Tensorflow测试训练styleGAN时报错 No OpKernel was registered to support Op 'NcclAllReduce' with these attrs.

运行官方与训练模型pretrained_example.py generate_figures.py 没有问题。GPU工作正常。
InvalidArgumentError (see above for traceback): No OpKernel was registered to support Op 'NcclAllReduce' with these attrs. Registered devices: [CPU,GPU], Registered kernels:

     [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]]

conda install keras-gpu


Building TensorFlow graph...
Setting up snapshot image grid...
Setting up run dir...

Traceback (most recent call last):
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1278, in _do_call
    return fn(*args)
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1263, in _run_fn
    options, feed_dict, fetch_list, target_list, run_metadata)
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1350, in _call_tf_sessionrun
tensorflow.python.framework.errors_impl.InvalidArgumentError: No OpKernel was registered to support Op 'NcclAllReduce' with these attrs.  Registered devices: [CPU,GPU], Registered kernels:
  <no registered kernels>

         [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "train.py", line 191, in <module>
  File "train.py", line 186, in main
  File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 290, in submit_run
  File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 242, in run_wrapper
    util.call_func_by_name(func_name=submit_config.run_func_name, submit_config=submit_config, **submit_config.run_func_kwargs)
  File "E:\MachineLearning\stylegan-master\dnnlib\util.py", line 257, in call_func_by_name
    return func_obj(*args, **kwargs)
  File "E:\MachineLearning\stylegan-master\training\training_loop.py", line 230, in training_loop
    tflib.run([D_train_op, Gs_update_op], {lod_in: sched.lod, lrate_in: sched.D_lrate, minibatch_in: sched.minibatch})
  File "E:\MachineLearning\stylegan-master\dnnlib\tflib\tfutil.py", line 26, in run
    return tf.get_default_session().run(*args, **kwargs)
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 877, in run
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1100, in _run
    feed_dict_tensor, options, run_metadata)
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1272, in _do_run
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1291, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: No OpKernel was registered to support Op 'NcclAllReduce' with these attrs.  Registered devices: [CPU,GPU], Registered kernels:
  <no registered kernels>

         [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]]

Caused by op 'TrainD/SumAcrossGPUs/NcclAllReduce', defined at:
  File "train.py", line 191, in <module>
  File "train.py", line 186, in main
  File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 290, in submit_run
  File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 242, in run_wrapper
    util.call_func_by_name(func_name=submit_config.run_func_name, submit_config=submit_config, **submit_config.run_func_kwargs)
  File "E:\MachineLearning\stylegan-master\dnnlib\util.py", line 257, in call_func_by_name
    return func_obj(*args, **kwargs)
  File "E:\MachineLearning\stylegan-master\training\training_loop.py", line 185, in training_loop
    D_train_op = D_opt.apply_updates()
  File "E:\MachineLearning\stylegan-master\dnnlib\tflib\optimizer.py", line 135, in apply_updates
    g = nccl_ops.all_sum(g)
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\contrib\nccl\python\ops\nccl_ops.py", line 49, in all_sum
    return _apply_all_reduce('sum', tensors)
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\contrib\nccl\python\ops\nccl_ops.py", line 230, in _apply_all_reduce
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\contrib\nccl\ops\gen_nccl_ops.py", line 59, in nccl_all_reduce
    num_devices=num_devices, shared_name=shared_name, name=name)
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\util\deprecation.py", line 454, in new_func
    return func(*args, **kwargs)
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\framework\ops.py", line 3156, in create_op
  File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\framework\ops.py", line 1718, in __init__
    self._traceback = tf_stack.extract_stack()

InvalidArgumentError (see above for traceback): No OpKernel was registered to support Op 'NcclAllReduce' with these attrs.  Registered devices: [CPU,GPU], Registered kernels:
  <no registered kernels>

         [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]]

#conda list:
# Name                    Version                   Build  Channel
_tflow_select             2.1.0                       gpu
absl-py                   0.8.1                    pypi_0    pypi
alabaster                 0.7.12                   py36_0
asn1crypto                1.2.0                    py36_0
astor                     0.8.0                    pypi_0    pypi
astroid                   2.3.2                    py36_0
attrs                     19.3.0                     py_0
babel                     2.7.0                      py_0
backcall                  0.1.0                    py36_0
blas                      1.0                         mkl
bleach                    3.1.0                    py36_0
ca-certificates           2019.10.16                    0
certifi                   2019.9.11                py36_0
cffi                      1.13.1           py36h7a1dbc1_0
chardet                   3.0.4                 py36_1003
cloudpickle               1.2.2                      py_0
colorama                  0.4.1                    py36_0
cryptography              2.8              py36h7a1dbc1_0
cudatoolkit               9.0                           1
cudnn                     7.6.4                 cuda9.0_0
decorator                 4.4.1                      py_0
defusedxml                0.6.0                      py_0
django                    2.2.7                    pypi_0    pypi
docutils                  0.15.2                   py36_0
entrypoints               0.3                      py36_0
gast                      0.3.2                      py_0
grpcio                    1.25.0                   pypi_0    pypi
h5py                      2.9.0            py36h5e291fa_0
hdf5                      1.10.4               h7ebc959_0
icc_rt                    2019.0.0             h0cc432a_1
icu                       58.2                 ha66f8fd_1
idna                      2.8                      pypi_0    pypi
image                     1.5.27                   pypi_0    pypi
imagesize                 1.1.0                    py36_0
importlib_metadata        0.23                     py36_0
intel-openmp              2019.4                      245
ipykernel                 5.1.3            py36h39e3cac_0
ipython                   7.9.0            py36h39e3cac_0
ipython_genutils          0.2.0            py36h3c5d0ee_0
isort                     4.3.21                   py36_0
jedi                      0.15.1                   py36_0
jinja2                    2.10.3                     py_0
jpeg                      9b                   hb83a4c4_2
jsonschema                3.1.1                    py36_0
jupyter_client            5.3.4                    py36_0
jupyter_core              4.6.1                    py36_0
keras-applications        1.0.8                      py_0
keras-base                2.2.4                    py36_0
keras-gpu                 2.2.4                         0
keras-preprocessing       1.1.0                      py_1
keyring                   18.0.0                   py36_0
lazy-object-proxy         1.4.3            py36he774522_0
libpng                    1.6.37               h2a8f88b_0
libprotobuf               3.9.2                h7bd577a_0
libsodium                 1.0.16               h9d3ae62_0
markdown                  3.1.1                    py36_0
markupsafe                1.1.1            py36he774522_0
mccabe                    0.6.1                    py36_1
mistune                   0.8.4            py36he774522_0
mkl                       2019.4                      245
mkl-service               2.3.0            py36hb782905_0
mkl_fft                   1.0.15           py36h14836fe_0
mkl_random                1.1.0            py36h675688f_0
more-itertools            7.2.0                    py36_0
nbconvert                 5.6.1                    py36_0
nbformat                  4.4.0            py36h3a5bc1b_0
numpy                     1.17.3           py36h4ceb530_0
numpy-base                1.17.3           py36hc3f5095_0
numpydoc                  0.9.1                      py_0
openssl                   1.1.1d               he774522_3
packaging                 19.2                       py_0
pandoc                                 0
pandocfilters             1.4.2                    py36_1
parso                     0.5.1                      py_0
pickleshare               0.7.5                    py36_0
pillow                    6.2.1                    pypi_0    pypi
pip                       19.3.1                   py36_0
prompt_toolkit            2.0.10                     py_0
protobuf                  3.10.0                   pypi_0    pypi
psutil                    5.6.3            py36he774522_0
pycodestyle               2.5.0                    py36_0
pycparser                 2.19                     py36_0
pyflakes                  2.1.1                    py36_0
pygments                  2.4.2                      py_0
pylint                    2.4.3                    py36_0
