C# using Windows.Devices.WiFi 错误 CS0234 命名空间“Windows”中不存在类型或命名空间名“Devices”(是否缺少程序集引用?) 20C

C# using Windows.Devices.WiFi 错误 CS0234 命名空间“Windows”中不存在类型或命名空间名“Devices”(是否缺少程序集引用?)

环境是WIN7上的VS2017,程序集里面没有Windows.Devices.WiFi,求解决方法

3个回答

你这个是缺少 Windows.Devices.WiFi 这个dll 啊。 去下载一个 。再引用进来

这个是太平洋的下载链接
https://dl.pconline.com.cn/download/1602577.html

Windows.Devices.WiFi 只有windows 10才能用,你要换用能实现你要的功能的替代品,不知道你要什么功能,请详细说下。

打开解决资源方案管理器,右键自己的项目,选择管理NuGet包。然后在浏览器搜索Windows.Devices.WiFi。接下来安装,不定看图谢谢!图片说明

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
C#using AForge.Video.FFMPEG;能录制视频但没有声音。
C#using AForge.Video.FFMPEG;能录制视频但没有声音。
第一次使用c#的asp.net,有不懂得地方
我在vs2017中写这个的时候,massagebox.show怎么都不对,说是上下文 中不存在这个,可这个不是文件中自带的吗,还是需要些其他什么的?麻烦大佬仔细说一下 ``` using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Mvc; using System.Data; using System.Data.SqlClient; using System.Text; namespace WebApplication1.Controllers { public class DefaultController : Controller { // GET: Default public void button1_Click(Object sender, EventArgs e) { string strcon = "Server=SKY-20191208FQQ;Trusted_Connection=true;DataBase=学生成绩管理系统"; SqlConnection conn = new SqlConnection(strcon); conn.Open(); if (conn.State == System.Data.ConnectionState.Open) MessageBox.Show("SQL Server 2012数据库连接成功"); conn.Close(); if (conn.State == System.Data.ConnectionState.Closed) MessageBox.Show("SQL Server 2012数据库连接关闭"); } } } ```
Typesetting 程序编写
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Typesetting 文字输出的实现方式
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Typesetting 是怎么来实现的
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Typesetting 怎么写的呢
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Typesetting 程序的实现
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Sokoban 是怎么计算的
Problem Description Soko-ban is a Japanese word for a warehouse worker, and the name of a classic computer game created in the 1980s. It is a one-player game with the following premise. A single worker is in an enclosed warehouse with one or more boxes. The goal is to move those boxes to a set of target locations, with the number of target locations equalling the number of boxes. The player indicates a direction of motion for the worker using the arrow keys (up, down, left, right), according to the following rules. 1.If the indicated direction of motion for the worker leads to an empty location (i.e., one that does not have a box or wall), the worker advances by one step in that direction. 2.If the indicated direction of motion would cause the worker to move into a box, and the location on the other side of the box is empty, then both the worker and the box move one spot in that direction (i.e., the worker pushes the box). 3.If the indicated direction of motion for a move would cause the worker to move into a wall, or to move into a box that has another box or a wall on its opposite side, then no motion takes place for that keystroke. The goal is to simultaneously have all boxes on the target locations. In that case, the player is successful (and as a formality, all further keystrokes will be ignored). The game has been studied by computer scientists (in fact, one graduate student wrote his entire Ph.D. dissertation about the analysis of sokoban). Unfortunately, it turns out that finding a solution is very difficult in general, as it is both NP-hard and PSPACE-complete. Therefore, your goal will be a simpler task: simulating the progress of a game based upon a player's sequence of keystrokes. For the sake of input and output, we describe the state of a game using the following symbols: For example, the initial configuration diagrammed at the beginning of this problem appears as the first input case below. Input Each game begins with a line containing integers R and C, where 4 ≤ R ≤ 15 represents the number of rows, and 4 ≤ C ≤ 15 represents the number of columns. Next will be R lines representing the R rows from top to bottom, with each line having precisely C characters, from left-to-right. Finally, there is a line containing at most 50 characters describing the player's sequence of keystrokes, using the symbols U, D, L, and R respectively for up, down, left, and right. You must read that entire sequence from the input, even though a particular game might end successfully prior to the end of the sequence. The data set ends with the line 0 0. We will guarantee that each game has precisely one worker, an equal number of boxes and locations, at least one initially misplaced box, and an outermost boundary consisting entirely of walls. Output For each game, you should first output a line identifying the game number, beginning at 1, and either the word complete or incomplete, designating whether or not the player successfully completed that game. Following that should be a representation of the final board configuration. Sample Input 8 9 ######### #...#...# #..bb.b.# #...#w#.# #...#b#.# #...++++# #...#..## ######### ULRURDDDUULLDDD 6 7 ####### #..#### #.+.+.# #.bb#w# ##....# ####### DLLUDLULUURDRDDLUDRR 0 0 Sample Output Game 1: incomplete ######### #...#...# #..bb...# #...#.#.# #...#.#.# #...+W+B# #...#b.## ######### Game 2: complete ####### #..#### #.B.B.# #.w.#.# ##....# #######
