headforever 2025-09-18 13:21 采纳率: 41%
浏览 7
已结题

h.264中的4x4 DCT矩阵的输出。那么Y各个位置像素的完整公式什么呢?

h.264中的4x4 DCT矩阵的输出。那么Y各个位置像素的完整公式什么呢?
矩阵乘法规则 ‌Y = Cf * X * Cfᵀ‌。
假设:


Cf  = [1,  1,  1,  1]
         [2,  1, -1, -2]
         [1, -1, -1,  1]
         [1, -2,  2, -1]

X =  [x00, x01, x02, x03]
        [x10, x11, x12, x13]
        [x20, x21, x22, x23]
        [x30, x31, x32, x33]

 Cfᵀ‌ =  [1,  2,  1,  1]
            [1,  1, -1, -2]
            [1, -1, -1,  2]
            [1, -2,  1, -1]

则矩阵乘法 ‌Y = Cf * X * Cfᵀ‌,得到的每个Y分别多少呢?即Y00,Y01,...,Y33完整的公式是什么呢?

  • 写回答

7条回答 默认 最新

  • 宝码香车 优质创作者: JavaScript技术领域 2025-09-18 14:36
    关注

    让【宝码香车】来帮您解答,本回答参考DeepSeek编写,并整理提供。

    如果答案让您满意,请采纳、点赞、关注,非常感谢!
    .
    每日一句正能量,让它带给您好心情:生活不会辜负一个用力奔跑的人。
    .

    在H.264中,4x4 DCT变换通过矩阵乘法 ( Y = C_f \cdot X \cdot C_f^T ) 实现,其中 ( C_f ) 是变换矩阵,( X ) 是输入像素矩阵,( Y ) 是输出系数矩阵。根据给定的矩阵:

    [
    C_f = \begin{bmatrix}
    1 & 1 & 1 & 1 \
    2 & 1 & -1 & -2 \
    1 & -1 & -1 & 1 \
    1 & -2 & 2 & -1
    \end{bmatrix}, \quad
    C_f^T = \begin{bmatrix}
    1 & 2 & 1 & 1 \
    1 & 1 & -1 & -2 \
    1 & -1 & -1 & 2 \
    1 & -2 & 1 & -1
    \end{bmatrix}, \quad
    X = \begin{bmatrix}
    x_{00} & x_{01} & x_{02} & x_{03} \
    x_{10} & x_{11} & x_{12} & x_{13} \
    x_{20} & x_{21} & x_{22} & x_{23} \
    x_{30} & x_{31} & x_{32} & x_{33}
    \end{bmatrix}
    ]

    计算 ( Y = C_f \cdot X \cdot C_f^T ) 后,每个输出系数 ( Y_{ij} ) 的完整公式如下:

    1. 计算中间矩阵 ( M = C_f \cdot X ):

    [
    M_{ij} = \sum_{k=0}^{3} (C_f){ik} \cdot X{kj}
    ]
    例如:

    • ( M_{00} = 1 \cdot x_{00} + 1 \cdot x_{10} + 1 \cdot x_{20} + 1 \cdot x_{30} )
    • ( M_{01} = 1 \cdot x_{01} + 1 \cdot x_{11} + 1 \cdot x_{21} + 1 \cdot x_{31} )
    • ( M_{02} = 1 \cdot x_{02} + 1 \cdot x_{12} + 1 \cdot x_{22} + 1 \cdot x_{32} )
    • ( M_{03} = 1 \cdot x_{03} + 1 \cdot x_{13} + 1 \cdot x_{23} + 1 \cdot x_{33} )
    • ( M_{10} = 2 \cdot x_{00} + 1 \cdot x_{10} - 1 \cdot x_{20} - 2 \cdot x_{30} )
    • 其他 ( M_{ij} ) 类似计算。

    2. 计算 ( Y = M \cdot C_f^T ):

    [
    Y_{ij} = \sum_{k=0}^{3} M_{ik} \cdot (C_f^T){kj}
    ]
    将 ( M ) 的表达式代入,得到每个 ( Y
    {ij} ) 的完整公式(以 ( Y_{00} ) 为例):
    [
    Y_{00} = M_{00} \cdot 1 + M_{01} \cdot 1 + M_{02} \cdot 1 + M_{03} \cdot 1
    ]
    代入 ( M_{0k} ) 的表达式:
    [
    Y_{00} = (x_{00} + x_{10} + x_{20} + x_{30}) + (x_{01} + x_{11} + x_{21} + x_{31}) + (x_{02} + x_{12} + x_{22} + x_{32}) + (x_{03} + x_{13} + x_{23} + x_{33})
    ]
    即:
    [
    Y_{00} = \sum_{i=0}^{3} \sum_{j=0}^{3} x_{ij}
    ]

    类似地,所有 ( Y_{ij} ) 的完整公式如下:

    ( Y_{00} ):

    [
    Y_{00} = x_{00} + x_{10} + x_{20} + x_{30} + x_{01} + x_{11} + x_{21} + x_{31} + x_{02} + x_{12} + x_{22} + x_{32} + x_{03} + x_{13} + x_{23} + x_{33}
    ]

    ( Y_{01} ):

    [
    Y_{01} = 2x_{00} + 2x_{10} + 2x_{20} + 2x_{30} + x_{01} + x_{11} + x_{21} + x_{31} - x_{02} - x_{12} - x_{22} - x_{32} - 2x_{03} - 2x_{13} - 2x_{23} - 2x_{33}
    ]

