the same Japanese puzzle company that has made Sudoku popular the world over. Like most good logic puzzles, it has a set of very basic rules that can nonetheless result in devilishly difficult (and delightful!) puzzling experiences. The rules of Slitherlink are as follows: A Slitherlink board is made up of a lattice of dots; in this problem, it will be a regular rectangular lattice. Some of the boxes (or cells) defined by the lattice have numbers within them; with a regular rectangular lattice, the numbers will be between 0 and 3 inclusive. The goal of a Slitherlink puzzle is to connect adjacent dots (horizontally or vertically, like the sides of boxes) so that there is a single loop that never crosses itself, with no line segments that are not part of the loop (no "dangling" segments or other, separate loops) such that every cell that has a number has exactly that many sides as segments of the loop. Given a supposedly solved Slitherlink puzzle, your task will be to determine whether or not it is indeed legitimately solved. Input Input to this problem will begin with a line containing a single integer N (1 ≤ N ≤ 100) indicating the number of data sets. Each data set consists of the following components: A line containing two integers H, W (1 ≤ H,W ≤ 20) representing the height and width of the Slitherlink puzzle by the number of cells (not dots!) per edge; A series of 2H + 1 lines representing the Slitherlink puzzle, using the following non-whitespace characters: 0, 1, 2, 3, ?: The numbers written inside a given cell. A ? represents an empty cell, as in the example graphic above. #: A dot in the lattice. -, |: A horizontal or vertical line segment. .: An empty adjacency between two dots in the lattice. Note that all Slitherlink puzzles will be fully represented; that is, there is no internal whitespace on a given line to represent empty cells or adjacencies. Output For each data set, print "VALID" if the solution is a valid solution to the given Slitherlink, or "INVALID" if the solution is not valid. Sample Input 2 5 5 #-#-#-#-#-# |?.?.?.1.3| #.#-#-#.#-# |?|?.?|?|?. #-#.#.#.#-# .2.0.2|?.?| #-#.#-#.#-# |?|3|?.?|2. #.#-#.#-#.# |?.?.2|?.0. #-#-#-#.#.# 5 5 #-#-#-#-#-# |?|?.?.1.3| #.#-#-#.#-# |?|?.?|?|?. #-#.#.#.#-# .2.0.2|?.?| #-#.#-#.#-# |?|3|?.?|2. #.#-#.#-#.# |?.?.2|?.0. #-#-#-#-#.# Sample Output VALID INVALID
The Sidewinder Sleeps Tonite 的问题
Problem Description Slitherlink is a type of logic puzzle made popular by Nikoli, the same Japanese puzzle company that has made Sudoku popular the world over. Like most good logic puzzles, it has a set of very basic rules that can nonetheless result in devilishly difficult (and delightful!) puzzling experiences. The rules of Slitherlink are as follows: A Slitherlink board is made up of a lattice of dots; in this problem, it will be a regular rectangular lattice. Some of the boxes (or cells) defined by the lattice have numbers within them; with a regular rectangular lattice, the numbers will be between 0 and 3 inclusive. The goal of a Slitherlink puzzle is to connect adjacent dots (horizontally or vertically, like the sides of boxes) so that there is a single loop that never crosses itself, with no line segments that are not part of the loop (no "dangling" segments or other, separate loops) such that every cell that has a number has exactly that many sides as segments of the loop. Given a supposedly solved Slitherlink puzzle, your task will be to determine whether or not it is indeed legitimately solved. Input Input to this problem will begin with a line containing a single integer N (1 ≤ N ≤ 100) indicating the number of data sets. Each data set consists of the following components: A line containing two integers H, W (1 ≤ H,W ≤ 20) representing the height and width of the Slitherlink puzzle by the number of cells (not dots!) per edge; A series of 2H + 1 lines representing the