cmd显示tensorflow为1.14.0版本。anaconda显示1.2.0版本
python  
import tensorflow as tf  
tf.__version__

显示tensorflow为1.14.0版本。
但是anaconda中tensorflow环境显示其为1.2.0版本,是怎么回事?

1个回答

是不是同处于一个环境,你检查一下!

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed ,程序中出现anaconda错误?
在pycharm中运行python程序时,出现anaconda中的错误,如下图: ![图片说明](https://img-ask.csdn.net/upload/201910/22/1571713274_114393.png) 这是版本不匹配,还是程序里有调用,或者其它什么问题?有人可以帮忙看一下吗?这是教程视频里的程序,视频里可以运行出来,我的tensorflow、CUDA、cudnn是官网下的,可能比他的新一些,10.1和10.0版本,或者测试版和正式版这种差别。下面是运行的前向传播的代码: ``` import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # x: [60k, 28, 28], # y: [60k] (x, y), _ = datasets.mnist.load_data() # x: [0~255] => [0~1.] x = tf.convert_to_tensor(x, dtype=tf.float32) / 255. y = tf.convert_to_tensor(y, dtype=tf.int32) print(x.shape, y.shape, x.dtype, y.dtype) print(tf.reduce_min(x), tf.reduce_max(x)) print(tf.reduce_min(y), tf.reduce_max(y)) train_db = tf.data.Dataset.from_tensor_slices((x,y)).batch(128) train_iter = iter(train_db) sample = next(train_iter) print('batch:', sample[0].shape, sample[1].shape) # [b, 784] => [b, 256] => [b, 128] => [b, 10] # [dim_in, dim_out], [dim_out] w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1)) b1 = tf.Variable(tf.zeros([256])) w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1)) b2 = tf.Variable(tf.zeros([128])) w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1)) b3 = tf.Variable(tf.zeros([10])) lr = 1e-3 for epoch in range(10): # iterate db for 10 for step, (x, y) in enumerate(train_db): # for every batch # x:[128, 28, 28] # y: [128] # [b, 28, 28] => [b, 28*28] x = tf.reshape(x, [-1, 28*28]) with tf.GradientTape() as tape: # tf.Variable # x: [b, 28*28] # h1 = x@w1 + b1 # [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256] h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256]) h1 = tf.nn.relu(h1) # [b, 256] => [b, 128] h2 = h1@w2 + b2 h2 = tf.nn.relu(h2) # [b, 128] => [b, 10] out = h2@w3 + b3 # compute loss # out: [b, 10] # y: [b] => [b, 10] y_onehot = tf.one_hot(y, depth=10) # mse = mean(sum(y-out)^2) # [b, 10] loss = tf.square(y_onehot - out) # mean: scalar loss = tf.reduce_mean(loss) # compute gradients grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3]) # print(grads) # w1 = w1 - lr * w1_grad w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) w3.assign_sub(lr * grads[4]) b3.assign_sub(lr * grads[5]) if step % 100 == 0: print(epoch, step, 'loss:', float(loss)) ```
Tensorflow测试训练styleGAN时报错 No OpKernel was registered to support Op 'NcclAllReduce' with these attrs.
在测试官方StyleGAN。 运行官方与训练模型pretrained_example.py generate_figures.py 没有问题。GPU工作正常。 运行train.py时报错 尝试只用单个GPU训练时没有报错。 NcclAllReduce应该跟多GPU通信有关,不太了解。 InvalidArgumentError (see above for traceback): No OpKernel was registered to support Op 'NcclAllReduce' with these attrs. Registered devices: [CPU,GPU], Registered kernels: <no registered kernels> [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]] 经过多番google 尝试过 重启 conda install keras-gpu 重新安装tensorflow-gpu==1.10.0(跟官方版本保持一致) ``` …… Building TensorFlow graph... Setting up snapshot image grid... Setting up run dir... Training... Traceback (most recent call last): File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1278, in _do_call return fn(*args) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1263, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1350, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.InvalidArgumentError: No OpKernel was registered to support Op 'NcclAllReduce' with these attrs. Registered devices: [CPU,GPU], Registered kernels: <no registered kernels> [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "train.py", line 191, in <module> main() File "train.py", line 186, in main dnnlib.submit_run(**kwargs) File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 290, in submit_run run_wrapper(submit_config) File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 242, in run_wrapper util.call_func_by_name(func_name=submit_config.run_func_name, submit_config=submit_config, **submit_config.run_func_kwargs) File "E:\MachineLearning\stylegan-master\dnnlib\util.py", line 257, in call_func_by_name return func_obj(*args, **kwargs) File "E:\MachineLearning\stylegan-master\training\training_loop.py", line 230, in training_loop tflib.run([D_train_op, Gs_update_op], {lod_in: sched.lod, lrate_in: sched.D_lrate, minibatch_in: sched.minibatch}) File "E:\MachineLearning\stylegan-master\dnnlib\tflib\tfutil.py", line 26, in run return tf.get_default_session().run(*args, **kwargs) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 877, in run run_metadata_ptr) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1100, in _run feed_dict_tensor, options, run_metadata) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1272, in _do_run run_metadata) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1291, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: No OpKernel was registered to support Op 'NcclAllReduce' with these attrs. Registered devices: [CPU,GPU], Registered kernels: <no registered kernels> [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]] Caused by op 'TrainD/SumAcrossGPUs/NcclAllReduce', defined at: File "train.py", line 191, in <module> main() File "train.py", line 186, in main dnnlib.submit_run(**kwargs) File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 290, in submit_run run_wrapper(submit_config) File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 242, in run_wrapper util.call_func_by_name(func_name=submit_config.run_func_name, submit_config=submit_config, **submit_config.run_func_kwargs) File "E:\MachineLearning\stylegan-master\dnnlib\util.py", line 257, in call_func_by_name return func_obj(*args, **kwargs) File "E:\MachineLearning\stylegan-master\training\training_loop.py", line 185, in training_loop D_train_op = D_opt.apply_updates() File "E:\MachineLearning\stylegan-master\dnnlib\tflib\optimizer.py", line 135, in apply_updates g = nccl_ops.all_sum(g) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\contrib\nccl\python\ops\nccl_ops.py", line 49, in all_sum return _apply_all_reduce('sum', tensors) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\contrib\nccl\python\ops\nccl_ops.py", line 230, in _apply_all_reduce shared_name=shared_name)) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\contrib\nccl\ops\gen_nccl_ops.py", line 59, in nccl_all_reduce num_devices=num_devices, shared_name=shared_name, name=name) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper op_def=op_def) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\util\deprecation.py", line 454, in new_func return func(*args, **kwargs) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\framework\ops.py", line 3156, in create_op op_def=op_def) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\framework\ops.py", line 1718, in __init__ self._traceback = tf_stack.extract_stack() InvalidArgumentError (see above for traceback): No OpKernel was registered to support Op 'NcclAllReduce' with these attrs. Registered devices: [CPU,GPU], Registered kernels: <no registered kernels> [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]] ``` ``` #conda list: # Name Version Build Channel _tflow_select 2.1.0 gpu absl-py 0.8.1 pypi_0 pypi alabaster 0.7.12 py36_0 asn1crypto 1.2.0 py36_0 astor 0.8.0 pypi_0 pypi astroid 2.3.2 py36_0 attrs 19.3.0 py_0 babel 2.7.0 py_0 backcall 0.1.0 py36_0 blas 1.0 mkl bleach 3.1.0 py36_0 ca-certificates 2019.10.16 0 certifi 2019.9.11 py36_0 cffi 1.13.1 py36h7a1dbc1_0 chardet 3.0.4 py36_1003 cloudpickle 1.2.2 py_0 colorama 0.4.1 py36_0 cryptography 2.8 py36h7a1dbc1_0 cudatoolkit 9.0 1 cudnn 7.6.4 cuda9.0_0 decorator 4.4.1 py_0 defusedxml 0.6.0 py_0 django 2.2.7 pypi_0 pypi docutils 0.15.2 py36_0 entrypoints 0.3 py36_0 gast 0.3.2 py_0 grpcio 1.25.0 pypi_0 pypi h5py 2.9.0 py36h5e291fa_0 hdf5 1.10.4 h7ebc959_0 icc_rt 2019.0.0 h0cc432a_1 icu 58.2 ha66f8fd_1 idna 2.8 pypi_0 pypi image 1.5.27 pypi_0 pypi imagesize 1.1.0 py36_0 importlib_metadata 0.23 py36_0 intel-openmp 2019.4 245 ipykernel 5.1.3 py36h39e3cac_0 ipython 7.9.0 py36h39e3cac_0 ipython_genutils 0.2.0 py36h3c5d0ee_0 isort 4.3.21 py36_0 jedi 0.15.1 py36_0 jinja2 2.10.3 py_0 jpeg 9b hb83a4c4_2 jsonschema 3.1.1 py36_0 jupyter_client 5.3.4 py36_0 jupyter_core 4.6.1 py36_0 keras-applications 1.0.8 py_0 keras-base 2.2.4 py36_0 keras-gpu 2.2.4 0 keras-preprocessing 1.1.0 py_1 keyring 18.0.0 py36_0 lazy-object-proxy 1.4.3 py36he774522_0 libpng 1.6.37 h2a8f88b_0 libprotobuf 3.9.2 h7bd577a_0 libsodium 1.0.16 h9d3ae62_0 markdown 3.1.1 py36_0 markupsafe 1.1.1 py36he774522_0 mccabe 0.6.1 py36_1 mistune 0.8.4 py36he774522_0 mkl 2019.4 245 mkl-service 2.3.0 py36hb782905_0 mkl_fft 1.0.15 py36h14836fe_0 mkl_random 1.1.0 py36h675688f_0 more-itertools 7.2.0 py36_0 nbconvert 5.6.1 py36_0 nbformat 4.4.0 py36h3a5bc1b_0 numpy 1.17.3 py36h4ceb530_0 numpy-base 1.17.3 py36hc3f5095_0 numpydoc 0.9.1 py_0 openssl 1.1.1d he774522_3 packaging 19.2 py_0 pandoc 2.2.3.2 0 pandocfilters 1.4.2 py36_1 parso 0.5.1 py_0 pickleshare 0.7.5 py36_0 pillow 6.2.1 pypi_0 pypi pip 19.3.1 py36_0 prompt_toolkit 2.0.10 py_0 protobuf 3.10.0 pypi_0 pypi psutil 5.6.3 py36he774522_0 pycodestyle 2.5.0 py36_0 pycparser 2.19 py36_0 pyflakes 2.1.1 py36_0 pygments 2.4.2 py_0 pylint 2.4.3 py36_0 pyopenssl 19.0.0 py36_0 pyparsing 2.4.2 py_0 pyqt 5.9.2 py36h6538335_2 pyreadline 2.1 py36_1 pyrsistent 0.15.4 py36he774522_0 pysocks 1.7.1 py36_0 python 3.6.9 h5500b2f_0 python-dateutil 2.8.1 py_0 pytz 2019.3 py_0 pywin32 223 py36hfa6e2cd_1 pyyaml 5.1.2 py36he774522_0 pyzmq 18.1.0 py36ha925a31_0 qt 5.9.7 vc14h73c81de_0 qtawesome 0.6.0 py_0 qtconsole 4.5.5 py_0 qtpy 1.9.0 py_0 requests 2.22.0 py36_0 rope 0.14.0 py_0 scipy 1.3.1 py36h29ff71c_0 setuptools 39.1.0 pypi_0 pypi sip 4.19.8 py36h6538335_0 six 1.13.0 pypi_0 pypi snowballstemmer 2.0.0 py_0 sphinx 2.2.1 py_0 sphinxcontrib-applehelp 1.0.1 py_0 sphinxcontrib-devhelp 1.0.1 py_0 sphinxcontrib-htmlhelp 1.0.2 py_0 sphinxcontrib-jsmath 1.0.1 py_0 sphinxcontrib-qthelp 1.0.2 py_0 sphinxcontrib-serializinghtml 1.1.3 py_0 spyder 3.3.6 py36_0 spyder-kernels 0.5.2 py36_0 sqlite 3.30.1 he774522_0 sqlparse 0.3.0 pypi_0 pypi tensorboard 1.10.0 py36he025d50_0 tensorflow 1.10.0 gpu_py36h3514669_0 tensorflow-base 1.10.0 gpu_py36h6e53903_0 tensorflow-gpu 1.10.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi testpath 0.4.2 py36_0 tornado 6.0.3 py36he774522_0 traitlets 4.3.3 py36_0 typed-ast 1.4.0 py36he774522_0 urllib3 1.25.6 pypi_0 pypi vc 14.1 h0510ff6_4 vs2015_runtime 14.16.27012 hf0eaf9b_0 wcwidth 0.1.7 py36h3d5aa90_0 webencodings 0.5.1 py36_1 werkzeug 0.16.0 py_0 wheel 0.33.6 py36_0 win_inet_pton 1.1.0 py36_0 wincertstore 0.2 py36h7fe50ca_0 wrapt 1.11.2 py36he774522_0 yaml 0.1.7 hc54c509_2 zeromq 4.3.1 h33f27b4_3 zipp 0.6.0 py_0 zlib 1.2.11 h62dcd97_3 ``` 2*RTX2080Ti driver 4.19.67
anaconda安装tensorflow的Error
在cmd中安装tensorflow时出现 ERROR: astroid 2.2.5 requires typed-ast>=1.3.0; implementation_name == "cpython", which is not installed.
利用conda install TensorFlow-gpu在win7上conda3.7版本上安装tensorflow后,测试时出现下面的问题
在测试import TensorFlow as tf print('hello'),出现下列问题,请问这是什么原因造成的,如何改? ``` Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "D:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "D:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的程序。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3296, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-d1ce02c95f3b>", line 1, in <module> runfile('C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master/uittle.py', wdir='C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master') File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master/uittle.py", line 1, in <module> import tensorflow as tf File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\__init__.py", line 24, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "D:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "D:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的程序。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help. ```