Typesetting 使用程序来编写的方法
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Typesetting正确程序设计的思路
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Sokoban 完整性判断
Problem Description Soko-ban is a Japanese word for a warehouse worker, and the name of a classic computer game created in the 1980s. It is a one-player game with the following premise. A single worker is in an enclosed warehouse with one or more boxes. The goal is to move those boxes to a set of target locations, with the number of target locations equalling the number of boxes. The player indicates a direction of motion for the worker using the arrow keys (up, down, left, right), according to the following rules. 1.If the indicated direction of motion for the worker leads to an empty location (i.e., one that does not have a box or wall), the worker advances by one step in that direction. 2.If the indicated direction of motion would cause the worker to move into a box, and the location on the other side of the box is empty, then both the worker and the box move one spot in that direction (i.e., the worker pushes the box). 3.If the indicated direction of motion for a move would cause the worker to move into a wall, or to move into a box that has another box or a wall on its opposite side, then no motion takes place for that keystroke. The goal is to simultaneously have all boxes on the target locations. In that case, the player is successful (and as a formality, all further keystrokes will be ignored). The game has been studied by computer scientists (in fact, one graduate student wrote his entire Ph.D. dissertation about the analysis of sokoban). Unfortunately, it turns out that finding a solution is very difficult in general, as it is both NP-hard and PSPACE-complete. Therefore, your goal will be a simpler task: simulating the progress of a game based upon a player's sequence of keystrokes. For the sake of input and output, we describe the state of a game using the following symbols: For example, the initial configuration diagrammed at the beginning of this problem appears as the first input case below. Input Each game begins with a line containing integers R and C, where 4 ≤ R ≤ 15 represents the number of rows, and 4 ≤ C ≤ 15 represents the number of columns. Next will be R lines representing the R rows from top to bottom, with each line having precisely C characters, from left-to-right. Finally, there is a line containing at most 50 characters describing the player's sequence of keystrokes, using the symbols U, D, L, and R respectively for up, down, left, and right. You must read that entire sequence from the input, even though a particular game might end successfully prior to the end of the sequence. The data set ends with the line 0 0. We will guarantee that each game has precisely one worker, an equal number of boxes and locations, at least one initially misplaced box, and an outermost boundary consisting entirely of walls. Output For each game, you should first output a line identifying the game number, beginning at 1, and either the word complete or incomplete, designating whether or not the player successfully completed that game. Following that should be a representation of the final board configuration. Sample Input 8 9 ######### #...#...# #..bb.b.# #...#w#.# #...#b#.# #...++++# #...#..## ######### ULRURDDDUULLDDD 6 7 ####### #..#### #.+.+.# #.bb#w# ##....# ####### DLLUDLULUURDRDDLUDRR 0 0 Sample Output Game 1: incomplete ######### #...#...# #..bb...# #...#.#.# #...#.#.# #...+W+B# #...#b.## ######### Game 2: complete ####### #..#### #.B.B.# #.w.#.# ##....# #######
Sokoban 的问题
Problem Description Soko-ban is a Japanese word for a warehouse worker, and the name of a classic computer game created in the 1980s. It is a one-player game with the following premise. A single worker is in an enclosed warehouse with one or more boxes. The goal is to move those boxes to a set of target locations, with the number of target locations equalling the number of boxes. The player indicates a direction of motion for the worker using the arrow keys (up, down, left, right), according to the following rules. 1.If the indicated direction of motion for the worker leads to an empty location (i.e., one that does not have a box or wall), the worker advances by one step in that direction. 2.If the indicated direction of motion would cause the worker to move into a box, and the location on the other side of the box is empty, then both the worker and the box move one spot in that direction (i.e., the worker pushes the box). 