pyopenssl                 19.0.0                   py36_0
pyparsing                 2.4.2                      py_0
pyqt                      5.9.2            py36h6538335_2
pyreadline                2.1                      py36_1
pyrsistent                0.15.4           py36he774522_0
pysocks                   1.7.1                    py36_0
python                    3.6.9                h5500b2f_0
python-dateutil           2.8.1                      py_0
pytz                      2019.3                     py_0
pywin32                   223              py36hfa6e2cd_1
pyyaml                    5.1.2            py36he774522_0
pyzmq                     18.1.0           py36ha925a31_0
qt                        5.9.7            vc14h73c81de_0
qtawesome                 0.6.0                      py_0
qtconsole                 4.5.5                      py_0
qtpy                      1.9.0                      py_0
requests                  2.22.0                   py36_0
rope                      0.14.0                     py_0
scipy                     1.3.1            py36h29ff71c_0
setuptools                39.1.0                   pypi_0    pypi
sip                       4.19.8           py36h6538335_0
six                       1.13.0                   pypi_0    pypi
snowballstemmer           2.0.0                      py_0
sphinx                    2.2.1                      py_0
sphinxcontrib-applehelp   1.0.1                      py_0
sphinxcontrib-devhelp     1.0.1                      py_0
sphinxcontrib-htmlhelp    1.0.2                      py_0
sphinxcontrib-jsmath      1.0.1                      py_0
sphinxcontrib-qthelp      1.0.2                      py_0
sphinxcontrib-serializinghtml 1.1.3                      py_0
spyder                    3.3.6                    py36_0
spyder-kernels            0.5.2                    py36_0
sqlite                    3.30.1               he774522_0
sqlparse                  0.3.0                    pypi_0    pypi
tensorboard               1.10.0           py36he025d50_0
tensorflow                1.10.0          gpu_py36h3514669_0
tensorflow-base           1.10.0          gpu_py36h6e53903_0
tensorflow-gpu            1.10.0                   pypi_0    pypi
termcolor                 1.1.0                    pypi_0    pypi
testpath                  0.4.2                    py36_0
tornado                   6.0.3            py36he774522_0
traitlets                 4.3.3                    py36_0
typed-ast                 1.4.0            py36he774522_0
urllib3                   1.25.6                   pypi_0    pypi
vc                        14.1                 h0510ff6_4
vs2015_runtime            14.16.27012          hf0eaf9b_0
wcwidth                   0.1.7            py36h3d5aa90_0
webencodings              0.5.1                    py36_1
werkzeug                  0.16.0                     py_0
wheel                     0.33.6                   py36_0
win_inet_pton             1.1.0                    py36_0
wincertstore              0.2              py36h7fe50ca_0
wrapt                     1.11.2           py36he774522_0
yaml                      0.1.7                hc54c509_2
zeromq                    4.3.1                h33f27b4_3
zipp                      0.6.0                      py_0
zlib                      1.2.11               h62dcd97_3

2*RTX2080Ti driver 4.19.67


Ruiz.L 你好,这个我也试过了,没有效果。而且print(device_lib.list_local_devices())这个在我这运行也正常
3 个月之前 回复
Csdn user default icon
Tensorflow 测试helloWorld,显示 The session graph is empty
准备学Tensorflow ,win10装好了环境,Anaconda +pycharm+tensorflow, 准备测试简单的hello world程序,结果显示“The session graph is empty”,是什么问题呀?大神们帮忙解决一下! 原始代码是 ``` import tensorflow as tf a = tf.constant("Hello,world!") sess = tf.Session() print(sess.run(a)) sess.close() ``` 这个显示错误:**module 'tensorflow' has no attribute 'Session'** 后按照网上提示,只有tensorflow 1 有,于是改成了下面的: ``` import tensorflow as tf a = tf.constant("Hello,world!") sess = tf.compat.v1.Session() print(sess.run(a)) sess.close() ``` 这个还是有错误,显示“The session graph is empty” Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 Traceback (most recent call last): File "C:/Users/Dell/PycharmProjects/Helloworld/helloWorldTen.py", line 5, in <module> print(sess.run(a)) File "E:\Anaconda3\lib\site-packages\tensorflow_core\python\client\session.py", line 956, in run run_metadata_ptr) File "E:\Anaconda3\lib\site-packages\tensorflow_core\python\client\session.py", line 1105, in _run raise RuntimeError('The Session graph is empty. Add operations to the ' RuntimeError: **The Session graph is empty.** Add operations to the graph before calling run().
Tensorflow 无报错结束运行
TensorFlow无报错结束运行,这是一个预测程序的输出结果,之前可以运行,没有更改过代码,控制台最后输出的内容如下,请问各位大佬该如何解决? > 2019-12-07 01:57:11.506176: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2 > 2019-12-07 01:57:11.510682: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library nvcuda.dll > 2019-12-07 01:57:11.811459: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties: name: GeForce RTX 2080 Ti major: 7 minor: 5 memoryClockRate(GHz): 1.545 pciBusID: 0000:65:00.0 > 2019-12-07 01:57:11.811883: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 1 with properties: name: GeForce GTX 1080 major: 6 minor: 1 memoryClockRate(GHz): 1.8095 pciBusID: 0000:b3:00.0 > 2019-12-07 01:57:11.812080: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check. > 2019-12-07 01:57:11.813215: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0, 1 > 2019-12-07 01:57:12.694203: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix: > 2019-12-07 01:57:12.694360: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0 1 2019-12-07 01:57:12.694449: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N N 2019-12-07 01:57:12.694538: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 1: N N > 2019-12-07 01:57:12.695690: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 8694 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080 Ti, pci bus id: 0000:65:00.0, compute capability: 7.5) > 2019-12-07 01:57:12.697395: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 6358 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080, pci bus id: 0000:b3:00.0, compute capability: 6.1) > Process finished with exit code 0
postgre SQL初学,restore dvdrental 数据库时报错,请教如何解决?
postgre SQL初学,restore dvdrental时报错,请教如何解决?感谢! 有没有完好的PostgreSQL数据库资源供练习?最好还是dvdrental,在complete SQL bootcamp教程里使用的范例数据库 pg_restore: connecting to database for restore pg_restore: implied data-only restore pg_restore: processing data for table "public.actor" pg_restore: while PROCESSING TOC: pg_restore: from TOC entry 3057; 0 16757 TABLE DATA actor postgres pg_restore: error: could not execute query: 错误: 关系 "public.actor" 不存在 Command was: COPY public.actor (actor_id, first_name, last_name, last_update) FROM stdin; pg_restore: error: could not find header for file "3057.dat" in tar archive
运行 tensorflow ,能正确输出结果,但同时有其他的一些提示,不懂是为什么
代码很简短,目前正在学习中。 ``` import tensorflow as tf a = [[1, 0, 3], [8, -3, 6], [5, 1, 7]] with tf.Session() as sess: print(sess.run(tf.argmax(a, 1))) print(sess.run(tf.argmax(a, 0))) ``` 输出结果如下,不知道为什么会出现这些提示,求高人指点。 E:\anaconda\python.exe D:/pycharm文件/try.py 2020-01-09 22:18:54.342546: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll WARNING:tensorflow:From D:/pycharm文件/try.py:5: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead. 2020-01-09 22:18:56.348961: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll 2020-01-09 22:18:57.534582: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: name: GeForce GTX 1660 Ti with Max-Q Design major: 7 minor: 5 memoryClockRate(GHz): 1.335 pciBusID: 0000:01:00.0 2020-01-09 22:18:57.535147: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll 2020-01-09 22:18:57.539354: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll 2020-01-09 22:18:57.543360: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_100.dll 2020-01-09 22:18:57.545647: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_100.dll 2020-01-09 22:18:57.550333: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_100.dll 2020-01-09 22:18:57.554235: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_100.dll 2020-01-09 22:18:57.556270: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cudnn64_7.dll'; dlerror: cudnn64_7.dll not found 2020-01-09 22:18:57.556681: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1641] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... 2020-01-09 22:18:57.558041: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 2020-01-09 22:18:57.560801: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix: 2020-01-09 22:18:57.561152: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] [2 0 2] [1 2 2] Process finished with exit code 0
The Embarrassed Cryptographer 的程序的设计
Problem Description The young and very promising cryptographer Odd Even has implemented the security module of a large system with thousands of users, which is now in use in his company. The cryptographic keys are created from the product of two primes, and are believed to be secure because there is no known method for factoring such a product effectively. What Odd Even did not think of, was that both factors in a key should be large, not just their product. It is now possible that some of the users of the system have weak keys. In a desperate attempt not to be fired, Odd Even secretly goes through all the users keys, to check if they are strong enough. He uses his very poweful Atari, and is especially careful when checking his boss' key. Input The input consists of no more than 20 test cases. Each test case is a line with the integers 4 <= K <= 10100 and 2 <= L <= 106. K is the key itself, a product of two primes. L is the wanted minimum size of the factors in the key. The input set is terminated by a case where K = 0 and L = 0. Output For each number K, if one of its factors are strictly less than the required L, your program should output "BAD p", where p is the smallest factor in K. Otherwise, it should output "GOOD". Cases should be separated by a line-break. Sample Input 143 10 143 20 667 20 667 30 2573 30 2573 40 0 0 Sample Output GOOD BAD 11 GOOD BAD 23 GOOD BAD 31