Centos6.4 安装完tensorflow后 命令行输入 import tensorflow报错
小弟刚刚接触tensorflow,照的网上的教程安装完之后,在命令行运行import tensorflow这条语句的时候就报错了,下面是报错的内容,希望各位大神帮帮小弟。 >>> import tensorflow Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/__init__.py", line 24, in <module> from tensorflow.python import * File "/home/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "/home/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/pywrap_tensorflow.py", line 72, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "/home/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "/home/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "/home/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) ImportError: /lib64/libc.so.6: version `GLIBC_2.16' not found (required by /home/zhufeng/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so) Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/install_sources#common_installation_problems for some common reasons and solutions. Include the entire stack trace above this error message when asking for help.
但是import tensorflow 会报错:Failed to load the native TensorFlow runtime
C:\ProgramData\Anaconda3\python.exe C:/Users/Administrator/PycharmProjects/untitled3/pppp.py Traceback (most recent call last): File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed with error code -1073741795 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:/Users/Administrator/PycharmProjects/untitled3/pppp.py", line 1, in <module> import tensorflow as tf File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\__init__.py", line 24, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed with error code -1073741795 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help. Process finished with exit code 1
安装 tensorflow cpu 版出问题, 求解决办法。 谢谢
安装 tensorflow cpu 版出问题, 求解决办法。 谢谢 Windows 10 64bits, anaconda-3.4.2(Python3.5.2), tensorflow version 1.11-0, 第一次运行时报错: ImportError: DLL load failed: 动态链接库(DLL)初始化例程失败。 Environment parameter path: C:\Program Files\Microsoft MPI\Bin\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Windows\System32\OpenSSH\;C:\CUDA\bin64;C:\Program Files (x86)\NVIDIA Corporation\PhysX\Common;C:\Program Files\dotnet\;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v6.5\lib\x64;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v6.5\extras\CUPTI\libx64;C:\Program Files\Microsoft VS Code;C:\Program Files\Anaconda3;C:\Program Files\Anaconda3\Scripts;C:\Program Files\Anaconda3\Library\bin; MSVCP140.DLL在以下2个目录 C:\Program Files\Anaconda3 C:\Program Files\Anaconda3\Library\bin C:\Windows\system32>python Python 3.5.2 |Anaconda 4.2.0 (64-bit)| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> C:\Windows\system32>pip install tensorflow Collecting tensorflow Using cached https://files.pythonhosted.org/packages/af/5b/695e2e66feb27742a78f938d8369cc874b5fc7082193c3352c9db599af01/tensorflow-1.11.0-cp35-cp35m-win_amd64.whl Requirement already satisfied: grpcio>=1.8.6 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.16.0) Requirement already satisfied: astor>=0.6.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (0.7.1) Requirement already satisfied: numpy>=1.13.3 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.15.3) Requirement already satisfied: keras-applications>=1.0.5 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.0.6) Requirement already satisfied: absl-py>=0.1.6 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (0.6.1) Requirement already satisfied: six>=1.10.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.10.0) Requirement already satisfied: setuptools<=39.1.0 in c:\program files\anaconda3\lib\site-packages\setuptools-27.2.0-py3.5.egg (from tensorflow) (27.2.0) Requirement already satisfied: protobuf>=3.6.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (3.6.1) Requirement already satisfied: keras-preprocessing>=1.0.3 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.0.5) Requirement already satisfied: termcolor>=1.1.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.1.0) Requirement already satisfied: gast>=0.2.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (0.2.0) Requirement already satisfied: wheel>=0.26 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (0.29.0) Requirement already satisfied: tensorboard<1.12.0,>=1.11.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.11.0) Requirement already satisfied: h5py in c:\program files\anaconda3\lib\site-packages (from keras-applications>=1.0.5->tensorflow) (2.6.0) Requirement already satisfied: markdown>=2.6.8 in c:\program files\anaconda3\lib\site-packages (from tensorboard<1.12.0,>=1.11.0->tensorflow) (3.0.1) Requirement already satisfied: werkzeug>=0.11.10 in c:\program files\anaconda3\lib\site-packages (from tensorboard<1.12.0,>=1.11.0->tensorflow) (0.11.11) Installing collected packages: tensorflow Successfully installed tensorflow-1.11.0 错误信息: --------------------------------------------------------------------------- ImportError Traceback (most recent call last) C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py in <module>() 57 ---> 58 from tensorflow.python.pywrap_tensorflow_internal import * 59 from tensorflow.python.pywrap_tensorflow_internal import __version__ C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py in <module>() 27 return _mod ---> 28 _pywrap_tensorflow_internal = swig_import_helper() 29 del swig_import_helper C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py in swig_import_helper() 23 try: ---> 24 _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) 25 finally: C:\Program Files\Anaconda3\lib\imp.py in load_module(name, file, filename, details) 241 else: --> 242 return load_dynamic(name, filename, file) 243 elif type_ == PKG_DIRECTORY: C:\Program Files\Anaconda3\lib\imp.py in load_dynamic(name, path, file) 341 name=name, loader=loader, origin=path) --> 342 return _load(spec) 343 ImportError: DLL load failed: 动态链接库(DLL)初始化例程失败。 