3.If the indicated direction of motion for a move would cause the worker to move into a wall, or to move into a box that has another box or a wall on its opposite side, then no motion takes place for that keystroke. The goal is to simultaneously have all boxes on the target locations. In that case, the player is successful (and as a formality, all further keystrokes will be ignored). The game has been studied by computer scientists (in fact, one graduate student wrote his entire Ph.D. dissertation about the analysis of sokoban). Unfortunately, it turns out that finding a solution is very difficult in general, as it is both NP-hard and PSPACE-complete. Therefore, your goal will be a simpler task: simulating the progress of a game based upon a player's sequence of keystrokes. For the sake of input and output, we describe the state of a game using the following symbols: For example, the initial configuration diagrammed at the beginning of this problem appears as the first input case below. Input Each game begins with a line containing integers R and C, where 4 ≤ R ≤ 15 represents the number of rows, and 4 ≤ C ≤ 15 represents the number of columns. Next will be R lines representing the R rows from top to bottom, with each line having precisely C characters, from left-to-right. Finally, there is a line containing at most 50 characters describing the player's sequence of keystrokes, using the symbols U, D, L, and R respectively for up, down, left, and right. You must read that entire sequence from the input, even though a particular game might end successfully prior to the end of the sequence. The data set ends with the line 0 0. We will guarantee that each game has precisely one worker, an equal number of boxes and locations, at least one initially misplaced box, and an outermost boundary consisting entirely of walls. Output For each game, you should first output a line identifying the game number, beginning at 1, and either the word complete or incomplete, designating whether or not the player successfully completed that game. Following that should be a representation of the final board configuration. Sample Input 8 9 ######### #...#...# #..bb.b.# #...#w#.# #...#b#.# #...++++# #...#..## ######### ULRURDDDUULLDDD 6 7 ####### #..#### #.+.+.# #.bb#w# ##....# ####### DLLUDLULUURDRDDLUDRR 0 0 Sample Output Game 1: incomplete ######### #...#...# #..bb...# #...#.#.# #...#.#.# #...+W+B# #...#b.## ######### Game 2: complete ####### #..#### #.B.B.# #.w.#.# ##....# #######
字符串点阵字模的一个运用问题,怎么使用C语言的程序的编写的过程去实现的呢?
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
二进制布尔表示的图形输出,怎么利用C语言程序编写设计的思维来实现代码?
Problem Description Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. Here's another example. In this case, notice that the final glyph cannot be packed at all. After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 × 1, the maximum dimension is 20 × 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
Typesetting
Modern fonts are generally of two varieties: outline fonts, whose glyphs (the individual character shapes) are specified mathematically as a set of curves, and bitmap fonts, whose glyphs are specified as patterns of pixels. Fonts may also include embedded information such as kerning pairs (adjusting the spacing between certain pairs of glyphs, such as "AW", so that they appear spaced correctly), tracking hints (for managing inter-glyph spacing), antialiasing hints (smoothing of pixellated edges), and much more. To be sure, modern fonts are more than a simple collection of shapes, and displaying them properly is a common programming challenge. For this problem we will concern ourselves with bitmapped fonts and a simple form of typesetting called glyph packing. Essentially, the idea is to pack the glyphs as tightly as possible while maintaining at least one horizontal pixel of separation between glyphs. For example, consider the glyphs shown to the left below for the Roman characters "P" and "J". The figure to the right shows them after glyph packing. Note that they are as close as possible without touching horizontally. PJ Here's another example. In this case, notice that the final glyph cannot be packed at all. Fiji After packing, pixels from distinct glyphs may be adjacent diagonally or vertically, but not horizontally. The following example shows that pixels may be adjacent diagonally. The "Love" test case in the example input section shows that they may be adjacent vertically. two slashes Glyph packing has the nice property that it's easy to build "fancy" glyphs into the font so that glyph packing creates special effects with no extra work. Look at the "Toy" example below. The same simple packing process has been applied to these glyphs as to the ones above, but the result is more dramatic: Toy Glyph packing has a few caveats, however, one of which we must concern ourselves with for this problem. Consider the example on the