WorstWeather Ever
Problem Description "Man, this year has the worst weather ever!", David said as he sat crouched in the small cave where we had sought shelter from yet another sudden rainstorm. "Nuh-uh!", Diana immediately replied in her traditional know-it-all manner. "Is too!", David countered cunningly. Terrific. Not only were we stuck in this cave, now we would have to listen to those two nagging for at least an hour. It was time to cut this discussion short. "Big nuh-uh. In fact, 93 years ago it had already rained five times as much by this time of year." "Duh", David capitulated, "so it's the worst weather in 93 years then." "Nuh-uh, this is actually the worst weather in 23 years.", Diana again broke in. "Yeah, well, whatever", David sighed, "Who cares anyway?". Well, dear contestants, you care, don't you? Your task is to, given information about the amount of rain during different years in the history of the universe, and a series of statements in the form "Year X had the most rain since year Y", determine whether these are true, might be true, or are false. We say that such a statement is true if: The amount of rain during these two years and all years between them is known. It rained at most as much during year X as it did during year Y. For every year Z satisfying Y < Z < X, the amount of rain during year Z was less than the amount of rain during year X. We say that such a statement might be true if there is an assignment of amounts of rain to years for which there is no information, such that the statement becomes true. We say that the statement is false otherwise. Input The input will consist of several test cases, each consisting of two parts. The first part begins with an integer 1 <= n <= 50000, indicating the number of different years for which there is information. Next follow n lines. The ith of these contains two integers -109 <= yi <= 109 and 1 <= ri <= 109 indicating that there was ri millilitres of rain during year yi (note that the amount of rain during a year can be any nonnegative integer, the limitation on ri is just a limitation on the input). You may assume that yi < yi+1 for 1 <= i < n. The second part of a test case starts with an integer 1 <= m <= 10000, indicating the number of queries to process. The following m lines each contain two integers -109 <= Y < X <= 109 indicating two years. There is a blank line between test cases. The input is terminated by a case where n = 0 and m = 0. This case should not be processed. Technical note: Due to the size of the input, the use of cin/cout in C++ might be too slow in this problem. Use scanf/printf instead. In Java, make sure that both input and output is buffered. Output There should be m lines of output for each test case, corresponding to the m queries. Queries should be answered with "true" if the statement is true, "maybe" if the statement might be true, and "false" if the statement is false. Separate the output of two different test cases by a blank line. Sample Input 4 2002 4920 2003 5901 2004 2832 2005 3890 2 2002 2005 2003 2005 3 1985 5782 1995 3048 2005 4890 2 1985 2005 2005 2015 0 0 Sample Output false true maybe maybe
Genghis Khan the Conqueror 征服的问题
Problem Description Genghis Khan(成吉思汗)(1162-1227), also known by his birth name Temujin(铁木真) and temple name Taizu(元太祖), was the founder of the Mongol Empire and the greatest conqueror in Chinese history. After uniting many of the nomadic tribes on the Mongolian steppe, Genghis Khan founded a strong cavalry equipped by irony discipline, sabers and powder, and he became to the most fearsome conqueror in the history. He stretched the empire that resulted in the conquest of most of Eurasia. The following figure (origin: Wikipedia) shows the territory of Mongol Empire at that time. Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each city can send and receive messages safely and promptly through those roads. There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and the total cost was minimal. Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information. Input There are no more than 20 test cases in the input. For each test case, the first line contains two integers N and M (1<=N<=3000, 0<=M<=N×N), demonstrating the number of cities and roads in Pushtuar. Cities are numbered from 0 to N-1. In the each of the following M lines, there are three integers xi, yi and ci(ci<=107), showing that there is a bidirectional road between xi and yi, while the cost of setting up guarders on this road is ci. We guarantee that the graph is connected. The total cost of the graph is less or equal to 109. The next line contains an integer Q (1<=Q<=10000) representing the number of suspicious road cost changes. In the following Q lines, each line contains three integers Xi, Yi and Ci showing that the cost of road (Xi, Yi) may change to Ci (Ci<=107). We guarantee that the road always exists and Ci is larger than the original cost (we guarantee that there is at most one road connecting two cities directly). Please note that the probability of each suspicious road cost change is the same. Output For each test case, output a real number demonstrating the expected minimal total cost. The result should be rounded to 4 digits after decimal point. Sample Input 3 3 0 1 3 0 2 2 1 2 5 3 0 2 3 1 2 6 0 1 6 0 0 Sample Output 6.0000
Crank 的问题
Problem Description Chev Chelios had his heart stolen from him, by the boss of the most dangerous gang in the city. His heart has been replaced with an artificial chargeable one! Chelios was on mission of locating the boss of the gang to get his heart back since then without luck! Now the artificial heart’s battery lifetime is about to expire! Fortunately, he finally located the target but he needs your help to get there before his artificial heart stops beating! Chelios decided to attack the boss building from the roof because all gates are heavily protected by gangsters. Chelios has the map of the gang block which shows the heights of all buildings within the block. The plan is that a helicopter will drop Chelios on the roof of one of the buildings on the boundary of the block during night. Then Chelios will get to the boss building by moving to adjacent buildings, vertically or horizontally. Chelios can only move to a building which has the same or smaller height as the current building (going up severely affects his damaged heart). Given the gang building block map which shows the heights of all buildings in the block along with the boss building, write a program to help Chev Chelios determine the number of buildings on the boundary of the block he can be dropped by the helicopter at so that he would be able to reach the boss’s building without climbing! Input The first line of input contains an integer T, the number of test cases. T test cases follow, the first line of each test case contains two integers (1 <= R,C <= 10) the height and width of the building block. The second line contains two integers (1 <= A <= R), and (1 <= B <= C), the coordinates of the boss building on the map. R lines follows; each line consists of C space separated integers representing the heights of all buildings. A height H of a building satisfies (1 <= H <= 1000). Output For each test case, print the number of buildings on the boundary of the block Chev Chelios can be dropped by the helicopter at so that he would be able to reach the boss’s building without climbing up! Follow the output format below. Sample Input 2 3 3 2 2 1 7 3 2 6 3 3 5 4 2 2 2 1 2 7 2 6 Sample Output Case #1: 1 Case #2: 4
``` Traceback (most recent call last): File "/app/.heroku/python/lib/python3.6/site-packages/django/db/backends/utils.py", line 64, in execute return self.cursor.execute(sql, params) psycopg2.errors.UndefinedTable: relation "auth_user" does not exist LINE 1: ...user"."is_active", "auth_user"."date_joined" FROM "auth_user... The above exception was the direct cause of the following exception: Traceback (most recent call last): File "manage.py", line 10, in <module> execute_from_command_line(sys.argv) File "/app/.heroku/python/lib/python3.6/site-packages/django/core/management/__init__.py", line 351, in execute_from_command_line utility.execute() File "/app/.heroku/python/lib/python3.6/site-packages/django/core/management/__init__.py", line 325, in execute django.setup() File "/app/.heroku/python/lib/python3.6/site-packages/django/__init__.py", line 18, in setup apps.populate(settings.INSTALLED_APPS) File "/app/.heroku/python/lib/python3.6/site-packages/django/apps/registry.py", line 108, in populate app_config.import_models(all_models) File "/app/.heroku/python/lib/python3.6/site-packages/django/apps/config.py", line 198, in import_models self.models_module = import_module(models_module_name) File "/app/.heroku/python/lib/python3.6/importlib/__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 978, in _gcd_import File "<frozen importlib._bootstrap>", line 961, in _find_and_load File "<frozen importlib._bootstrap>", line 950, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 655, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 678, in exec_module File "<frozen importlib._bootstrap>", line 205, in _call_with_frames_removed File "/app/learning_logs/models.py", line 7, in <module> class Topic(models.Model): File "/app/learning_logs/models.py", line 8, in Topic choices=Help().choices() File "/app/learning_logs/help.py", line 9, in choices for user in users: File "/app/.heroku/python/lib/python3.6/site-packages/django/db/models/query.py", line 162, in __iter__ self._fetch_all() File "/app/.heroku/python/lib/python3.6/site-packages/django/db/models/query.py", line 965, in _fetch_all self._result_cache = list(self.iterator()) File "/app/.heroku/python/lib/python3.6/site-packages/django/db/models/query.py", line 238, in iterator results = compiler.execute_sql() File "/app/.heroku/python/lib/python3.6/site-packages/django/db/models/sql/compiler.py", line 840, in execute_sql cursor.execute(sql, params) File "/app/.heroku/python/lib/python3.6/site-packages/django/db/backends/utils.py", line 64, in execute return self.cursor.execute(sql, params) File "/app/.heroku/python/lib/python3.6/site-packages/django/db/utils.py", line 97, in __exit__ six.reraise(dj_exc_type, dj_exc_value, traceback) File "/app/.heroku/python/lib/python3.6/site-packages/django/utils/six.py", line 658, in reraise raise value.with_traceback(tb) File "/app/.heroku/python/lib/python3.6/site-packages/django/db/backends/utils.py", line 64, in execute return self.cursor.execute(sql, params) django.db.utils.ProgrammingError: relation "auth_user" does not exist LINE 1: ...user"."is_active", "auth_user"."date_joined" FROM "auth_user... ``` 在heroku bash操作makemigrations,migrate中出现的错误 在本地用这些没问题 settings.py ``` """ Django settings for learning_log project. Generated by 'django-admin startproject' using Django 1.8.5. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os import django_heroku BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'o47!#$sbu_&=)pnbk63ra!hjbx@+pc=2j42cf(&mx82&hs&ph_' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'whitenoise.runserver_nostatic', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #my app 'learning_logs', 'users', #other app 'bootstrap3', ) MIDDLEWARE = [ 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'learning_log.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'learning_log.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True LOGIN_URL = '/users/login/' # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') if os.getenv('DATABASE_URL') is not None: import dj_database_url DATABASES['default'] = dj_database_url.config() SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') ALLOWED_HOSTS = ['stark-anchorage-08076.herokuapp.com'] DEBUG = False BASE_DIR = os.path.dirname(os.path.abspath(__file__)) STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) django_heroku.settings(locals()) ``` views.py ``` from django.shortcuts import render from .models import Topic, Entry, Root, Suf_Pre_fix from django.http import HttpResponseRedirect, Http404 from django.core.urlresolvers import reverse from .forms import TopicForm, EntryForm, RootForm from django.contrib.auth.decorators import login_required from .help import Help from django.contrib.auth.models import User # Create your views here. def index(request): return render(request, 'learning_logs/index.html') @login_required def topics(request): topics = Topic.objects.order_by('date_added') context = {'topics': topics} return render(request, 'learning_logs/topics.html', context) @login_required def topic(request, topic_id): topic = Topic.objects.get(id=topic_id) entries = topic.entry_set.order_by('-date_added') context = {'topic': topic,'entries': entries} return render(request, 'learning_logs/topic.html', context) @login_required def new_topic(request): if request.method != 'POST': form = TopicForm() else: form = TopicForm(request.POST) if form.is_valid(): new_topic = form.save(commit=False) new_topic.owner = request.user new_topic.edit_able = request.POST.getlist("edit_able") new_topic.save() return HttpResponseRedirect(reverse('learning_logs:topics')) context = {'form': form, 'users':Help().users()} return render(request, 'learning_logs/new_topic.html', context) @login_required def new_entry(request, topic_id): topic = Topic.objects.get(id=topic_id) if request.method != 'POST': form = EntryForm() else: form = EntryForm(data=request.POST) if form.is_valid(): new_entry = form.save(commit=False) new_entry.topic = topic new_entry.edit_able = request.POST.getlist("edit_able") new_entry.save() return HttpResponseRedirect(reverse('learning_logs:topic',args=[topic_id])) context = {'topic':topic, 'form': form, 'users':Help().users()} return render(request, 'learning_logs/new_entry.html', context) @login_required def edit_entry(request, entry_id): entry = Entry.objects.get(id=entry_id) topic = entry.topic if not Help().check_user(request.user,entry.edit_able) or not Help().check_user(request.user,topic.edit_able): raise Http404 if request.method != 'POST': form = EntryForm(instance=entry) else: form = EntryForm(instance=entry, data=request.POST) if form.is_valid(): edit_entry = form.save(commit=False) edit_entry.edit_able = request.POST.getlist("edit_able") edit_entry.save() return HttpResponseRedirect(reverse('learning_logs:topic',args=[topic.id])) context = {'entry': entry, 'topic': topic, 'form': form ,'users':Help().users()} return render(request, 'learning_logs/edit_entry.html', context) @login_required def roots(request): roots = Root.objects.order_by('date_added') context = {'roots': roots} return render(request, 'learning_logs/roots.html', context) def root(request, root_id): root = Root.objects.get(id=root_id) things = root.things.order_by('-date_added') context = {'root':root, 'things':things} return render(request, 'learning_logs/root.html', context) ``` help.py ``` from django.contrib.auth.models import User class Help(): def __init__(self): pass def choices(self): users=User.objects.all() choices=[] a=1 for user in users: choices.append((a,str(user))) a+=1 return choices def check_user(self,user,users): try: str(users).index(str(user)) except: return False else: return True def users(self): users=[] for user in User.objects.all(): users.append(str(user)) return users def test_list(self,list1): for item in list1: print(type(item)) def test_word(self,item): print(item,type(item)) ```
``` //功能:输入两个整数,计算并输出它们的和 //语言:C++ #include<iostream> using namespace std; int main() { int a,b,sum; cin >> a >> b; //输入这两个数 sum = a + b; cout << sum << endl; //输出和 return 0; } ``` 上面的代码在Visual C++6.0上运行没有任何问题,但在LintCode上面会出现如下错误警告,但我看不懂。 ``` /code/Main.cpp: In function 'int main(int, char**)': /code/Main.cpp:29:32: error: conflicting declaration of C function 'int main(int, char**)' int main(int argc, char *argv[]) { ^ In file included from /code/Main.cpp:27:0: /code/Solution.cpp:5:5: note: previous declaration 'int main()' int main() ^ /code/Main.cpp:58:9: error: 'Solution' was not declared in this scope Solution solution; ^ /code/Main.cpp:60:15: error: 'solution' was not declared in this scope ans = solution.aplusb(a, b); ^ ``` 哪里有问题呢?
ChaeYeon 如何实现呢
Problem Description Chae Yeon is a popular pop female singer who rose to fame with her amazing sexy dance style and the sounds of nature voice she has. She proved to be a great dancer, and she showed off her vocals in her live performances. If you had ever seen her dance, I bet you’d love it. I felt stage lighting interesting when I was enjoying Chae Yeon’s performance. We all know that stage lighting instruments are used for the concerts and other performances taking place in live performance venues. They are also used to light the stages. Actually this is a color mixing process. There are two types of color mixing: Additive and Subtractive. Most stages use the former and in this case there are three primary colors: red, green, and blue. In the absence of color, or when no colors are showing, the stage is black. If all three primary colors are showing, the result is white. When red and green combine together, the result is yellow. When red and blue combine together, the result is magenta. When blue and green combine together, the result is cyan. When two same color combine together, the result is still that color. We have got the coordinate and the primary color of the figure that each Stage Lighting Instrument sent out. For simplicity’s sake, we can just treat the figure as a circle. Of course we’ll know the radius of each colored circle. Some color may be changed based on the Color Mixed Theory we mentioned above. Can you find the area of each color? Input The first line consists of an integer T, indicating the number of test cases. The first line of each case consists of three integers R, G, B, indicating the number of red circles, green circles and blue circles. The next R + G + B lines, each line consists of three integer x, y, r, indicating the coordinate and the radius. The first R lines descript the red circles, the second G lines descript the green circles and the last B lines descript the blue circles. Output Output seven floating numbers, they are the area of red, green, blue, white, yellow, magenta and cyan. Please take each number with two factional digits. Constraints 0 < T <= 20 0 <= R, G, B <= 100 -100 <= x, y <= 100; 0 <= r <= 100 Sample Input 1 1 1 1 0 2 3 2 0 3 -2 0 3 Sample Output 9.28 15.04 15.04 4.92 7.04 7.04 1.28
求助帖!!!ubuntu18.04 安装opencv4.0.0源码无限次出现如下问题
