让【宝码香车】来帮您解答,本回答参考DeepSeek编写,并整理提供。
如果答案让您满意,请采纳、点赞、关注,非常感谢!
.
每日一句正能量,让它带给您好心情:生活不会辜负一个用力奔跑的人。
.
在H.264中,4x4 DCT变换通过矩阵乘法 ( Y = C_f \cdot X \cdot C_f^T ) 实现,其中 ( C_f ) 是变换矩阵,( X ) 是输入像素矩阵,( Y ) 是输出系数矩阵。根据给定的矩阵:
[
C_f = \begin{bmatrix}
1 & 1 & 1 & 1 \
2 & 1 & -1 & -2 \
1 & -1 & -1 & 1 \
1 & -2 & 2 & -1
\end{bmatrix}, \quad
C_f^T = \begin{bmatrix}
1 & 2 & 1 & 1 \
1 & 1 & -1 & -2 \
1 & -1 & -1 & 2 \
1 & -2 & 1 & -1
\end{bmatrix}, \quad
X = \begin{bmatrix}
x_{00} & x_{01} & x_{02} & x_{03} \
x_{10} & x_{11} & x_{12} & x_{13} \
x_{20} & x_{21} & x_{22} & x_{23} \
x_{30} & x_{31} & x_{32} & x_{33}
\end{bmatrix}
]
计算 ( Y = C_f \cdot X \cdot C_f^T ) 后,每个输出系数 ( Y_{ij} ) 的完整公式如下:
1. 计算中间矩阵 ( M = C_f \cdot X ):
[
M_{ij} = \sum_{k=0}^{3} (C_f){ik} \cdot X{kj}
]
例如:
- ( M_{00} = 1 \cdot x_{00} + 1 \cdot x_{10} + 1 \cdot x_{20} + 1 \cdot x_{30} )
- ( M_{01} = 1 \cdot x_{01} + 1 \cdot x_{11} + 1 \cdot x_{21} + 1 \cdot x_{31} )
- ( M_{02} = 1 \cdot x_{02} + 1 \cdot x_{12} + 1 \cdot x_{22} + 1 \cdot x_{32} )
- ( M_{03} = 1 \cdot x_{03} + 1 \cdot x_{13} + 1 \cdot x_{23} + 1 \cdot x_{33} )
- ( M_{10} = 2 \cdot x_{00} + 1 \cdot x_{10} - 1 \cdot x_{20} - 2 \cdot x_{30} )
- 其他 ( M_{ij} ) 类似计算。
2. 计算 ( Y = M \cdot C_f^T ):
[
Y_{ij} = \sum_{k=0}^{3} M_{ik} \cdot (C_f^T){kj}
]
将 ( M ) 的表达式代入,得到每个 ( Y{ij} ) 的完整公式(以 ( Y_{00} ) 为例):
[
Y_{00} = M_{00} \cdot 1 + M_{01} \cdot 1 + M_{02} \cdot 1 + M_{03} \cdot 1
]
代入 ( M_{0k} ) 的表达式:
[
Y_{00} = (x_{00} + x_{10} + x_{20} + x_{30}) + (x_{01} + x_{11} + x_{21} + x_{31}) + (x_{02} + x_{12} + x_{22} + x_{32}) + (x_{03} + x_{13} + x_{23} + x_{33})
]
即:
[
Y_{00} = \sum_{i=0}^{3} \sum_{j=0}^{3} x_{ij}
]
类似地,所有 ( Y_{ij} ) 的完整公式如下:
( Y_{00} ):
[
Y_{00} = x_{00} + x_{10} + x_{20} + x_{30} + x_{01} + x_{11} + x_{21} + x_{31} + x_{02} + x_{12} + x_{22} + x_{32} + x_{03} + x_{13} + x_{23} + x_{33}
]
( Y_{01} ):
[
Y_{01} = 2x_{00} + 2x_{10} + 2x_{20} + 2x_{30} + x_{01} + x_{11} + x_{21} + x_{31} - x_{02} - x_{12} - x_{22} - x_{32} - 2x_{03} - 2x_{13} - 2x_{23} - 2x_{33}
]
( Y_{02} ):
[
Y_{02} = x_{00} + x_{10} + x_{20} + x_{30} - x_{01} - x_{11} - x_{21} - x_{31} - x_{02} - x_{12} - x_{22} - x_{32} + x_{03} + x_{13} + x_{23} + x_{33}
]
( Y_{03} ):
[