left below where a glyph for a hyphen is followed by a glyph for an underscore. Based on our one horizontal pixel of separation rule, how would this pack? Clearly something more is needed, and that something more is hinting within the glyphs themselves. Recall that in actual practice, fonts contain kerning pairs, tracking hints, etc. For our purposes, our hinting will be limited to "invisible" pixels that count as a pixel for the purpose of packing, but not for display. The center image below represents invisible pixels as open dots instead of closed dots. Now the two glyphs can be properly packed, resulting in the output shown on the right. hidden pixels Now for the formal definition of a proper packing: (1) Glyphs are packed as close as possible without allowing any pixels from different glyphs to be immediately horizontally adjacent; (2) Given two glyphs, they may not be packed in such a way that any pixel of the leftmost glyph at a given height ends up positioned to the right of any pixel at the same height in the rightmost glyph. Condition (2) above is easily understood by visualizing two glyphs sitting side by side, separated by a small space. If you "squeeze" them together, condition (2) says that their pixels are not allowed to "pass through" one another. Consider the example to the left below. The center image is not the proper packing, because it violates condition (2) of the formal definition. The image on the right is the proper packing of these glyphs. hooks Input The input for this problem is sets of glyphs to be packed. In a given test case, all glyphs are the same height, and an integer, N, on the first line of the test case specifies this height. The next N lines contain the glyphs to be packed. Empty pixels in a glyph are represented by a dot '.' character. Non-empty pixels are represented by a hash mark '#' for visible pixels, and a zero '0' for invisible pixels. Glyphs are separated by a single column of space characters. The input will always consist of more than one glyph, at least one of which will always contain at least one visible pixel. A glyph will always have at least one non-empty pixel in its leftmost and rightmost column, and every glyph will have at least one non-empty pixel at the same height as at least one other glyph in the input. The minimum dimension of a glyph is 1 x 1, the maximum dimension is 20 x 20, and the maximum number of glyphs that will appear in any test case is 20. Test cases continue until a value of zero is specified for N. Output For each test case, first output the number of that test case (starting with 1) on a line by itself. Then output the proper packing of the input glyphs, using the dot '.' character for empty pixels and for invisible pixels, and the hash mark '#' character for visible pixels. Omit leading and trailing empty columns (columns with no visible pixels) so that both the leftmost and rightmost output columns contain at least one visible pixel. Sample Input 8 ###. ...# #..# ...# #..# ...# ###. ...# #... ...# #... ...# #... #..# #... #### 8 ############# .... ............. ..#.......... .... ............. ..#.......... .##. .........#..# ..#.......... #..# .........#..# ..#.......... #..# .........#..# ..#.......... .##. ..........### ............. .... ............# ............. .... ############. 8 ############# ............. ..#.......... ............. ..#.......... .........#..# ..#.......... .........#..# ..#.......... .........#..# ..#.......... ..........### ............. ............# ............. ############. 5 0..0 0..0 0..0 0..0 #### 0..0 0..0 0..0 0..0 #### 5 #.... .###. #.... #...# #...# #...# #...# ....# .###. ....# 3 ### 0.0 ### #.# 0.0 #.# ### 0.0 ### 3 0.0 ### 0.0 0.0 #.# 0.0 0.0 ### 0.0 8 #.... .... ..... .... #.... .... ..... .... #.... .##. #...# .##. #.... #..# .#.#. #..# #.... #..# .#.#. #..# #.... #..# .#.#. ###. #.... .##. ..#.. #... ##### .... ..#.. .### 0 Sample Output 1 ###..# #..#.# #..#.# ###..# #....# #....# #.#..# #.#### 2 ############# ..#.......... ..#..##..#..# ..#.#..#.#..# ..#.#..#.#..# ..#..##...### ............# ############. 3 .....############# .......#.......... .......#.#..#..... .......#.#..#..... .......#.#..#..... .......#..###..... ............#..... ############...... 4 ......... ......... ####..... ......... .....#### 5 #......###. #.....#...# #...#.#...# #...#.....# .###......# 6 ###.....### #.#.....#.# ###.....### 7 ### #.# ### 8 #.............. #.............. #..##.#...#.##. #.#..#.#.#.#..# #.#..#.#.#.#..# #.#..#.#.#.###. #..##...#..#... #####...#...###
C# 使用System.Drawing.Bitmap有问题
using System; using System.Drawing; namespace yingguang { class Program { static void Main(string[] args) { Console.WriteLine("Hello World"); Bitmap tempBmp; } } } Program.cs(11,13): error CS0246: 未能找到类型或命名空间名“Bitmap”(是否缺少 using 指令或程序集引用?) 使用的是vscode 和 .Net core
C#中try...catch...finally初学,一个变量显示没有赋初始值?