Slitherlink puzzle, using the following non-whitespace characters: 0, 1, 2, 3, ?: The numbers written inside a given cell. A ? represents an empty cell, as in the example graphic above. #: A dot in the lattice. -, |: A horizontal or vertical line segment. .: An empty adjacency between two dots in the lattice. Note that all Slitherlink puzzles will be fully represented; that is, there is no internal whitespace on a given line to represent empty cells or adjacencies. Output For each data set, print "VALID" if the solution is a valid solution to the given Slitherlink, or "INVALID" if the solution is not valid. Sample Input 2 5 5 #-#-#-#-#-# |?.?.?.1.3| #.#-#-#.#-# |?|?.?|?|?. #-#.#.#.#-# .2.0.2|?.?| #-#.#-#.#-# |?|3|?.?|2. #.#-#.#-#.# |?.?.2|?.0. #-#-#-#.#.# 5 5 #-#-#-#-#-# |?|?.?.1.3| #.#-#-#.#-# |?|?.?|?|?. #-#.#.#.#-# .2.0.2|?.?| #-#.#-#.#-# |?|3|?.?|2. #.#-#.#-#.# |?.?.2|?.0. #-#-#-#-#.# Sample Output VALID INVALID
c++引用c# dll,在C++头文件中引用,c# dll和c# namespace,总是提示找不到c# namespace
1.c++是clr工程 2.自定义一个c++ class AAA,在头文件中#using引用c# dll,然后using namespace c#命名空间 3.在c++工程中定义了一个class AAA的全局变量 4.编译的时候提示找不到c#的命名空间 求大神解释
根据以下规则,使用箭头键(上,下,左,右)指示工人的运动方向的操作用C语言程序如何模拟
Problem Description Soko-ban is a Japanese word for a warehouse worker, and the name of a classic computer game created in the 1980s. It is a one-player game with the following premise. A single worker is in an enclosed warehouse with one or more boxes. The goal is to move those boxes to a set of target locations, with the number of target locations equalling the number of boxes. The player indicates a direction of motion for the worker using the arrow keys (up, down, left, right), according to the following rules. 1.If the indicated direction of motion for the worker leads to an empty location (i.e., one that does not have a box or wall), the worker advances by one step in that direction. 2.If the indicated direction of motion would cause the worker to move into a box, and the location on the other side of the box is empty, then both the worker and the box move one spot in that direction (i.e., the worker pushes the box). 3.If the indicated direction of motion for a move would cause the worker to move into a wall, or to move into a box that has another box or a wall on its opposite side, then no motion takes place for that keystroke. The goal is to simultaneously have all boxes on the target locations. In that case, the player is successful (and as a formality, all further keystrokes will be ignored). The game has been studied by computer scientists (in fact, one graduate student wrote his entire Ph.D. dissertation about the analysis of sokoban). Unfortunately, it turns out that finding a solution is very difficult in general, as it is both NP-hard and PSPACE-complete. Therefore, your goal will be a simpler task: simulating the progress of a game based upon a player's sequence of keystrokes. For the sake of input and output, we describe the state of a game using the following symbols: For example, the initial configuration diagrammed at the beginning of this problem appears as the first input case below. Input Each game begins with a line containing integers R and C, where 4 ≤ R ≤ 15 represents the number of rows, and 4 ≤ C ≤ 15 represents the number of columns. Next will be R lines representing the R rows from top to bottom, with each line having precisely C characters, from left-to-right. Finally, there is a line containing at most 50 characters describing the player's sequence of keystrokes, using the symbols U, D, L, and R respectively for up, down, left, and right. You must read that entire sequence from the input, even though a particular game might end successfully prior to the end of the sequence. The data set ends with the line 0 0. We will guarantee that each game has precisely one worker, an equal number of boxes and locations, at least one initially misplaced box, and an outermost boundary consisting entirely of walls. Output For each game, you should first output a line identifying the game number, beginning at 1, and either the word complete or incomplete, designating whether or not the player successfully completed that game. Following that should be a representation of the final board configuration. Sample Input 8 9 ######### #...