Y_{03} = x_{00} + x_{10} + x_{20} + x_{30} - 2x_{01} - 2x_{11} - 2x_{21} - 2x_{31} + 2x_{02} + 2x_{12} + 2x_{22} + 2x_{32} - x_{03} - x_{13} - x_{23} - x_{33}
]
( Y_{10} ):
[
Y_{10} = 2x_{00} + x_{10} - x_{20} - 2x_{30} + 2x_{01} + x_{11} - x_{21} - 2x_{31} + 2x_{02} + x_{12} - x_{22} - 2x_{32} + 2x_{03} + x_{13} - x_{23} - 2x_{33}
]
( Y_{11} ):
[
Y_{11} = 4x_{00} + 2x_{10} - 2x_{20} - 4x_{30} + 2x_{01} + x_{11} - x_{21} - 2x_{31} - 2x_{02} - x_{12} + x_{22} + 2x_{32} - 4x_{03} - 2x_{13} + 2x_{23} + 4x_{33}
]
( Y_{12} ):
[
Y_{12} = 2x_{00} + x_{10} - x_{20} - 2x_{30} - 2x_{01} - x_{11} + x_{21} + 2x_{31} - 2x_{02} - x_{12} + x_{22} + 2x_{32} + 2x_{03} + x_{13} - x_{23} - 2x_{33}
]
( Y_{13} ):
[
Y_{13} = 2x_{00} + x_{10} - x_{20} - 2x_{30} - 4x_{01} - 2x_{11} + 2x_{21} + 4x_{31} + 4x_{02} + 2x_{12} - 2x_{22} - 4x_{32} - 2x_{03} - x_{13} + x_{23} + 2x_{33}
]
( Y_{20} ):
[
Y_{20} = x_{00} - x_{10} - x_{20} + x_{30} + x_{01} - x_{11} - x_{21} + x_{31} + x_{02} - x_{12} - x_{22} + x_{32} + x_{03} - x_{13} - x_{23} + x_{33}
]
( Y_{21} ):
[
Y_{21} = 2x_{00} - 2x_{10} - 2x_{20} + 2x_{30} + x_{01} - x_{11} - x_{21} + x_{31} - x_{02} + x_{12} + x_{22} - x_{32} - 2x_{03} + 2x_{13} + 2x_{23} - 2x_{33}
]
( Y_{22} ):
[
Y_{22} = x_{00} - x_{10} - x_{20} + x_{30} - x_{01} + x_{11} + x_{21} - x_{31} - x_{02} + x_{12} + x_{22} - x_{32} + x_{03} - x_{13} - x_{23} + x_{33}
]
( Y_{23} ):
[
Y_{23} = x_{00} - x_{10} - x_{20} + x_{30} - 2x_{01} + 2x_{11} + 2x_{21} - 2x_{31} + 2x_{02} - 2x_{12} - 2x_{22} + 2x_{32} - x_{03} + x_{13} + x_{23} - x_{33}
]
( Y_{30} ):
[
Y_{30} = x_{00} - 2x_{10} + 2x_{20} - x_{30} + x_{01} - 2x_{11} + 2x_{21} - x_{31} + x_{02} - 2x_{12} + 2x_{22} - x_{32} + x_{03} - 2x_{13} + 2x_{23} - x_{33}
]
( Y_{31} ):
[
Y_{31} = 2x_{00} - 4x_{10} + 4x_{20} - 2x_{30} + x_{01} - 2x_{11} + 2x_{21} - x_{31} - x_{02} + 2x_{12} - 2x_{22} + x_{32} - 2x_{03} + 4x_{13} - 4x_{23} + 2x_{33}
]
( Y_{32} ):
[
Y_{32} = x_{00} - 2x_{10} + 2x_{20} - x_{30} - x_{01} + 2x_{11} - 2x_{21} + x_{31} - x_{02} + 2x_{12} - 2x_{22} + x_{32} + x_{03} - 2x_{13} + 2x_{23} - x_{33}
]
( Y_{33} ):
[
Y_{33} = x_{00} - 2x_{10} + 2x_{20} - x_{30} - 2x_{01} + 4x_{11} - 4x_{21} + 2x_{31} + 2x_{02} - 4x_{12} + 4x_{22} - 2x_{32} - x_{03} + 2x_{13} - 2x_{23} + x_{33}
]
这些公式直接由矩阵乘法展开得到,反映了H.264中4x4 DCT变换的完整计算过程。实际应用中,为了减少计算复杂度,通常会使用整数近似和移位操作。