当代码中有finally块时,代码如下: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using static System.Console; namespace ConsoleApplication13 { enum Orientation : byte { North = 1, South = 2, East = 3, West = 4 } class Program { static void Main(string[] args) { Orientation myDirection; for (byte myByte = 2; myByte < 10; myByte++) { try { myDirection = checked((Orientation)myByte); if ((myDirection < Orientation.North) || (myDirection > Orientation.West)) { throw new ArgumentOutOfRangeException("Value must between 1 and 4"); } } catch (ArgumentOutOfRangeException e) { WriteLine(e.Message); WriteLine("myDirection is assigned by default value, North"); myDirection = Orientation.North; } finally { WriteLine($" mydirection = {myDirection}"); } ReadKey(); } } } } 这时 WriteLine($" mydirection = {myDirection}");显示myDirection未赋值。 但是当将 finally { WriteLine($" mydirection = {myDirection}"); } 改为只剩下 WriteLine($" mydirection = {myDirection}"); 时,就可以正常运行了。 不清楚这个checked((Orientation)myByte)为什么在有finally块的时候没有成功赋值
The Sidewinder Sleeps Tonite
Problem Description Slitherlink is a type of logic puzzle made popular by Nikoli, the same Japanese puzzle company that has made Sudoku popular the world over. Like most good logic puzzles, it has a set of very basic rules that can nonetheless result in devilishly difficult (and delightful!) puzzling experiences. The rules of Slitherlink are as follows: A Slitherlink board is made up of a lattice of dots; in this problem, it will be a regular rectangular lattice. Some of the boxes (or cells) defined by the lattice have numbers within them; with a regular rectangular lattice, the numbers will be between 0 and 3 inclusive. The goal of a Slitherlink puzzle is to connect adjacent dots (horizontally or vertically, like the sides of boxes) so that there is a single loop that never crosses itself, with no line segments that are not part of the loop (no "dangling" segments or other, separate loops) such that every cell that has a number has exactly that many sides as segments of the loop. Given a supposedly solved Slitherlink puzzle, your task will be to determine whether or not it is indeed legitimately solved. Input Input to this problem will begin with a line containing a single integer N (1 ≤ N ≤ 100) indicating the number of data sets. Each data set consists of the following components: A line containing two integers H, W (1 ≤ H,W ≤ 20) representing the height and width of the Slitherlink puzzle by the number of cells (not dots!) per edge; A series of 2H + 1 lines representing the Slitherlink puzzle, using the following non-whitespace characters: 0, 1, 2, 3, ?: The numbers written inside a given cell. A ? represents an empty cell, as in the example graphic above. #: A dot in the lattice. -, |: A horizontal or vertical line segment. .: An empty adjacency between two dots in the lattice. Note that all Slitherlink puzzles will be fully represented; that is, there is no internal whitespace on a given line to represent empty cells or adjacencies. Output For each data set, print "VALID" if the solution is a valid solution to the given Slitherlink, or "INVALID" if the solution is not valid. Sample Input 2 5 5 #-#-#-#-#-# |?.?.?.1.3| #.#-#-#.#-# |?|?.?|?|?. #-#.#.#.#-# .2.0.2|?.?| #-#.#-#.#-# |?|3|?.?|2. #.#-#.#-#.# |?.?.2|?.0. #-#-#-#.#.# 5 5 #-#-#-#-#-# |?|?.?.1.3| #.#-#-#.#-# |?|?.?|?|?. #-#.#.#.#-# .2.0.2|?.?| #-#.#-#.#-# |?|3|?.?|2. #.#-#.#-#.# |?.?.2|?.0. #-#-#-#-#.# Sample Output VALID INVALID
终于明白阿里百度这样的大公司,为什么面试经常拿ThreadLocal考验求职者了
点击上面↑「爱开发」关注我们每晚10点,捕获技术思考和创业资源洞察什么是ThreadLocalThreadLocal是一个本地线程副本变量工具类,各个线程都拥有一份线程私有的数
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
此博客仅为我业余记录文章所用,发布到此,仅供网友阅读参考,如有侵权,请通知我,我会删掉。 补充 有不少读者留言说本文章没有用,因为天气预报直接打开手机就可以收到了,为何要多此一举发送到邮箱呢!!!那我在这里只能说:因为你没用,所以你没用!!! 这里主要介绍的是思路,不是天气预报!不是天气预报!!不是天气预报!!!天气预报只是用于举例。请各位不要再刚了!!! 下面是我会用到的两个场景: 每日下
面试官问我:什么是消息队列?什么场景需要他?用了会出现什么问题?
你知道的越多,你不知道的越多 点赞再看,养成习惯 GitHub上已经开源 https://github.com/JavaFamily 有一线大厂面试点脑图、个人联系方式,欢迎Star和完善 前言 消息队列在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在消息队列的使用和原理方面对小伙伴们进行360°的刁难。 作为一个在互联网公司面一次拿一次Offer的面霸,打败了无数
8年经验面试官详解 Java 面试秘诀
    作者 | 胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。   Java程序员准备和投递简历的实
究竟你适不适合买Mac?
我清晰的记得,刚买的macbook pro回到家,开机后第一件事情,就是上了淘宝网,花了500元钱,找了一个上门维修电脑的师傅,上门给我装了一个windows系统。。。。。。 表砍我。。。 当时买mac的初衷,只是想要个固态硬盘的笔记本,用来运行一些复杂的扑克软件。而看了当时所有的SSD笔记本后,最终决定,还是买个好(xiong)看(da)的。 已经有好几个朋友问我mba怎么样了,所以今天尽量客观
程序员一般通过什么途径接私活?