./src/image_opencv.cpp: In function ‘IplImage* image_to_ipl(image)’: ./src/image_opencv.cpp:16:5: error: ‘IPlImage’ was not declared in this scope IPlImage *disp = cvCreateImage(cvSize(im.w,im.h), IPL_DEPTH_8U, im.c); ^~~~~~~~ compilation terminated due to -Wfatal-errors. Makefile:86: recipe for target 'obj/image_opencv.o' failed make: *** [obj/image_opencv.o] Error 1 make: *** Waiting for unfinished jobs.... 但我在src文件夹中的image_opencv.cpp中也引入了#include "opencv2/imgproc/imgproc_c.h" 求助实在不知道怎么办了
The Game of 31 游戏的算法
Problem Description The game of 31 was a favourite of con artists who rode the railroads in days of yore. The game is played with a deck of 24 cards: four labelled each of 1, 2, 3, 4, 5, 6. The cards in the deck are visible to both players, who alternately withdraw one card from the deck and place it on a pile. The object of the game is to be the last player to lay a card such that the sum of the cards in the pile does not exceed 31. Your task is to determine the eventual winner of a partially played game, assuming each player plays the remainder of the game using a perfect strategy. For example, in the following game player B wins: Player A plays 3 Player B plays 5 Player A plays 6 Player B plays 6 Player A plays 5 Player B plays 6 Input The input will consist of several lines; each line consists of a sequence of zero or more digits representing a partially completed game. The first digit is player A's move; the second player B's move; and so on. You are to complete the game using a perfect strategy for both players and to determine who wins. Output For each game, print a line consisting of the input, followed by a space, followed by A or B to indicate the eventual winner of the game. Sample Input 356656 35665 3566 111126666 552525 Sample Output 356656 B 35665 B 3566 A 111126666 A 552525 A
Disney's FastPass 程序的实现
Problem Description Disney's FastPass is a virtual queuing system created by the Walt Disney Company. First introduced in 1999 (thugh the idea of a ride reservation system was first introduced in world fairs), Fast-Pass allows guests to avoid long lines at the attractions on which the system is installed, freeing them to enjoy other attractions during their wait. The service is available at no additional charge to all park guests. --- wikipedia Disneyland is a large theme park with plenties of entertainment facilities, also with a large number of tourists. Normally, you need to wait for a long time before geting the chance to enjoy any of the attractions. The FastPass is a system allowing you to pick up FastPass-tickets in some specific position, and use them at the corresponding facility to avoid long lines. With the help of the FastPass System, one can arrange his/her trip more efficiently. You are given the map of the whole park, and there are some attractions that you are interested in. How to visit all the interested attractions within the shortest time? Input The first line contains an integer T(1<=T<=25), indicating the number of test cases. Each test case contains several lines. The first line contains three integers N,M,K(1 <= N <= 50; 0 <= M <= N(N - 1)/2; 0 <= K <= 8), indicating the number of locations(starting with 1, and 1 is the only gate of the park where the trip must be started and ended), the number of roads and the number of interested attractions. The following M lines each contains three integers A,B,D(1 <= A,B <= N; 0 <= D <= 10^4) which means it takes D minutes to travel between location A and location B. The following K lines each contains several integers Pi, Ti, FTi,Ni, Fi,1, Fi,2 ... Fi,Ni-1, FiNi ,(1 <= Pi,Ni, Fi,j <=N, 0 <= FTi <= Ti <= 10^4), which means the ith interested araction is placed at location Pi and there are Ni locations Fi,1; Fi,2 ... Fi,Ni where you can get the FastPass for the ith attraction. If you come to the ith attraction with its FastPass, you need to wait for only FTi minutes, otherwise you need to wait for Ti minutes. You can assume that all the locations are connected and there is at most one road between any two locations. Note that there might be several attrractions at one location. Output For each test case in the input, print one line: "Case #X: Y", where X is the test case number (starting with 1) and Y is the minimum time of the trip. Sample Input 2 4 5 2 1 2 8 2 3 4 3 4 19 4 1 6 2 4 7 2 25 18 1 3 4 12 6 1 3 4 6 2 1 2 5 1 4 4 3 1 1 3 2 1 3 4 1 2 4 10 2 8 3 1 4 4 8 3 1 2 Sample Output Case #1: 53 Case #2: 14
Treasure Map 是如何实现的
Problem Description "Take 147 steps due north, turn 63 degrees clockwise, take 82 steps, ...". Most people don't realize how important accuracy is when following the directions on a pirate's treasure map. If you're even a tiny bit off at the start, you'll end up far away from the correct location at the end. Pirates therefore use very exact definitions. One step, for instance, has been defined by the 1670 Pirate Convention to be exactly two times the size of the wooden leg of Long John Silver, or 1.183 m in metricunits. Captain Borbassa was thus not at all worried when he set sail to the treasure island, having a rope with knots in it, exactly one step apart, for accurately measuring distances. Of course he also brought his good old geotriangle, once given to him by his father when he was six years old. However, on closer inspection of the map, he got an unpleasant surprise. The map was made by the famous captain Jack Magpie, who was notorious for including little gems into his directions.In this case, there were distances listed such as sqrt(33) steps. How do you measure that accurately? Fortunately, his first mate Pythagor came to the rescue. After puzzling for a few hours, he came up with the following solution: let pirate A go 4 steps into the perpendicular direction, and hold one end of the measuring rope there. Then pirate B goes into the desired direction while letting the rope slide through his fingers, until he is exactly 7 steps away from pirate A. Pythagor worked out a formula that states that pirate B has then traveled exactly sqrt(33) steps. Captain Borbassa was impressed, but he revealed that there were more such distances on the map. Paranoid as he is, he refuses to let Pythagor see the map, or even tell him what other distances there are on it. They are all square roots of integers, that's all he gets to know. Only on the island itself will the captain reveal the numbers, and then he expects Pyhtagor to quickly work out the smallest two integer numbers of steps that can combine to create the desired distance, using the method described above. Pythagor knows this is not easy, so he has asked your help. Can you help him by writing a program that can determine these two integers quickly? By the way, he did ask the captain how large the numbers inside the square root could get, and the captain replied "one billion". He was probably exaggerating, but you'd better make sure the program works. If you can successfully help the pirates, you'll get a share of the treasure. It might be gold, it might be silver, or it might even be... a treasure map! Input The first line of the input contains a single number: the number of test cases to follow. Each test case has the following format: 1.One line with one integer N, satisfying 1 <= N <= 10^9. Output For every test case in the input, the output should contain two nonnegative integers, separated by a space, on a single line: the distance pirate A needs to head in the perpendicular direction, and the final distance between pirate A and B, such that pirate B has traveled sqrt(N) steps. If there are multiple solutions, give the one with the smallest numbers. If there are no solutions, the output should be "IMPOSSIBLE" (without the quotation marks) on a single line. Sample Input 4 33 16 50 101 Sample Output 4 7 0 4 IMPOSSIBLE 50 51
Crash and Go(relians) 怎么实现的
Problem Description The Gorelians are a warlike race that travel the universe conquering new worlds as a form of recreation. Generally, their space battles are fairly one-sided, but occasionally even the Gorelians get the worst of an encounter. During one such losing battle, the Gorelians’ space ship became so damaged that the Gorelians had to evacuate to the planet below. Because of the chaos (and because escape pods are not very accurate) the Gorelians were scattered across a large area of the planet (yet a small enough area that we can model the relevant planetary surface as planar, not spherical). Your job is to track their efforts to regroup. Fortunately, each escape pod was equipped with a locator that can tell the Gorelian his current coordinates on the planet, as well as with a radio that can be used to communicate with other Gorelians. Unfortunately, the range on the radios is fairly limited according to how much power one has. When a Gorelian lands on the alien planet, the first thing he does is check the radio to see if he can communicate with any other Gorelians. If he can, then he arranges a meeting point with them, and then they converge on that point. Once together, they are able to combine the power sources from their radios, which gives them a larger radio range. They then repeat the process—see who they can reach, arrange a meeting point, combine their radios—until they finally cannot contact any more Gorelians. Gorelian technology allows two-way communication as long as at least one of them has a radio with enough range to cover the distance between them. For example, suppose Alice has a radio with a range of 40 km, and Bob has a range of 30 km, but they are 45 km apart (Figure 1). Since neither has