#...# #..bb.b.# #...#w#.# #...#b#.# #...++++# #...#..## ######### ULRURDDDUULLDDD 6 7 ####### #..#### #.+.+.# #.bb#w# ##....# ####### DLLUDLULUURDRDDLUDRR 0 0 Sample Output Game 1: incomplete ######### #...#...# #..bb...# #...#.#.# #...#.#.# #...+W+B# #...#b.## ######### Game 2: complete ####### #..#### #.B.B.# #.w.#.# ##....# #######
c# ConfigurationManager.AppSettings取不到值?? 命名空间加了using System.Configuration;,引用也加了,config文件也没碰
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using System.Configuration; namespace WindowsFormsApplication1 { public partial class Frm_1 : Form { public Frm_1() { InitializeComponent(); string str; str = ConfigurationManager.AppSettings[""]; if (str == null) MessageBox.Show("str为空"); this.Text = str; } private void button1_Click(object sender, EventArgs e) { string str1; str1 = ConfigurationManager.AppSettings["User"]; MessageBox.Show( str1); } private void Form1_Load(object sender, EventArgs e) { MessageBox.Show("窗体正在加载"); } private void Frm_1_FormClosing(object sender, FormClosingEventArgs e) { MessageBox.Show("正在关闭窗口,是否退出?"); } } }
相见恨晚的超实用网站
搞学习 知乎:www.zhihu.com 简答题:http://www.jiandati.com/ 网易公开课:https://open.163.com/ted/ 网易云课堂:https://study.163.com/ 中国大学MOOC:www.icourse163.org 网易云课堂:study.163.com 哔哩哔哩弹幕网:www.bilibili.com 我要自学网:www.51zxw
花了20分钟,给女朋友们写了一个web版群聊程序
参考博客 [1]https://www.byteslounge.com/tutorials/java-ee-html5-websocket-example
爬虫福利二 之 妹子图网MM批量下载
爬虫福利一:27报网MM批量下载    点击 看了本文,相信大家对爬虫一定会产生强烈的兴趣,激励自己去学习爬虫,在这里提前祝:大家学有所成! 目标网站:妹子图网 环境:Python3.x 相关第三方模块:requests、beautifulsoup4 Re:各位在测试时只需要将代码里的变量 path 指定为你当前系统要保存的路径,使用 python xxx.py 或IDE运行即可。
字节跳动视频编解码面经
引言 本文主要是记录一下面试字节跳动的经历。 三四月份投了字节跳动的实习(图形图像岗位),然后hr打电话过来问了一下会不会opengl,c++,shador,当时只会一点c++,其他两个都不会,也就直接被拒了。 七月初内推了字节跳动的提前批,因为内推没有具体的岗位,hr又打电话问要不要考虑一下图形图像岗,我说实习投过这个岗位不合适,不会opengl和shador,然后hr就说秋招更看重基础。我当时
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 顺便拉下票,我在参加csdn博客之星竞选,欢迎投票支持,每个QQ或者微信每天都可以投5票,扫二维码即可,http://m234140.nofollow.ax.
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入 假设现有4个人...
Python 基础(一):入门必备知识
目录1 标识符2 关键字3 引号4 编码5 输入输出6 缩进7 多行8 注释9 数据类型10 运算符10.1 常用运算符10.2 运算符优先级 1 标识符 标识符是编程时使用的名字,用于给变量、函数、语句块等命名,Python 中标识符由字母、数字、下划线组成,不能以数字开头,区分大小写。 以下划线开头的标识符有特殊含义,单下划线开头的标识符,如:_xxx ,表示不能直接访问的类属性,需通过类提供
这30个CSS选择器,你必须熟记(上)
关注前端达人,与你共同进步CSS的魅力就是让我们前端工程师像设计师一样进行网页的设计,我们能轻而易举的改变颜色、布局、制作出漂亮的影音效果等等,我们只需要改几行代码,不需...
国产开源API网关项目进入Apache孵化器:APISIX
点击蓝色“程序猿DD”关注我回复“资源”获取独家整理的学习资料!近日,又有一个开源项目加入了这个Java开源界大名鼎鼎的Apache基金会,开始进行孵化器。项目名称:AP...
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 欢迎 改进 留言。 演示地点跳到演示地点 html代码如下`&lt;!DOCTYPE html&gt; &lt;html&gt; &lt;head&gt; &lt;title&gt;music&lt;/title&gt; &lt;meta charset="utf-8"&gt
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。 1. for - else 什么?不是 if 和 else 才
数据库优化 - SQL优化
前面一篇文章从实例的角度进行数据库优化,通过配置一些参数让数据库性能达到最优。但是一些“不好”的SQL也会导致数据库查询变慢,影响业务流程。本文从SQL角度进行数据库优化,提升SQL运行效率。 判断问题SQL 判断SQL是否有问题时可以通过两个表象进行判断: 系统级别表象 CPU消耗严重 IO等待严重 页面响应时间过长
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 c/c++ 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7
通俗易懂地给女朋友讲:线程池的内部原理
餐厅的约会 餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”我楞了一下,心里想女朋友今天是怎么了,怎么突然问出这么专业的问题,但做为一个专业人士在女朋友面前也不能露怯啊,想了一下便说:“我先给你讲讲我前同事老王的故事吧!” 大龄程序员老王 老王是一个已经北漂十多年的程序员,岁数大了,加班加不动了,升迁也无望,于是拿着手里
经典算法(5)杨辉三角
杨辉三角 是经典算法,这篇博客对它的算法思想进行了讲解,并有完整的代码实现。
编写Spring MVC控制器的14个技巧
本期目录 1.使用@Controller构造型 2.实现控制器接口 3.扩展AbstractController类 4.为处理程序方法指定URL映射 5.为处理程序方法指定HTTP请求方法 6.将请求参数映射到处理程序方法 7.返回模型和视图 8.将对象放入模型 9.处理程序方法中的重定向 10.处理表格提交和表格验证 11.处理文件上传 12.在控制器中自动装配业务类 ...