二哥,你好,我想知道一般程序猿都如何接私活,我也想接,能告诉我一些方法吗? 上面是一个读者“烦不烦”问我的一个问题。其实不止是“烦不烦”,还有很多读者问过我类似这样的问题。 我接的私活不算多,挣到的钱也没有多少,加起来不到 20W。说实话,这个数目说出来我是有点心虚的,毕竟太少了,大家轻喷。但我想,恰好配得上“一般程序员”这个称号啊。毕竟苍蝇再小也是肉,我也算是有经验的人了。 唾弃接私活、做外
大学四年自学走来,这些珍藏的「实用工具/学习网站」我全贡献出来了
知乎高赞:文中列举了互联网一线大厂程序员都在用的工具集合,涉及面非常广,小白和老手都可以进来看看,或许有新收获。
《阿里巴巴开发手册》读书笔记-编程规约
Java编程规约命名风格 命名风格 类名使用UpperCamelCase风格 方法名,参数名,成员变量,局部变量都统一使用lowerCamelcase风格 常量命名全部大写,单词间用下划线隔开, 力求语义表达完整清楚,不要嫌名字长 ...
Python爬虫爬取淘宝,京东商品信息
小编是一个理科生,不善长说一些废话。简单介绍下原理然后直接上代码。 使用的工具(Python+pycharm2019.3+selenium+xpath+chromedriver)其中要使用pycharm也可以私聊我selenium是一个框架可以通过pip下载 pip install selenium -i https://pypi.tuna.tsinghua.edu.cn/simple/ 
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
你知道的越多,你不知道的越多 点赞再看,养成习惯 本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试点思维导图,也整理了很多我的文档,欢迎Star和完善,大家面试可以参照考点复习,希望我们一起有点东西。 前前言 为啥今天有个前前言呢? 因为你们的丙丙啊,昨天有牌面了哟,直接被微信官方推荐,知乎推荐,也就仅仅是还行吧(心里乐开花)
Java工作4年来应聘要16K最后没要,细节如下。。。
前奏: 今天2B哥和大家分享一位前几天面试的一位应聘者,工作4年26岁,统招本科。 以下就是他的简历和面试情况。 基本情况: 专业技能: 1、&nbsp;熟悉Sping了解SpringMVC、SpringBoot、Mybatis等框架、了解SpringCloud微服务 2、&nbsp;熟悉常用项目管理工具:SVN、GIT、MAVEN、Jenkins 3、&nbsp;熟悉Nginx、tomca
Python爬虫精简步骤1 获取数据
爬虫的工作分为四步: 1.获取数据。爬虫程序会根据我们提供的网址,向服务器发起请求,然后返回数据。 2.解析数据。爬虫程序会把服务器返回的数据解析成我们能读懂的格式。 3.提取数据。爬虫程序再从中提取出我们需要的数据。 4.储存数据。爬虫程序把这些有用的数据保存起来,便于你日后的使用和分析。 这一篇的内容就是:获取数据。 首先,我们将会利用一个强大的库——requests来获取数据。 在电脑上安装
Python绘图,圣诞树,花,爱心 | Turtle篇
1.画圣诞树 import turtle screen = turtle.Screen() screen.setup(800,600) circle = turtle.Turtle() circle.shape('circle') circle.color('red') circle.speed('fastest') circle.up() square = turtle.Turtle()
作为一个程序员,CPU的这些硬核知识你必须会!
CPU对每个程序员来说,是个既熟悉又陌生的东西? 如果你只知道CPU是中央处理器的话,那可能对你并没有什么用,那么作为程序员的我们,必须要搞懂的就是CPU这家伙是如何运行的,尤其要搞懂它里面的寄存器是怎么一回事,因为这将让你从底层明白程序的运行机制。 随我一起,来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说,我们首先就要搞明白它是怎么回事,也就是它的内部构造,当然,CPU那么牛的一个东
破14亿,Python分析我国存在哪些人口危机!