    ( Y_{02} ):

    [
    Y_{02} = x_{00} + x_{10} + x_{20} + x_{30} - x_{01} - x_{11} - x_{21} - x_{31} - x_{02} - x_{12} - x_{22} - x_{32} + x_{03} + x_{13} + x_{23} + x_{33}
    ]

    ( Y_{03} ):

    [
    Y_{03} = x_{00} + x_{10} + x_{20} + x_{30} - 2x_{01} - 2x_{11} - 2x_{21} - 2x_{31} + 2x_{02} + 2x_{12} + 2x_{22} + 2x_{32} - x_{03} - x_{13} - x_{23} - x_{33}
    ]

    ( Y_{10} ):

    [
    Y_{10} = 2x_{00} + x_{10} - x_{20} - 2x_{30} + 2x_{01} + x_{11} - x_{21} - 2x_{31} + 2x_{02} + x_{12} - x_{22} - 2x_{32} + 2x_{03} + x_{13} - x_{23} - 2x_{33}
    ]

    ( Y_{11} ):

    [
    Y_{11} = 4x_{00} + 2x_{10} - 2x_{20} - 4x_{30} + 2x_{01} + x_{11} - x_{21} - 2x_{31} - 2x_{02} - x_{12} + x_{22} + 2x_{32} - 4x_{03} - 2x_{13} + 2x_{23} + 4x_{33}
    ]

    ( Y_{12} ):

    [
    Y_{12} = 2x_{00} + x_{10} - x_{20} - 2x_{30} - 2x_{01} - x_{11} + x_{21} + 2x_{31} - 2x_{02} - x_{12} + x_{22} + 2x_{32} + 2x_{03} + x_{13} - x_{23} - 2x_{33}
    ]

    ( Y_{13} ):

    [
    Y_{13} = 2x_{00} + x_{10} - x_{20} - 2x_{30} - 4x_{01} - 2x_{11} + 2x_{21} + 4x_{31} + 4x_{02} + 2x_{12} - 2x_{22} - 4x_{32} - 2x_{03} - x_{13} + x_{23} + 2x_{33}
    ]

    ( Y_{20} ):

    [
    Y_{20} = x_{00} - x_{10} - x_{20} + x_{30} + x_{01} - x_{11} - x_{21} + x_{31} + x_{02} - x_{12} - x_{22} + x_{32} + x_{03} - x_{13} - x_{23} + x_{33}
    ]

    ( Y_{21} ):

    [
    Y_{21} = 2x_{00} - 2x_{10} - 2x_{20} + 2x_{30} + x_{01} - x_{11} - x_{21} + x_{31} - x_{02} + x_{12} + x_{22} - x_{32} - 2x_{03} + 2x_{13} + 2x_{23} - 2x_{33}
    ]

    ( Y_{22} ):

    [
    Y_{22} = x_{00} - x_{10} - x_{20} + x_{30} - x_{01} + x_{11} + x_{21} - x_{31} - x_{02} + x_{12} + x_{22} - x_{32} + x_{03} - x_{13} - x_{23} + x_{33}
    ]

    ( Y_{23} ):

    [
    Y_{23} = x_{00} - x_{10} - x_{20} + x_{30} - 2x_{01} + 2x_{11} + 2x_{21} - 2x_{31} + 2x_{02} - 2x_{12} - 2x_{22} + 2x_{32} - x_{03} + x_{13} + x_{23} - x_{33}
    ]

    ( Y_{30} ):

    [
    Y_{30} = x_{00} - 2x_{10} + 2x_{20} - x_{30} + x_{01} - 2x_{11} + 2x_{21} - x_{31} + x_{02} - 2x_{12} + 2x_{22} - x_{32} + x_{03} - 2x_{13} + 2x_{23} - x_{33}
    ]

    ( Y_{31} ):

    [
    Y_{31} = 2x_{00} - 4x_{10} + 4x_{20} - 2x_{30} + x_{01} - 2x_{11} + 2x_{21} - x_{31} - x_{02} + 2x_{12} - 2x_{22} + x_{32} - 2x_{03} + 4x_{13} - 4x_{23} + 2x_{33}
    ]

    ( Y_{32} ):

    [
    Y_{32} = x_{00} - 2x_{10} + 2x_{20} - x_{30} - x_{01} + 2x_{11} - 2x_{21} + x_{31} - x_{02} + 2x_{12} - 2x_{22} + x_{32} + x_{03} - 2x_{13} + 2x_{23} - x_{33}
    ]

    ( Y_{33} ):

    [
    Y_{33} = x_{00} - 2x_{10} + 2x_{20} - x_{30} - 2x_{01} + 4x_{11} - 4x_{21} + 2x_{31} + 2x_{02} - 4x_{12} + 4x_{22} - 2x_{32} - x_{03} + 2x_{13} - 2x_{23} + x_{33}
    ]

    这些公式直接由矩阵乘法展开得到,反映了H.264中4x4 DCT变换的完整计算过程。实际应用中,为了减少计算复杂度,通常会使用整数近似和移位操作。

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(6条)

报告相同问题?

问题事件

  • 系统已结题 9月26日
  • 已采纳回答 9月18日
  • 创建了问题 9月18日