a radio with enough range to reach the other, they cannot talk. However, suppose they were only 35 km apart (Figure 2). Bob’s radio still does not have enough range to reach Alice, but that does not matter—they can still talk because Alice’s radio has enough range to reach Bob. If a Gorelian successfully contacts other Gorelians, they will meet at the point that is the average of all their locations. In the case of Alice and Bob, this would simply be the midpoint of A and B (Figure 3). Note that the Gorelians turn off their radios while traveling; they will not attempt to communicate with anyone else until they have all gathered at the meeting point. Once the Gorelians meet, they combine their radios to make a new radio with a larger range. In particular, the area covered by the new radio is equal to the sum of the areas covered by the old radio. In our example, Alice had a range of 40 km, so her radio covered an area of 1600π km. Bob’s radio covered an area of 900π km. So when they combine their radios they can cover 2500π km—meaning they have a range of 50 km. At this point they will try again to contact other Gorelians. This process continues until no more Gorelians can be contacted. As an example, suppose the following Gorelians have all landed and all have a radio range of 30 km: Alice (100, 100), Bob (130, 80), Cathy (80, 60), and Dave (120, 150). At this point, none of the Gorelians can contact anyone else (Figure 5). Now Eddy lands at position (90, 80) (Figure 6). Eddy can contact Alice and Cathy, so they arrange to meet at (90, 80), which is the average of their locations. Combining their radios gives them a range of √2700 ≈ 51.96 km (Figure 7). Now they check again with their new improved range and find that they can reach Bob. So they meet Bob at (110, 80) and combine their radios to get a new radio with a range of 60 (Figure 8). Unfortunately, this is not far enough to be able to reach Dave, so Dave remains isolated. Input The input will consist of one or more data sets. Each data set will begin with an integer N representing the number of Gorelians for this dataset (1 ≤ N ≤ 100). A value of N = 0 will signify the end of the input. Next will come N lines each containing three integers X, Y, and R representing the x- and y-coordinate where the Gorelian lands and the range of the radio (0 ≤ X ≤ 1000, 0 ≤ Y ≤ 1000, and 1 ≤ R ≤ 1000). Note that only the Gorelians' initial coordinates/range will be integral; after merging with other Gorelians they may no longer be integral. You should use double-precision arithmetic for all computations. The Gorelians land in the order in which they appear in the input file. When a Gorelian lands, he merges with any Gorelians he can contact, and the process keeps repeating until no further merges can be made. The next Gorelian does not land until all previous merges have been completed. Output The output will be one line per data set, reporting the number of independent groups of Gorelians that remain at the end of the process. Sample Input 5 100 100 30 130 80 30 80 60 30 120 150 30 90 80 30 6 100 100 50 145 125 10 60 140 15 160 145 20 130 135 25 80 80 30 0 Sample Output 2 3
The Golden Ceiling 的实现的方式
Problem Description The main office of the Bank of Zork was built in the Aragain Village(later known as Flatheadia)in the year 722 of the Great Underground Empire(GUE). In 788 GUE,the chairman, J.Pierpont Flathead, decided(shortly before his unexplained disappearance in 789), that it was time to completely redesign the already ornate bank atrium with a ceiling covered in brilliant gold leaf. This new ceiling was not your ordinary ceiling. Although the atrium is essentially a big box,the ceiling would be slanted(supposedly,making the atrium look bigger). At the time,the exact dimensions of the rectangular atrium and the slope and location of the slanted ceiling had not been finalized. Flathead wanted to know how much gold leaf he would have to order from the Frobozz Magic Gold Leaf Company to cover the ceiling for different atrium dimensions and ceiling slants. He also wanted to allow the slanted part to possibly hit the floor of the box and/or the top of the box. Consider the following rough sketches of some possibly atrium configurations: Note: The dashed outline represents the original box,the horizontally ruled surface is the slanted part of the ceiling and the cross hatched surface is the part of the top of the box not cut off by the plane. The walls and floor of the atrium are transparent.The total area to be covered(the ceiling)is the slanted part plus any part of the top of the original box that is not cut off by the plane. Your job is to write a program that Flathead could have used to calculate the amount gold leaf required to cover the ceiling for a particular configuration. As a sad epilogue,the main branch was brought to ruins when the Curse of Megaboz befell it in 883GUE. Between the barbarian invasions of the 880's and the countless looters that had tread the underground ruins in the year that followed, the entire bank with all its valuables, as well as its very expensive gold leaf ceiling, had been removed or vandalized. More information can be found on-line at:http://www.thezorklibrary.com/history/bank_of_zork.html. Input The first line of input contains a single integer P,(1<=P<=1000),which is the number of data sets that follow. Each data set is a single line that contains the data set number,N,followed by a space, followed by seven space separated double precision floating point values,L,W,H,A,B,C and D. The values L,W and H specify the length, width and height of the atrium in Flathead Units(FU's), respectively, and are always positive values. The values A,B,C and D specify the coefficients of the plane equation for the slanted part of the ceiling: Ax + By + Cz = D where :0 <= x <= L, 0 <= y <= W, 0 <= z <= H. One corner of the original box is always at the origin (0,0,0)and the other at (L,W,H). The plane will never be vertical(C will be>=1.0)and the plane will always pass through the interior of the box (there will be points(x,y,z)in the box and strictly above the plane(Ax+By+Cz>D)).and others strictly below the plane (Ax+By+Cz<D). Output For each data set there is one line of output. It contains the data set number(N) followed by a single space, followed by an integer value that is the number of square FU's required to cover the ceiling in gold leaf(rounded up to the next square FU). Sample Input 3 1 10 12 15 -1.3 1 1.1 3.5 2 10 12 10 -1.3 1 1.1 11 3 13 9 10 -1.3 1 1.1 0 Sample Output 1 166 2 164 3 144
## 问题描述: 之前给公司做了个小程序,上线之后没有问题,审核也通过了,近期有需求做了一些更改(改动不大),这是背景。 然后这次提交审核之后,被驳回了,原因是小程序无法正常使用,看了下审核反馈的截图,登录未成功,报错了。 我立马用体验版测试,因为体验版就是审核的代码,后台连接的服务器程序也是完全一致的,结果亮点来了,我体验版**完美运行** 后来又测试了本地版本,又用了各种方式测试了体验版本,都没有问题,再次提交审核,不出意外,又毙了。。 拉出审核人员登录时的后台日志: ``` ================================================================================================================================================================================================================================================ ==========================日志开始====================== ================================================================================================================================================================================================================================================ 开始计时:07:42:04.389 URI : /fleetif/fleet/loginFleet Controller : com.organ.controller.fleet.FleetLoginController Method : loginFleet Method Type : POST contentType : application/json Params : {"tel":"10001000","checkCode":"1234"} [DEBUG] 2019-12-09 19:42:04 AbstractMessageConverterMethodArgumentResolver.java DEBUG method:org.springframework.web.servlet.mvc.method.annotation.AbstractMessageConverterMethodArgumentResolver.readWithMessageConverters(AbstractMessageConverterMethodArgumentResolver.java:197) Read [class com.organ.entity.fleet.FleetUser] as "application/json;charset=UTF-8" with [org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@47b74fce] [DEBUG] 2019-12-09 19:42:04 SqlSessionUtils.java DEBUG method:org.mybatis.spring.SqlSessionUtils.getSqlSession(SqlSessionUtils.java:109) Creating a new SqlSession [DEBUG] 2019-12-09 19:42:04 SqlSessionUtils.java DEBUG method:org.mybatis.spring.SqlSessionUtils.getSqlSession(SqlSessionUtils.java:145) SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@18c7d16e] was not registered for synchronization because synchronization is not active [DEBUG] 2019-12-09 19:42:04 DataSourceUtils.java DEBUG method:org.springframework.jdbc.datasource.DataSourceUtils.doGetConnection(DataSourceUtils.java:110) Fetching JDBC Connection from DataSource [DEBUG] 2019-12-09 19:42:04 SpringManagedTransaction.java DEBUG method:org.mybatis.spring.transaction.SpringManagedTransaction.openConnection(SpringManagedTransaction.java:88) JDBC Connection [org.apache.commons.dbcp.PoolableConnection@22754112] will not be managed by Spring [DEBUG] 2019-12-09 19:42:04 BaseJdbcLogger.java DEBUG method:org.apache.ibatis.logging.jdbc.BaseJdbcLogger.debug(BaseJdbcLogger.java:139) ==> Preparing: SELECT id, user_name userName, tel, user_type userType, state, balance, balance_state balanceState, parent_id parentId, check_code checkCode, create_time createTime, is_del isDel, unit_price_0 unitPrice0, unit_price_10 unitPrice10 FROM `fleet_user` WHERE tel = ? AND is_del = ? [DEBUG] 2019-12-09 19:42:04 SQLErrorCodeSQLExceptionTranslator.java DEBUG method:org.springframework.jdbc.support.SQLErrorCodeSQLExceptionTranslator.doTranslate(SQLErrorCodeSQLExceptionTranslator.java:281) Unable