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹
面试官:你连RESTful都不知道我怎么敢要你?
面试官:了解RESTful吗? 我:听说过。 面试官:那什么是RESTful? 我:就是用起来很规范,挺好的 面试官:是RESTful挺好的,还是自我感觉挺好的 我:都挺好的。 面试官:… 把门关上。 我:… 要干嘛?先关上再说。 面试官:我说出去把门关上。 我:what ?,夺门而去 文章目录01 前言02 RESTful的来源03 RESTful6大原则1. C-S架构2. 无状态3.统一的接
求小姐姐抠图竟遭白眼?痛定思痛,我决定用 Python 自力更生!
点击蓝色“Python空间”关注我丫加个“星标”,每天一起快乐的学习大家好,我是 Rocky0429,一个刚恰完午饭,正在用刷网页浪费生命的蒟蒻...一堆堆无聊八卦信息的网页内容慢慢使我的双眼模糊,一个哈欠打出了三斤老泪,就在此时我看到了一张图片:是谁!是谁把我女朋友的照片放出来的!awsl!太好看了叭...等等,那个背景上的一堆鬼画符是什么鬼?!真是看不下去!叔叔婶婶能忍,隔壁老王的三姨妈的四表...
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看
SQL-小白最佳入门sql查询一
不要偷偷的查询我的个人资料,即使你再喜欢我,也不要这样,真的不好;
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // doshom...
致 Python 初学者
欢迎来到“Python进阶”专栏!来到这里的每一位同学,应该大致上学习了很多 Python 的基础知识,正在努力成长的过程中。在此期间,一定遇到了很多的困惑,对未来的学习方向感到迷茫。我非常理解你们所面临的处境。我从2007年开始接触 python 这门编程语言,从2009年开始单一使用 python 应对所有的开发工作,直至今天。回顾自己的学习过程,也曾经遇到过无数的困难,也曾经迷茫过、困惑过。开办这个专栏,正是为了帮助像我当年一样困惑的 Python 初学者走出困境、快速成长。希望我的经验能真正帮到你
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,...
程序员:我终于知道post和get的区别
是一个老生常谈的话题,然而随着不断的学习,对于以前的认识有很多误区,所以还是需要不断地总结的,学而时习之,不亦说乎
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU...
加快推动区块链技术和产业创新发展,2019可信区块链峰会在京召开
11月8日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会、可信区块链推进计划联合主办,科技行者协办的2019可信区块链峰会将在北京悠唐皇冠假日酒店开幕。   区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。如果说蒸汽机释放了人类的生产力,电力解决了人类基本的生活需求,互联网彻底改变了信息传递的方式,区块链作为构造信任的技术有重要的价值。   1...
相关热词 c# 二进制截断字符串 c#实现窗体设计器 c#检测是否为微信 c# plc s1200 c#里氏转换原则 c# 主界面 c# do loop c#存为组套 模板 c# 停掉协程 c# rgb 读取图片
立即提问

相似问题

2
Windows Mono C#调用C++ DLL DllNotFoundException 问题
0
一个迷宫是否联通的有效性的判定算法怎么实现,采用C语言编程怎么实现
0
一笔画连通的有效性的判断的问题,运用C语言的程序办法实现
0
数字的迷宫的寻路的算法解决,怎么采用c程序的语言编写的技术实现的呢?
0
二进制布尔表示的图形输出,怎么利用C语言程序编写设计的思维来实现代码?
0
字符串点阵字模的一个运用问题,怎么使用C语言的程序的编写的过程去实现的呢?
0
[新人向]C# WPF datagrid问题
0
计算上下左右的控制的方向的问题,C语言的程序的代码的技术的编写的设计的思想的方法的技术
0
根据以下规则,使用箭头键(上,下,左,右)指示工人的运动方向的操作用C语言程序如何模拟
0
三符号状态的矩阵联合,怎么使用C语言的代码的设计的技术的办法来实现呢
1
C++调用C#接口,在gcnew C#类对象时,程序Crash
1
C#.net中GRIDVIEW的SQL更新语句的问题
1
C#.net中GRIDVIEW中数据调取未取到,麻烦前辈们指点指点
1
【C#】Timer.Elapsed触发的方法里怎么传进去参数?
0
Typesetting正确程序设计的思路
0
The Sidewinder Sleeps Tonite 程序编程代码
0
The Sidewinder Sleeps Tonite
0
Typesetting 使用程序来编写的方法
0
The Sidewinder Sleeps Tonite C语言
1
c# ConfigurationManager.AppSettings取不到值?? 命名空间加了using System.Configuration;,引用也加了,config文件也没碰