During handling of the above exception, another exception occurred: ImportError Traceback (most recent call last) <ipython-input-1-41389fad42b5> in <module>() ----> 1 import tensorflow as tf C:\Program Files\Anaconda3\lib\site-packages\tensorflow\__init__.py in <module>() 20 21 # pylint: disable=g-bad-import-order ---> 22 from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import 23 24 try: C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\__init__.py in <module>() 47 import numpy as np 48 ---> 49 from tensorflow.python import pywrap_tensorflow 50 51 # Protocol buffers C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py in <module>() 72 for some common reasons and solutions. Include the entire stack trace 73 above this error message when asking for help.""" % traceback.format_exc() ---> 74 raise ImportError(msg) 75 76 # pylint: enable=wildcard-import,g-import-not-at-top,unused-import,line-too-long ImportError: Traceback (most recent call last): File "C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Program Files\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Program Files\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 动态链接库(DLL)初始化例程失败。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/install_sources#common_installation_problems for some common reasons and solutions. Include the entire stack trace above this error message when asking for help.
怎样正确在pycharm运行tensorflow-gpu
我在网上尝试寻找正确安装与运行tensorflow-gpu的方法。 最终卡在了无法导入tensorflow,但是却可以.出联想方法,求助。 ![图片说明](https://img-ask.csdn.net/upload/201909/27/1569546276_565168.png) 全部报错如下: Traceback (most recent call last): File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:/PycharmProjects/DeepLearning2/demo.py", line 1, in <module> import tensorflow File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\__init__.py", line 28, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help.
在训练Tensorflow模型(object_detection)时,训练在第一次评估后退出,怎么使训练继续下去?
当我进行ssd模型训练时,训练进行了10分钟,然后进入评估阶段,评估之后程序就自动退出了,没有看到误和警告,这是为什么,怎么让程序一直训练下去? 训练命令: ``` python object_detection/model_main.py --pipeline_config_path=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config --model_dir=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/saved_model --num_train_steps=50000 --alsologtostderr ``` 配置文件: ``` training exit after the first evaluation(only one evaluation) in Tensorflow model(object_detection) without error and waring System information What is the top-level directory of the model you are using:models/research/object_detection/ Have I written custom code (as opposed to using a stock example script provided in TensorFlow):NO OS Platform and Distribution (e.g., Linux Ubuntu 16.04):Windows-10(64bit) TensorFlow installed from (source or binary):conda install tensorflow-gpu TensorFlow version (use command below):1.13.1 Bazel version (if compiling from source):N/A CUDA/cuDNN version:cudnn-7.6.0 GPU model and memory:GeForce GTX 1060 6GB Exact command to reproduce:See below my command for training : python object_detection/model_main.py --pipeline_config_path=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config --model_dir=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/saved_model --num_train_steps=50000 --alsologtostderr This is my config : train_config { batch_size: 24 data_augmentation_options { random_horizontal_flip { } } data_augmentation_options { ssd_random_crop { } } optimizer { rms_prop_optimizer { learning_rate { exponential_decay_learning_rate { initial_learning_rate: 0.00400000018999 decay_steps: 800720 decay_factor: 0.949999988079 } } momentum_optimizer_value: 0.899999976158 decay: 0.899999976158 epsilon: 1.0 } } fine_tune_checkpoint: "D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt" from_detection_checkpoint: true num_steps: 200000 train_input_reader { label_map_path: "D:/gitcode/models/research/object_detection/idol/tf_label_map.pbtxt" tf_record_input_reader { input_path: "D:/gitcode/models/research/object_detection/idol/train/Iframe_??????.tfrecord" } } eval_config { num_examples: 8000 max_evals: 10 use_moving_averages: false } eval_input_reader { label_map_path: "D:/gitcode/models/research/object_detection/idol/tf_label_map.pbtxt" shuffle: false num_readers: 1 tf_record_input_reader { input_path: "D:/gitcode/models/research/object_detection/idol/eval/Iframe_??????.tfrecord" } ``` 窗口输出: (default) D:\gitcode\models\research>python object_detection/model_main.py --pipeline_config_path=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config --model_dir=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/saved_model --num_train_steps=50000 --alsologtostderr WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md https://github.com/tensorflow/addons If you depend on functionality not listed there, please file an issue. WARNING:tensorflow:Forced number of epochs for all eval validations to be 1. WARNING:tensorflow:Expected number of evaluation epochs is 1, but instead encountered eval_on_train_input_config.num_epochs = 0. Overwriting num_epochs to 1. WARNING:tensorflow:Estimator's model_fn (<function create_model_fn..model_fn at 0x0000027CBAB7BB70>) includes params argument, but params are not passed to Estimator. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\builders\dataset_builder.py:86: parallel_interleave (from tensorflow.contrib.data.python.ops.interleave_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.data.experimental.parallel_interleave(...). WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\core\preprocessor.py:196: sample_distorted_bounding_box (from tensorflow.python.ops.image_ops_impl) is deprecated and will be removed in a future version. Instructions for updating: seed2 arg is deprecated.Use sample_distorted_bounding_box_v2 instead. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\builders\dataset_builder.py:158: batch_and_drop_remainder (from tensorflow.contrib.data.python.ops.batching) is deprecated and will be removed in a future version. Instructions for updating: Use tf.data.Dataset.batch(..., drop_remainder=True). WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\ops\losses\losses_impl.py:448: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\ops\array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. 2019-08-14 16:29:31.607841: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties: name: GeForce GTX 1060 6GB major: 6 minor: 1 memoryClockRate(GHz): 1.7845 pciBusID: 0000:04:00.0 totalMemory: 6.00GiB freeMemory: 4.97GiB 2019-08-14 16:29:31.621836: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0 2019-08-14 16:29:32.275712: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-08-14 16:29:32.283072: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0 2019-08-14 16:29:32.288675: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N 2019-08-14 16:29:32.293514: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4714 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:04:00.0, compute capability: 6.1) WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\eval_util.py:796: to_int64 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\utils\visualization_utils.py:498: py_func (from tensorflow.python.ops.script_ops) is deprecated and will be removed in a future version. Instructions for updating: tf.py_func is deprecated in TF V2. Instead, use tf.py_function, which takes a python function which manipulates tf eager tensors instead of numpy arrays. It's easy to convert a tf eager tensor to an ndarray (just call tensor.numpy()) but having access to eager tensors means tf.py_functions can use accelerators such as GPUs as well as being differentiable using a gradient tape. 2019-08-14 16:41:44.736212: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0 2019-08-14 16:41:44.741242: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-08-14 16:41:44.747522: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0 2019-08-14 16:41:44.751256: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N 2019-08-14 16:41:44.755548: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4714 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:04:00.0, compute capability: 6.1) WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. creating index... index created! creating index... index created! Running per image evaluation... Evaluate annotation type bbox DONE (t=2.43s). Accumulating evaluation results... DONE (t=0.14s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.287 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.529 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.278 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.031 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.312 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.162 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.356 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.356 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.061 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.384 (default) D:\gitcode\models\research>
Linux下 python import pdb出现无cmd属性
```求大神解答 ```Python 3.6.7 |Anaconda, Inc.| (default, Oct 23 2018, 19:16:44) [GCC 7.3.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/miniconda/envs/py36/lib/python3.6/site-packages/tensorflow/__init__.py", line 28, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "/miniconda/envs/py36/lib/python3.6/site-packages/tensorflow/python/__init__.py", line 63, in <module> from tensorflow.python.framework.framework_lib import * # pylint: disable=redefined-builtin File "/miniconda/envs/py36/lib/python3.6/site-packages/tensorflow/python/framework/framework_lib.py", line 25, in <module> from tensorflow.python.framework.ops import Graph File "/miniconda/envs/py36/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 54, in <module> from tensorflow.python.platform import app File "/miniconda/envs/py36/lib/python3.6/site-packages/tensorflow/python/platform/app.py", line 23, in <module> from absl.app import run as _run File "/miniconda/envs/py36/lib/python3.6/site-packages/absl/app.py", line 35, in <module> import pdb File "/miniconda/envs/py36/lib/python3.6/pdb.py", line 136, in <module> class Pdb(bdb.Bdb, cmd.Cmd): AttributeError: module 'cmd' has no attribute 'Cmd'
ubuntu16.04 Python目录中无3.7.1 但Python版本显示3.7.1 且无法更改
ubuntu16.04 Python目录中无3.7.1 但Python版本显示3.7.1 且无法更改 ![图片说明](https://img-ask.csdn.net/upload/201903/18/1552891033_321432.png) 已解决! 卸载anaconda3 即可
jupyternotebook warning问题
WARNING:tensorflow:From C:\Users\QY\Anaconda3\lib\site-packages\tensorflow\python\ops\init_ops.py:1251: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From C:\Users\QY\Anaconda3\lib\site-packages\tensorflow\python\ops\math_grad.py:1250: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where 是什么意思呢?谢谢
Tensorflow 测试helloWorld,显示 The session graph is empty
准备学Tensorflow ,win10装好了环境,Anaconda +pycharm+tensorflow, 准备测试简单的hello world程序,结果显示“The session graph is empty”,是什么问题呀?大神们帮忙解决一下! 原始代码是 ``` import tensorflow as tf a = tf.constant("Hello,world!") sess = tf.Session() print(sess.run(a)) sess.close() ``` 这个显示错误:**module 'tensorflow' has no attribute 'Session'** 后按照网上提示,只有tensorflow 1 有,于是改成了下面的: ``` import tensorflow as tf a = tf.constant("Hello,world!") sess = tf.compat.v1.Session() print(sess.run(a)) sess.close() ``` 这个还是有错误,显示“The session graph is empty” Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 Traceback (most recent call last): File "C:/Users/Dell/PycharmProjects/Helloworld/helloWorldTen.py", line 5, in <module> print(sess.run(a)) File "E:\Anaconda3\lib\site-packages\tensorflow_core\python\client\session.py", line 956, in run run_metadata_ptr) File "E:\Anaconda3\lib\site-packages\tensorflow_core\python\client\session.py", line 1105, in _run raise RuntimeError('The Session graph is empty. Add operations to the ' RuntimeError: **The Session graph is empty.** Add operations to the graph before calling run().