2020年1月17日,国家统计局发布了2019年国民经济报告,报告中指出我国人口突破14亿。 猪哥的朋友圈被14亿人口刷屏,但是很多人并没有看到我国复杂的人口问题:老龄化、男女比例失衡、生育率下降、人口红利下降等。 今天我们就来分析一下我们国家的人口数据吧! 更多有趣分析教程,扫描下方二维码关注vx公号「裸睡的猪」 即可查看! 一、背景 1.人口突破14亿 2020年1月17日,国家统计局发布
听说想当黑客的都玩过这个Monyer游戏(1~14攻略)
第零关 进入传送门开始第0关(游戏链接) 请点击链接进入第1关: 连接在左边→ ←连接在右边 看不到啊。。。。(只能看到一堆大佬做完的留名,也能看到菜鸡的我,在后面~~) 直接fn+f12吧 &lt;span&gt;连接在左边→&lt;/span&gt; &lt;a href="first.php"&gt;&lt;/a&gt; &lt;span&gt;←连接在右边&lt;/span&gt; o
在家远程办公效率低?那你一定要收好这个「在家办公」神器!
相信大家都已经收到国务院延长春节假期的消息,接下来,在家远程办公可能将会持续一段时间。 但是问题来了。远程办公不是人在电脑前就当坐班了,相反,对于沟通效率,文件协作,以及信息安全都有着极高的要求。有着非常多的挑战,比如: 1在异地互相不见面的会议上,如何提高沟通效率? 2文件之间的来往反馈如何做到及时性?如何保证信息安全? 3如何规划安排每天工作,以及如何进行成果验收? ......
作为一个程序员,内存和磁盘的这些事情,你不得不知道啊!!!
截止目前,我已经分享了如下几篇文章: 一个程序在计算机中是如何运行的?超级干货!!! 作为一个程序员,CPU的这些硬核知识你必须会! 作为一个程序员,内存的这些硬核知识你必须懂! 这些知识可以说是我们之前都不太重视的基础知识,可能大家在上大学的时候都学习过了,但是嘞,当时由于老师讲解的没那么有趣,又加上这些知识本身就比较枯燥,所以嘞,大家当初几乎等于没学。 再说啦,学习这些,也看不出来有什么用啊!
别低估自己的直觉,也别高估自己的智商
所有群全部吵翻天,朋友圈全部沦陷,公众号疯狂转发。这两周没怎么发原创,只发新闻,可能有人注意到了。我不是懒,是文章写了却没发,因为大家的关注力始终在这次的疫情上面,发了也没人看。当然,我...
这个世界上人真的分三六九等,你信吗?
偶然间,在知乎上看到一个问题 一时间,勾起了我深深的回忆。 以前在厂里打过两次工,做过家教,干过辅导班,做过中介。零下几度的晚上,贴过广告,满脸、满手地长冻疮。   再回首那段岁月,虽然苦,但让我学会了坚持和忍耐。让我明白了,在这个世界上,无论环境多么的恶劣,只要心存希望,星星之火,亦可燎原。   下文是原回答,希望能对你能有所启发。   如果我说,这个世界上人真的分三六九等,
为什么听过很多道理,依然过不好这一生?
记录学习笔记是一个重要的习惯,不希望学习过的东西成为过眼云烟。做总结的同时也是一次复盘思考的过程。 本文是根据阅读得到 App上《万维钢·精英日课》部分文章后所做的一点笔记和思考。学习是一个系统的过程,思维模型的建立需要相对完整的学习和思考过程。以下观点是在碎片化阅读后总结的一点心得总结。
B 站上有哪些很好的学习资源?
哇说起B站,在小九眼里就是宝藏般的存在,放年假宅在家时一天刷6、7个小时不在话下,更别提今年的跨年晚会,我简直是跪着看完的!! 最早大家聚在在B站是为了追番,再后来我在上面刷欧美新歌和漂亮小姐姐的舞蹈视频,最近两年我和周围的朋友们已经把B站当作学习教室了,而且学习成本还免费,真是个励志的好平台ヽ(.◕ฺˇд ˇ◕ฺ;)ノ 下面我们就来盘点一下B站上优质的学习资源: 综合类 Oeasy: 综合
如何优雅地打印一个Java对象?
你好呀,我是沉默王二,一个和黄家驹一样身高,和刘德华一样颜值的程序员。虽然已经写了十多年的 Java 代码,但仍然觉得自己是个菜鸟(请允许我惭愧一下)。 在一个月黑风高的夜晚,我思前想后,觉得再也不能这么蹉跎下去了。于是痛下决心,准备通过输出的方式倒逼输入,以此来修炼自己的内功,从而进阶成为一名真正意义上的大神。与此同时,希望这些文章能够帮助到更多的读者,让大家在学习的路上不再寂寞、空虚和冷。 ...
雷火神山直播超两亿,Web播放器事件监听是怎么实现的?