to translate SQLException with Error code '0', will now try the fallback translator [DEBUG] 2019-12-09 19:42:04 SqlSessionUtils.java DEBUG method:org.mybatis.spring.SqlSessionUtils.closeSqlSession(SqlSessionUtils.java:173) Closing non transactional SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@18c7d16e] [DEBUG] 2019-12-09 19:42:04 DataSourceUtils.java DEBUG method:org.springframework.jdbc.datasource.DataSourceUtils.doReleaseConnection(DataSourceUtils.java:329) Returning JDBC Connection to DataSource [DEBUG] 2019-12-09 19:42:04 DataSourceUtils.java DEBUG method:org.springframework.jdbc.datasource.DataSourceUtils.releaseConnection(DataSourceUtils.java:299) Could not close JDBC Connection java.sql.SQLException: Already closed. at org.apache.commons.dbcp.PoolableConnection.close(PoolableConnection.java:114) at org.apache.commons.dbcp.PoolingDataSource$PoolGuardConnectionWrapper.close(PoolingDataSource.java:191) at org.springframework.jdbc.datasource.DataSourceUtils.doCloseConnection(DataSourceUtils.java:343) at org.springframework.jdbc.datasource.DataSourceUtils.doReleaseConnection(DataSourceUtils.java:330) at org.springframework.jdbc.datasource.DataSourceUtils.releaseConnection(DataSourceUtils.java:296) at org.mybatis.spring.transaction.SpringManagedTransaction.close(SpringManagedTransaction.java:125) at org.apache.ibatis.executor.BaseExecutor.close(BaseExecutor.java:83) at org.apache.ibatis.executor.CachingExecutor.close(CachingExecutor.java:61) at org.apache.ibatis.session.defaults.DefaultSqlSession.close(DefaultSqlSession.java:210) at org.mybatis.spring.SqlSessionUtils.closeSqlSession(SqlSessionUtils.java:175) at org.mybatis.spring.SqlSessionTemplate$SqlSessionInterceptor.invoke(SqlSessionTemplate.java:375) at com.sun.proxy.$Proxy51.selectOne(Unknown Source) at org.mybatis.spring.SqlSessionTemplate.selectOne(SqlSessionTemplate.java:163) at org.apache.ibatis.binding.MapperMethod.execute(MapperMethod.java:68) at org.apache.ibatis.binding.MapperProxy.invoke(MapperProxy.java:52) at com.sun.proxy.$Proxy59.findFleetUser(Unknown Source) at com.organ.service.fleet.FleetUserService.findFleetUser(FleetUserService.java:39) at com.organ.service.fleet.FleetUserService$$FastClassBySpringCGLIB$$888fc21f.invoke(<generated>) at org.springframework.cglib.proxy.MethodProxy.invoke(MethodProxy.java:204) at org.springframework.aop.framework.CglibAopProxy$DynamicAdvisedInterceptor.intercept(CglibAopProxy.java:669) at com.organ.service.fleet.FleetUserService$$EnhancerBySpringCGLIB$$726af94b.findFleetUser(<generated>) at com.organ.controller.fleet.FleetLoginController.loginFleet(FleetLoginController.java:104) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.springframework.web.method.support.InvocableHandlerMethod.doInvoke(InvocableHandlerMethod.java:205) at org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:133) at org.springframework.web.servlet.mvc.method.annotation.ServletInvocableHandlerMethod.invokeAndHandle(ServletInvocableHandlerMethod.java:97) at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.invokeHandlerMethod(RequestMappingHandlerAdapter.java:827) at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.handleInternal(RequestMappingHandlerAdapter.java:738) at org.springframework.web.servlet.mvc.method.AbstractHandlerMethodAdapter.handle(AbstractHandlerMethodAdapter.java:85) at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:967) at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:901) at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:970) at org.springframework.web.servlet.FrameworkServlet.doPost(FrameworkServlet.java:872) at javax.servlet.http.HttpServlet.service(HttpServlet.java:660) at org.springframework.web.servlet.FrameworkServlet.service(FrameworkServlet.java:846) at javax.servlet.http.HttpServlet.service(HttpServlet.java:741) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:231) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166) at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166) at com.organ.filter.PostRequestFilter.doFilter(PostRequestFilter.java:35) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166) at org.springframework.web.filter.CharacterEncodingFilter.doFilterInternal(CharacterEncodingFilter.java:197) at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:107) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166) at org.apache.logging.log4j.core.web.Log4jServletFilter.doFilter(Log4jServletFilter.java:66) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:199) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:96) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:493) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:137) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:81) at org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:660) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:87) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:343) at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:798) at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:66) at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:808) at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1498) at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:49) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61) at java.lang.Thread.run(Thread.java:748) [DEBUG] 2019-12-09 19:42:04 AbstractMessageConverterMethodProcessor.java DEBUG method:org.springframework.web.servlet.mvc.method.annotation.AbstractMessageConverterMethodProcessor.writeWithMessageConverters(AbstractMessageConverterMethodProcessor.java:234) Written [com.organ.controller.base.ResultData@13c8038d] as "application/json" using [org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@47b74fce] [DEBUG] 2019-12-09 19:42:04 LogInterceptor.java DEBUG method:com.organ.interceptor.LogInterceptor.postHandle(LogInterceptor.java:118) --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- CostTime : 8ms --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- [DEBUG] 2019-12-09 19:42:04 DispatcherServlet.java DEBUG method:org.springframework.web.servlet.DispatcherServlet.processDispatchResult(DispatcherServlet.java:1048) Null ModelAndView returned to DispatcherServlet with name 'springDispatcherServlet': assuming HandlerAdapter completed request handling [DEBUG] 2019-12-09 19:42:04 LogInterceptor.java DEBUG method:com.organ.interceptor.LogInterceptor.afterCompletion(LogInterceptor.java:142) 计时结束:07:42:04.397 耗时:8 URI:/fleetif/fleet/loginFleet [DEBUG] 2019-12-09 19:42:04 LogInterceptor.java DEBUG method:com.organ.interceptor.LogInterceptor.afterCompletion(LogInterceptor.java:149) --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- [DEBUG] 2019-12-09 19:42:04 FrameworkServlet.java DEBUG method:org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:1000) Successfully completed request [DEBUG] 2019-12-09 19:42:33 PostRequestFilter.java DEBUG method:com.organ.filter.PostRequestFilter.doFilter(PostRequestFilter.java:27) ------------------------PostRequestFilter doFilter execute!!! [DEBUG] 2019-12-09 19:42:33 DispatcherServlet.java DEBUG method:org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:869) DispatcherServlet with name 'springDispatcherServlet' processing POST request for [/fleetif/fleet/smsCode] [DEBUG] 2019-12-09 19:42:33 AbstractHandlerMethodMapping.java DEBUG method:org.springframework.web.servlet.handler.AbstractHandlerMethodMapping.getHandlerInternal(AbstractHandlerMethodMapping.java:310) Looking up handler method for path /fleet/smsCode [DEBUG] 2019-12-09 19:42:33 AbstractHandlerMethodMapping.java DEBUG method:org.springframework.web.servlet.handler.AbstractHandlerMethodMapping.getHandlerInternal(AbstractHandlerMethodMapping.java:317) Returning handler method [public java.lang.Object com.organ.controller.fleet.FleetLoginController.smsCode(javax.servlet.http.HttpServletRequest,java.util.Map<java.lang.String, java.lang.String>)] [DEBUG] 2019-12-09 19:42:33 AbstractBeanFactory.java DEBUG method:org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:251) Returning cached instance of singleton bean 'fleetLoginController' [DEBUG] 2019-12-09 19:42:33 LogInterceptor.java DEBUG method:com.organ.interceptor.LogInterceptor.preHandle(LogInterceptor.java:90) ``` 可以看到数据库报了个错,但是这个错什么原因目前查不出来,而且我们无法复现,我们测试一切正常,只要审核人员登录就会报这个错误。 有没有大神指导一下,现在头都大了。。。
Support Sichuan II 如何实现的呢
Problem Description Xiao Ming heard transported to the front to Dairy Milk. ABC would like, all meat not work. people in disaster areas also need to eat vegetables, so ABC has developed a super plant that can be used to eat. This plant from seed to germinate only 1 day time, and xth from the first day of germination, to yth days(including the yth day), every day they are breeding out of a seed, each plant will be the zth days in the germination of the harvest was sent to disaster. 0th day ABC only has a seed , ABC would like to know how many vegetables (not including seeds and which was send to disaster),in the nth day. Input Multiple sets of data. Each test data row contains only four positive integers x, y, z, n, separated by spaces. Where 0 <x <= y <z <= 20,0 <n <= 1000000000. Output Each test data output line, contains a positive integer, denotes the nth-day how many of such vegetables. Results maybe large just output result modula 1000000007 Sample Input 1 2 3 4 Sample Output 5
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、PDF搜索网站推荐 对于大部
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 顺便拉下票,我在参加csdn博客之星竞选,欢迎投票支持,每个QQ或者微信每天都可以投5票,扫二维码即可,http://m234140.nofollow.ax.