运行 tensorflow ,能正确输出结果,但同时有其他的一些提示,不懂是为什么
代码很简短,目前正在学习中。 ``` import tensorflow as tf a = [[1, 0, 3], [8, -3, 6], [5, 1, 7]] with tf.Session() as sess: print(sess.run(tf.argmax(a, 1))) print(sess.run(tf.argmax(a, 0))) ``` 输出结果如下,不知道为什么会出现这些提示,求高人指点。 E:\anaconda\python.exe D:/pycharm文件/try.py 2020-01-09 22:18:54.342546: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll WARNING:tensorflow:From D:/pycharm文件/try.py:5: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead. 2020-01-09 22:18:56.348961: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll 2020-01-09 22:18:57.534582: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: name: GeForce GTX 1660 Ti with Max-Q Design major: 7 minor: 5 memoryClockRate(GHz): 1.335 pciBusID: 0000:01:00.0 2020-01-09 22:18:57.535147: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll 2020-01-09 22:18:57.539354: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll 2020-01-09 22:18:57.543360: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_100.dll 2020-01-09 22:18:57.545647: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_100.dll 2020-01-09 22:18:57.550333: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_100.dll 2020-01-09 22:18:57.554235: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_100.dll 2020-01-09 22:18:57.556270: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cudnn64_7.dll'; dlerror: cudnn64_7.dll not found 2020-01-09 22:18:57.556681: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1641] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... 2020-01-09 22:18:57.558041: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 2020-01-09 22:18:57.560801: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix: 2020-01-09 22:18:57.561152: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] [2 0 2] [1 2 2] Process finished with exit code 0
重装了anaconda后安装不了tensorflow,求大佬救救我
1.重装之前我在anaconda prompt里用找可以安装的版本装好了,可以用 ,后来电脑上把当时安装的盘清空了,再用这个方法就一直装不上: 2.用anaconda navigator 手动添加新的环境,在新环境里下好了tensorflow, 可是jupyter里还是不可以用tensorflow 3.最后我用anaconda navigator 直接在root里下tensorflow,就完全下不下来, 出现这个, UnsatisfiableError: The following specifications were found to be in conflict: - anaconda==2018.12=py37_0 -> bleach==3.0.2=py37_0 - anaconda==2018.12=py37_0 -> mkl-service==1.1.2=py37hb782905_5 - anaconda==2018.12=py37_0 -> numexpr==2.6.8=py37hdce8814_0 - anaconda==2018.12=py37_0 -> scikit-learn==0.20.1=py37h343c172_0 - tensorflow Use "conda info <package>" to see the dependencies for each package.
训练SSD_mobilenet_v1_coco模型时tensorflow出现以下报错,请问原因是什么 怎么解决?
tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[0] = 0 is not in [0, 0) [[{{node GatherV2_4}}]] [[node IteratorGetNext (defined at C:\Users\lenovo\Anaconda3\lib\site-packages\tensorflow_estimator\python\estimator\util.py:110) ]] ``` ```
关于anaconda安装tensorflow环境配置的问题
之前用anaconda安装过tensorflow失败了,然后我将其删除了。 再安装anaconda与tensorflow时,我发现Anaconda Navigator里并没有tensorflow环境,但我打如下代码却成功运行了。想问问是为什么,以及cmd里的那一行英文提示是什么意思。谢谢 ![图片说明](https://img-ask.csdn.net/upload/201909/05/1567692214_713843.png) ![图片说明](https://img-ask.csdn.net/upload/201909/05/1567692231_475865.png)
报错Traceback (most recent call last): File... .format(val=len(data), ind=len(index))) ValueError: Length of passed values is 400, index implies 1
我是个小菜鸟,在尝试写生成高斯分布的作业时被报错: ``` D:\Anaconda\python.exe "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py" Traceback (most recent call last): File "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py", line 20, in <module> y = func(x, mean, std) File "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py", line 15, in func f = math.exp(-((x - mu) ^ 2)/(2*sigma ^ 2))/(sigma * math.sqrt(2 * math.pi)) File "D:\Anaconda\lib\site-packages\pandas\core\ops.py", line 1071, in wrapper index=left.index, name=res_name, dtype=None) File "D:\Anaconda\lib\site-packages\pandas\core\ops.py", line 980, in _construct_result out = left._constructor(result, index=index, dtype=dtype) File "D:\Anaconda\lib\site-packages\pandas\core\series.py", line 262, in __init__ .format(val=len(data), ind=len(index))) ValueError: Length of passed values is 400, index implies 1 Process finished with exit code 1 ``` 我有安装anaconda,但是报错中貌似表明panda这个package的问题。请问大神大佬,我存在什么问题呀应该怎么解决⊙︿⊙,我好像没在网上找到和我一样的问题,不敢和网上的回答一样在命令提示符里输入命令怕搞错(。•́︿•̀。),是我比较菜鸟又急着所以麻烦了!! 附上我的作业代码: ``` import math import pandas as pd import numpy as np import matplotlib.pyplot as plt # import matplotlib.mlab as mlb data = pd.read_csv('example-exercise6.csv') # read file of data # data = data_['time'] mean = data.mean() # average of data std = data.std() # std def func(x, mu, sigma): f = math.exp(-((x - mu) ^ 2)/(2*sigma ^ 2))/(sigma * math.sqrt(2 * math.pi)) return f x = np.arange(60, 100, 0.1) y = func(x, mean, std) plt.plot(x, y) plt.hist(data, bins=10, rwidth=0.9, normed=True) # x = np.arange(145, 155,0.2) # y = normfun(x, mean, std) # plt.plot(x,y,'g',linewidth = 3) # plt.hist(data, bins = 6, color = 'b', alpha=0.5, rwidth = 0.9, normed=True) # plt.title('stakes distribution') # plt.xlabel('stakes time') # plt.ylabel('Probability') plt.show() ``` ( 其中csv文件是:) ``` 87 88 83 83 86 80 84 90 84 80 94 89 76 ```
如何创建一个带有指定版本Python和JupyterLab的环境?