Web播放器解决了在手机浏览器和PC浏览器上播放音视频数据的问题,让视音频内容可以不依赖用户安装App,就能进行播放以及在社交平台进行传播。在视频业务大数据平台中,播放数据的统计分析非常重要,所以Web播放器在使用过程中,需要对其内部的数据进行收集并上报至服务端,此时,就需要对发生在其内部的一些播放行为进行事件监听。 那么Web播放器事件监听是怎么实现的呢? 01 监听事件明细表 名
3万字总结,Mysql优化之精髓
本文知识点较多,篇幅较长,请耐心学习 MySQL已经成为时下关系型数据库产品的中坚力量,备受互联网大厂的青睐,出门面试想进BAT,想拿高工资,不会点MySQL优化知识,拿offer的成功率会大大下降。 为什么要优化 系统的吞吐量瓶颈往往出现在数据库的访问速度上 随着应用程序的运行,数据库的中的数据会越来越多,处理时间会相应变慢 数据是存放在磁盘上的,读写速度无法和内存相比 如何优化 设计
Linux 命令(122)—— watch 命令
1.命令简介 2.命令格式 3.选项说明 4.常用示例 参考文献 [1] watch(1) manual
Linux 命令(121)—— cal 命令
1.命令简介 2.命令格式 3.选项说明 4.常用示例 参考文献 [1] cal(1) manual
记jsp+servlet+jdbc实现的新闻管理系统
1.工具:eclipse+SQLyog 2.介绍:实现的内容就是显示新闻的基本信息,然后一个增删改查的操作。 3.数据库表设计 列名 中文名称 数据类型 长度 非空 newsId 文章ID int 11 √ newsTitle 文章标题 varchar 20 √ newsContent 文章内容 text newsStatus 是否审核 varchar 10 news...
Python新型冠状病毒疫情数据自动爬取+统计+发送报告+数据屏幕(三)发送篇
今天介绍的项目是使用 Itchat 发送统计报告 项目功能设计: 定时爬取疫情数据存入Mysql 进行数据分析制作疫情报告 使用itchat给亲人朋友发送分析报告(本文) 基于Django做数据屏幕 使用Tableau做数据分析 来看看最终效果 目前已经完成,预计2月12日前更新 使用 itchat 发送数据统计报告 itchat 是一个基于 web微信的一个框架,但微信官方并不允
作为程序员的我,大学四年一直自学,全靠这些实用工具和学习网站!
我本人因为高中沉迷于爱情,导致学业荒废,后来高考,毫无疑问进入了一所普普通通的大学,实在惭愧...... 我又是那么好强,现在学历不行,没办法改变的事情了,所以,进入大学开始,我就下定决心,一定要让自己掌握更多的技能,尤其选择了计算机这个行业,一定要多学习技术。 在进入大学学习不久后,我就认清了一个现实:我这个大学的整体教学质量和学习风气,真的一言难尽,懂的人自然知道怎么回事? 怎么办?我该如何更好的提升
相关热词 c# id读写器 c#俄罗斯方块源码 c# linq原理 c# 装箱有什么用 c#集合 复制 c# 一个字符串分组 c++和c#哪个就业率高 c# 批量动态创建控件 c# 模块和程序集的区别 c# gmap 截图
立即提问

相似问题

2
Windows Mono C#调用C++ DLL DllNotFoundException 问题
0
一个迷宫是否联通的有效性的判定算法怎么实现,采用C语言编程怎么实现
0
一笔画连通的有效性的判断的问题,运用C语言的程序办法实现
0
数字的迷宫的寻路的算法解决,怎么采用c程序的语言编写的技术实现的呢?
0
二进制布尔表示的图形输出,怎么利用C语言程序编写设计的思维来实现代码?
0
字符串点阵字模的一个运用问题,怎么使用C语言的程序的编写的过程去实现的呢?
0
[新人向]C# WPF datagrid问题
0
计算上下左右的控制的方向的问题,C语言的程序的代码的技术的编写的设计的思想的方法的技术
0
根据以下规则,使用箭头键(上,下,左,右)指示工人的运动方向的操作用C语言程序如何模拟
0
三符号状态的矩阵联合,怎么使用C语言的代码的设计的技术的办法来实现呢
1
C++调用C#接口,在gcnew C#类对象时,程序Crash
1
C#.net中GRIDVIEW的SQL更新语句的问题
1
C#.net中GRIDVIEW中数据调取未取到,麻烦前辈们指点指点
1
【C#】Timer.Elapsed触发的方法里怎么传进去参数?
0
Typesetting正确程序设计的思路
0
The Sidewinder Sleeps Tonite 程序编程代码
0
The Sidewinder Sleeps Tonite
0
Typesetting 使用程序来编写的方法
0
The Sidewinder Sleeps Tonite C语言
1
c# ConfigurationManager.AppSettings取不到值?? 命名空间加了using System.Configuration;,引用也加了,config文件也没碰