Vue + Spring Boot 项目实战(十四):用户认证方案与完善的访问拦截
本篇文章主要讲解 token、session 等用户认证方案的区别并分析常见误区,以及如何通过前后端的配合实现完善的访问拦截,为下一步权限控制的实现打下基础。
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入  假设现有4个人
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 欢迎 改进 留言。 演示地点跳到演示地点 html代码如下`&lt;!DOCTYPE html&gt; &lt;html&gt; &lt;head&gt; &lt;title&gt;music&lt;/title&gt; &lt;meta charset="utf-8"&gt
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。 1. for - else 什么?不是 if 和 else 才
数据库优化 - SQL优化
前面一篇文章从实例的角度进行数据库优化,通过配置一些参数让数据库性能达到最优。但是一些“不好”的SQL也会导致数据库查询变慢,影响业务流程。本文从SQL角度进行数据库优化,提升SQL运行效率。 判断问题SQL 判断SQL是否有问题时可以通过两个表象进行判断: 系统级别表象 CPU消耗严重 IO等待严重 页面响应时间过长
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 c/c++ 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7
餐厅的约会 餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”我楞了一下,心里想女朋友今天是怎么了,怎么突然问出这么专业的问题,但做为一个专业人士在女朋友面前也不能露怯啊,想了一下便说:“我先给你讲讲我前同事老王的故事吧!” 大龄程序员老王 老王是一个已经北漂十多年的程序员,岁数大了,加班加不动了,升迁也无望,于是拿着手里
写在前面: 我是 扬帆向海,这个昵称来源于我的名字以及女朋友的名字。我热爱技术、热爱开源、热爱编程。技术是开源的、知识是共享的。 这博客是对自己学习的一点点总结及记录,如果您对 Java、算法 感兴趣,可以关注我的动态,我们一起学习。 用知识改变命运,让我们的家人过上更好的生活。 目录一、杨辉三角的介绍二、杨辉三角的算法思想三、代码实现1.第一种写法2.第二种写法 一、杨辉三角的介绍 百度
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹
面试官:了解RESTful吗? 我:听说过。 面试官:那什么是RESTful? 我:就是用起来很规范,挺好的 面试官:是RESTful挺好的,还是自我感觉挺好的 我:都挺好的。 面试官:… 把门关上。 我:… 要干嘛?先关上再说。 面试官:我说出去把门关上。 我:what ?,夺门而去 文章目录01 前言02 RESTful的来源03 RESTful6大原则1. C-S架构2. 无状态3.统一的接
一 说明 如果是初学者,建议去网上寻找安装Mysql的文章安装,以及使用navicat连接数据库,以后的示例基本是使用mysql数据库管理系统; 二 准备前提 需要建立一张学生表,列分别是id,名称,年龄,学生信息;本示例中文章篇幅原因SQL注释略; 建表语句: CREATE TABLE `student` ( `id` int(11) NOT NULL AUTO_INCREMENT, `
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // dosho
这篇文章通过对话的形式,由浅入深带你读懂 AVL 树,看完让你保证理解 AVL 树的各种操作,如果觉得不错,别吝啬你的赞哦。 1、若它的左子树不为空,则左子树上所有的节点值都小于它的根节点值。 2、若它的右子树不为空,则右子树上所有的节点值均大于它的根节点值。 3、它的左右子树也分别可以充当为二叉查找树。 例如: 例如,我现在想要查找数值为14的节点。由于二叉查找树的特性,我们可...
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,
IT界知名的程序员曾说:对于那些月薪三万以下,自称IT工程师的码农们,其实我们从来没有把他们归为我们IT工程师的队伍。他们虽然总是以IT工程师自居,但只是他们一厢情愿罢了。 此话一出,不知激起了多少(码农)程序员的愤怒,却又无可奈何,于是码农问程序员。 码农:你知道get和post请求到底有什么区别? 程序员:你看这篇就知道了。 码农:你月薪三万了? 程序员:嗯。 码农:你是怎么做到的? 程序员:
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU
点击上方蓝字 关注我们开源之道导读所以 ————想要理清开源是什么?先要厘清开源不是什么,名正言顺是句中国的古代成语,概念本身的理解非常之重要。大部分生物多样性的起源,...
      11月8日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会、可信区块链推进计划联合主办,科技行者协办的2019可信区块链峰会将在北京悠唐皇冠假日酒店开幕。   区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。如果说蒸汽机释放了人类的生产力,电力解决了人类基本的生活需求,互联网彻底改变了信息传递的方式,区块链作为构造信任的技术有重要的价值。   1
第一幕:缘起 听说阎王爷要做个生死簿后台管理系统,我们派去了一个程序员…… 996程序员做的梦: 第一场:团队招募 为了应对地府管理危机,阎王打算找“人”开发一套地府后台管理系统,于是就在地府总经办群中发了项目需求。 话说还是中国电信的信号好,地府都是满格,哈哈!!! 经常会有外行朋友问:看某网站做的不错,功能也简单,你帮忙做一下? 而这次,面对这样的需求,这个程序员
网易云音乐是音乐爱好者的集聚地,云音乐推荐系统致力于通过 AI 算法的落地,实现用户千人千面的个性化推荐,为用户带来不一样的听歌体验。 本次分享重点介绍 AI 算法在音乐推荐中的应用实践,以及在算法落地过程中遇到的挑战和解决方案。 将从如下两个部分展开: AI 算法在音乐推荐中的应用 音乐场景下的 AI 思考 从 2013 年 4 月正式上线至今,网易云音乐平台持续提供着:乐屏社区、UGC
位算法的效率有多快我就不说,不信你可以去用 10 亿个数据模拟一下,今天给大家讲一讲位运算的一些经典例子。不过,最重要的不是看懂了这些例子就好,而是要在以后多去运用位运算这些技巧,当然,采用位运算,也是可以装逼的,不信,你往下看。我会从最简单的讲起,一道比一道难度递增,不过居然是讲技巧,那么也不会太难,相信你分分钟看懂。 判断奇偶数 判断一个数是基于还是偶数,相信很多人都做过,一般的做法的代码如下
《C++ Primer》学习笔记(六):C++模块设计——函数
专栏C++学习笔记 《C++ Primer》学习笔记/习题答案 总目录 https://blog.csdn.net/TeFuirnever/article/details/100700212 —————————————————————————————————————————————————————— 《C++ Primer》习题参考答案:第6章 - C++模块设计——函数 文章目录专栏C+...
8年经验面试官详解 Java 面试秘诀
    作者 | 胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。   Java程序员准备和投递简历的实
1.两种思维方式在求职面试中,经常会考察这种问题:北京有多少量特斯拉汽车? 某胡同口的煎饼摊一年能卖出多少个煎饼? 深圳有多少个产品经理? 一辆公交车里能装下多少个乒乓球? 一
so easy! 10行代码写个"狗屁不通"文章生成器
前几天,GitHub 有个开源项目特别火,只要输入标题就可以生成一篇长长的文章。背后实现代码一定很复杂吧,里面一定有很多高深莫测的机器学习等复杂算法不过,当我看了源代码之后这程序不到50
知乎高赞:中国有什么拿得出手的开源软件产品? 在知乎上,有个问题问“中国有什么拿得出手的开源软件产品(在 GitHub 等社区受欢迎度较好的)?” 事实上,还不少呢~ 本人于2019.7.6进行了较为全面的 回答 - Bravo Yeung,获得该问题下回答中得最高赞(236赞和1枚专业勋章),对这些受欢迎的 Github 开源项目分类整理如下: 分布式计算、云平台相关工具类 1.SkyWalk
相关热词 c#委托 逆变与协变 c#新建一个项目 c#获取dll文件路径 c#子窗体调用主窗体事件 c# 拷贝目录 c# 调用cef 网页填表c#源代码 c#部署端口监听项目、 c#接口中的属性使用方法 c# 昨天


tensorflow-gpu Failed to get convolution algorithm.
tomcat启动失败 org.apache.catalina.core.ContainerBase startInternal 严重: 子容器启动失败
idea maven install时报错
tensorflow.GraphDef was modified concurrently during serialization
实例化合约报错:chaincode registration failed
R包安装package "methods" in options("defaultPackages") was not found ?
cannot compute MatMul as input #0 was expected to be a double tensor but is a float tensor [Op:MatMul] name: MatMul/
maven配置私服打包报错Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.5:compile
dev 一直提示[Error] 'cout' was not declared in this scope
Linux+pytorch下运行报错RuntimeError: PyTorch was compiled without NumPy support
windows10系统下,Anaconda 3 (Python3.7),使用pip install方法安装第三方库 jieba以及nltk,出现WARNING: pip is configured with locations that require TLS/SSL, however ?
急!ActiveMQ集群启动失败 No IOExceptionHandler registered, ignoring IO exception
报错TypeError: object NoneType can't be used in 'await' expression?
django.db.utils.InternalError: (1050, "Table 'django_content_type' already exists") 迁移文件建立数据表的时候一直报错
Map of Ninja House 编程的问题