&emsp;&emsp;请问要如何在Anaconda中创建一个同时拥有Python 3.7.4与JupyterLab 1.1.4的环境? &emsp;&emsp;我在cmd中通过以下命令创建了一个Python 3.7.4环境: ```batch D:\Anaconda3\envs>conda create -n dp python=3.7 WARNING: A directory already exists at the target location 'D:\Anaconda3\envs\dp' but it is not a conda environment. Continue creating environment (y/[n])? y Collecting package metadata (current_repodata.json): done Solving environment: done ## Package Plan ## environment location: D:\Anaconda3\envs\dp added / updated specs: - python=3.7 The following NEW packages will be INSTALLED: ca-certificates anaconda/pkgs/main/win-64::ca-certificates-2019.8.28-0 certifi anaconda/pkgs/main/win-64::certifi-2019.9.11-py37_0 openssl anaconda/pkgs/main/win-64::openssl-1.1.1d-he774522_2 pip anaconda/pkgs/main/win-64::pip-19.2.3-py37_0 python anaconda/pkgs/main/win-64::python-3.7.4-h5263a28_0 setuptools anaconda/pkgs/main/win-64::setuptools-41.4.0-py37_0 sqlite anaconda/pkgs/main/win-64::sqlite-3.30.0-he774522_0 vc anaconda/pkgs/main/win-64::vc-14.1-h0510ff6_4 vs2015_runtime anaconda/pkgs/main/win-64::vs2015_runtime-14.16.27012-hf0eaf9b_0 wheel anaconda/pkgs/main/win-64::wheel-0.33.6-py37_0 wincertstore anaconda/pkgs/main/win-64::wincertstore-0.2-py37_0 ``` &emsp;&emsp;Python 3.7.4被成功安装,但当继续安装JupyterLab时,会出现以下问题: ```batch D:\Anaconda3\envs>activate dp D:\Anaconda3\envs>conda.bat activate dp (dp) D:\Anaconda3\envs>conda install jupyterlab Collecting package metadata (current_repodata.json): done Solving environment: failed with initial frozen solve. Retrying with flexible solve. Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source. Collecting package metadata (repodata.json): done Solving environment: failed with initial frozen solve. Retrying with flexible solve. Solving environment: | Found conflicts! Looking for incompatible packages. ... UnsatisfiableError: The following specifications were found to be incompatible with each other: Package tornado conflicts for: jupyterlab -> tornado[version='!=6.0.0,!=6.0.1,!=6.0.2'] Package jinja2 conflicts for: jupyterlab -> jinja2[version='>=2.10'] Package notebook conflicts for: jupyterlab -> notebook[version='>=4.3|>=4.3.1'] Package nodejs conflicts for: jupyterlab -> nodejs[version='<10'] Package sqlite conflicts for: python=3.7 -> sqlite[version='>=3.25.3,<4.0a0|>=3.26.0,<4.0a0|>=3.27.2,<4.0a0|>=3.28.0,<4.0a0|>=3.29.0,<4.0a0'] Package openssl conflicts for: python=3.7 -> openssl[version='>=1.1.1a,<1.1.2a|>=1.1.1b,<1.1.2a|>=1.1.1c,<1.1.2a'] Package pip conflicts for: python=3.7 -> pip Package jupyterlab_launcher conflicts for: jupyterlab -> jupyterlab_launcher[version='>=0.10.0,<0.11.0|>=0.11.0,<0.12.0|>=0.11.2,<0.12.0|>=0.13.1,<0.14.0|>=0.4.0|>=0.6.0,<0.7.0'] Package subprocess32 conflicts for: jupyterlab -> subprocess32 Package futures conflicts for: jupyterlab -> futures Package jupyterlab_server conflicts for: jupyterlab -> jupyterlab_server[version='>=0.2.0,<0.3.0|>=1.0.0,<2.0.0'] Package vc conflicts for: python=3.7 -> vc[version='14.*|>=14.1,<15.0a0'] ``` &emsp;&emsp;这个是什么问题?如何解决?感觉默认的base环境很庞大,很多东西用不到。但想要使用JupyterLab又不得不安装……
相见恨晚的超实用网站
搞学习 知乎:www.zhihu.com 简答题:http://www.jiandati.com/ 网易公开课:https://open.163.com/ted/ 网易云课堂:https://study.163.com/ 中国大学MOOC:www.icourse163.org 网易云课堂:study.163.com 哔哩哔哩弹幕网:www.bilibili.com 我要自学网:www.51zxw
花了20分钟,给女朋友们写了一个web版群聊程序
参考博客 [1]https://www.byteslounge.com/tutorials/java-ee-html5-websocket-example
爬虫福利二 之 妹子图网MM批量下载
爬虫福利一:27报网MM批量下载    点击 看了本文,相信大家对爬虫一定会产生强烈的兴趣,激励自己去学习爬虫,在这里提前祝:大家学有所成! 目标网站:妹子图网 环境:Python3.x 相关第三方模块:requests、beautifulsoup4 Re:各位在测试时只需要将代码里的变量 path 指定为你当前系统要保存的路径,使用 python xxx.py 或IDE运行即可。
字节跳动视频编解码面经
引言 本文主要是记录一下面试字节跳动的经历。 三四月份投了字节跳动的实习(图形图像岗位),然后hr打电话过来问了一下会不会opengl,c++,shador,当时只会一点c++,其他两个都不会,也就直接被拒了。 七月初内推了字节跳动的提前批,因为内推没有具体的岗位,hr又打电话问要不要考虑一下图形图像岗,我说实习投过这个岗位不合适,不会opengl和shador,然后hr就说秋招更看重基础。我当时
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 顺便拉下票,我在参加csdn博客之星竞选,欢迎投票支持,每个QQ或者微信每天都可以投5票,扫二维码即可,http://m234140.nofollow.ax.
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入 假设现有4个人...
Python 基础(一):入门必备知识
目录1 标识符2 关键字3 引号4 编码5 输入输出6 缩进7 多行8 注释9 数据类型10 运算符10.1 常用运算符10.2 运算符优先级 1 标识符 标识符是编程时使用的名字,用于给变量、函数、语句块等命名,Python 中标识符由字母、数字、下划线组成,不能以数字开头,区分大小写。 以下划线开头的标识符有特殊含义,单下划线开头的标识符,如:_xxx ,表示不能直接访问的类属性,需通过类提供
这30个CSS选择器,你必须熟记(上)
关注前端达人,与你共同进步CSS的魅力就是让我们前端工程师像设计师一样进行网页的设计,我们能轻而易举的改变颜色、布局、制作出漂亮的影音效果等等,我们只需要改几行代码,不需...
国产开源API网关项目进入Apache孵化器:APISIX
点击蓝色“程序猿DD”关注我回复“资源”获取独家整理的学习资料!近日,又有一个开源项目加入了这个Java开源界大名鼎鼎的Apache基金会,开始进行孵化器。项目名称:AP...
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 欢迎 改进 留言。 演示地点跳到演示地点 html代码如下`&lt;!DOCTYPE html&gt; &lt;html&gt; &lt;head&gt; &lt;title&gt;music&lt;/title&gt; &lt;meta charset="utf-8"&gt
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。 1. for - else 什么?不是 if 和 else 才
数据库优化 - SQL优化
前面一篇文章从实例的角度进行数据库优化,通过配置一些参数让数据库性能达到最优。但是一些“不好”的SQL也会导致数据库查询变慢,影响业务流程。本文从SQL角度进行数据库优化,提升SQL运行效率。 判断问题SQL 判断SQL是否有问题时可以通过两个表象进行判断: 系统级别表象 CPU消耗严重 IO等待严重 页面响应时间过长
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 c/c++ 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7
通俗易懂地给女朋友讲:线程池的内部原理
餐厅的约会 餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”我楞了一下,心里想女朋友今天是怎么了,怎么突然问出这么专业的问题,但做为一个专业人士在女朋友面前也不能露怯啊,想了一下便说:“我先给你讲讲我前同事老王的故事吧!” 大龄程序员老王 老王是一个已经北漂十多年的程序员,岁数大了,加班加不动了,升迁也无望,于是拿着手里
经典算法(5)杨辉三角
杨辉三角 是经典算法,这篇博客对它的算法思想进行了讲解,并有完整的代码实现。
编写Spring MVC控制器的14个技巧
本期目录 1.使用@Controller构造型 2.实现控制器接口 3.扩展AbstractController类 4.为处理程序方法指定URL映射 5.为处理程序方法指定HTTP请求方法 6.将请求参数映射到处理程序方法 7.返回模型和视图 8.将对象放入模型 9.处理程序方法中的重定向 10.处理表格提交和表格验证 11.处理文件上传 12.在控制器中自动装配业务类 ...
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹
面试官:你连RESTful都不知道我怎么敢要你?
面试官:了解RESTful吗? 我:听说过。 面试官:那什么是RESTful? 我:就是用起来很规范,挺好的 面试官:是RESTful挺好的,还是自我感觉挺好的 我:都挺好的。 面试官:… 把门关上。 我:… 要干嘛?先关上再说。 面试官:我说出去把门关上。 我:what ?,夺门而去 文章目录01 前言02 RESTful的来源03 RESTful6大原则1. C-S架构2. 无状态3.统一的接
求小姐姐抠图竟遭白眼?痛定思痛,我决定用 Python 自力更生!
点击蓝色“Python空间”关注我丫加个“星标”,每天一起快乐的学习大家好,我是 Rocky0429,一个刚恰完午饭,正在用刷网页浪费生命的蒟蒻...一堆堆无聊八卦信息的网页内容慢慢使我的双眼模糊,一个哈欠打出了三斤老泪,就在此时我看到了一张图片:是谁!是谁把我女朋友的照片放出来的!awsl!太好看了叭...等等,那个背景上的一堆鬼画符是什么鬼?!真是看不下去!叔叔婶婶能忍,隔壁老王的三姨妈的四表...
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看
SQL-小白最佳入门sql查询一
不要偷偷的查询我的个人资料,即使你再喜欢我,也不要这样,真的不好;
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // doshom...
致 Python 初学者
欢迎来到“Python进阶”专栏!来到这里的每一位同学,应该大致上学习了很多 Python 的基础知识,正在努力成长的过程中。在此期间,一定遇到了很多的困惑,对未来的学习方向感到迷茫。我非常理解你们所面临的处境。我从2007年开始接触 python 这门编程语言,从2009年开始单一使用 python 应对所有的开发工作,直至今天。回顾自己的学习过程,也曾经遇到过无数的困难,也曾经迷茫过、困惑过。开办这个专栏,正是为了帮助像我当年一样困惑的 Python 初学者走出困境、快速成长。希望我的经验能真正帮到你
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,...
程序员:我终于知道post和get的区别
是一个老生常谈的话题,然而随着不断的学习,对于以前的认识有很多误区,所以还是需要不断地总结的,学而时习之,不亦说乎
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU...
相关热词 c# 图片上传 c# gdi 占用内存 c#中遍历字典 c#控制台模拟dos c# 斜率 最小二乘法 c#进程延迟 c# mysql完整项目 c# grid 总行数 c# web浏览器插件 c# xml 生成xsd
立即提问

相似问题