为什么我用scrapy爬取谷歌应用市场却爬取不到内容? 5C

我想用scrapy爬取谷歌应用市场,代码没有报错,但是却爬取不到内容,这是为什么?

# -*- coding: utf-8 -*-
import scrapy

# from scrapy.spiders import CrawlSpider, Rule
# from scrapy.linkextractors import LinkExtractor
from gp.items import GpItem
# from html.parser import HTMLParser as SGMLParser

import requests


class GoogleSpider(scrapy.Spider):
    name = 'google'
    allowed_domains = ['https://play.google.com/']
    start_urls = ['https://play.google.com/store/apps/']

    '''
    rules = [
        Rule(LinkExtractor(allow=("https://play\.google\.com/store/apps/details",)), callback='parse_app', follow=True),
    ]
    '''

    def parse(self, response):
        selector = scrapy.Selector(response)

        urls = selector.xpath('//a[@class="LkLjZd ScJHi U8Ww7d xjAeve nMZKrb id-track-click"]/@href').extract()

        link_flag = 0

        links = []
        for link in urls:
            links.append(link)

        for each in urls:
            yield scrapy.Request(links[link_flag], callback=self.parse_next, dont_filter=True)
            link_flag += 1

    def parse_next(self, response):
        selector = scrapy.Selector(response)

        app_urls = selector.xpath('//div[@class="details"]/a[@class="title"]/@href').extract()
        print(app_urls)

        urls = []
        for url in app_urls:
            url = "http://play.google.com" + url
            print(url)
            urls.append(url)

        link_flag = 0
        for each in app_urls:
            yield scrapy.Request(urls[link_flag], callback=self.parse_app, dont_filter=True)
            link_flag += 1

    def parse_app(self, response):
        item = GpItem()
        item['app_url'] = response.url
        item['app_name'] = response.xpath('//div[@itemprop="name"]').xpath('text()').extract()
        item['app_icon'] = response.xpath('//img[@itempro="image"]/@src')
        item['app_developer'] = response.xpath('//')
        print(response.text)
        yield item

terminal运行信息如下:

BettyMacbookPro-764:gp zhanjinyang$ scrapy crawl google
2019-11-12 08:46:45 [scrapy.utils.log] INFO: Scrapy 1.6.0 started (bot: gp)
2019-11-12 08:46:45 [scrapy.utils.log] INFO: Versions: lxml 4.2.5.0, libxml2 2.9.8, cssselect 1.0.3, parsel 1.5.1, w3lib 1.20.0, Twisted 19.2.1, Python 3.7.1 (default, Dec 14 2018, 13:28:58) - [Clang 4.0.1 (tags/RELEASE_401/final)], pyOpenSSL 18.0.0 (OpenSSL 1.1.1a  20 Nov 2018), cryptography 2.4.2, Platform Darwin-18.5.0-x86_64-i386-64bit
2019-11-12 08:46:45 [scrapy.crawler] INFO: Overridden settings: {'BOT_NAME': 'gp', 'NEWSPIDER_MODULE': 'gp.spiders', 'ROBOTSTXT_OBEY': True, 'SPIDER_MODULES': ['gp.spiders'], 'USER_AGENT': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.87 Safari/537.36'}
2019-11-12 08:46:45 [scrapy.extensions.telnet] INFO: Telnet Password: b2d7dedf1f4a91eb
2019-11-12 08:46:45 [scrapy.middleware] INFO: Enabled extensions:
['scrapy.extensions.corestats.CoreStats',
 'scrapy.extensions.telnet.TelnetConsole',
 'scrapy.extensions.memusage.MemoryUsage',
 'scrapy.extensions.logstats.LogStats']
2019-11-12 08:46:45 [scrapy.middleware] INFO: Enabled downloader middlewares:
['scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware',
 'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware',
 'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware',
 'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware',
 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware',
 'scrapy.downloadermiddlewares.retry.RetryMiddleware',
 'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware',
 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware',
 'scrapy.downloadermiddlewares.redirect.RedirectMiddleware',
 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware',
 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware',
 'scrapy.downloadermiddlewares.stats.DownloaderStats']
2019-11-12 08:46:45 [scrapy.middleware] INFO: Enabled spider middlewares:
['scrapy.spidermiddlewares.httperror.HttpErrorMiddleware',
 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware',
 'scrapy.spidermiddlewares.referer.RefererMiddleware',
 'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware',
 'scrapy.spidermiddlewares.depth.DepthMiddleware']
2019-11-12 08:46:45 [scrapy.middleware] INFO: Enabled item pipelines:
['gp.pipelines.GpPipeline']
2019-11-12 08:46:45 [scrapy.core.engine] INFO: Spider opened
2019-11-12 08:46:45 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2019-11-12 08:46:45 [py.warnings] WARNING: /anaconda3/lib/python3.7/site-packages/scrapy/spidermiddlewares/offsite.py:61: URLWarning: allowed_domains accepts only domains, not URLs. Ignoring URL entry https://play.google.com/ in allowed_domains.
  warnings.warn(message, URLWarning)

2019-11-12 08:46:45 [scrapy.extensions.telnet] INFO: Telnet console listening on 127.0.0.1:6023
2019-11-12 08:46:45 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://play.google.com/robots.txt> (referer: None)
2019-11-12 08:46:46 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://play.google.com/store/apps/> (referer: None)
2019-11-12 08:46:46 [scrapy.core.engine] INFO: Closing spider (finished)
2019-11-12 08:46:46 [scrapy.statscollectors] INFO: Dumping Scrapy stats:
{'downloader/request_bytes': 810,
 'downloader/request_count': 2,
 'downloader/request_method_count/GET': 2,
 'downloader/response_bytes': 232419,
 'downloader/response_count': 2,
 'downloader/response_status_count/200': 2,
 'finish_reason': 'finished',
 'finish_time': datetime.datetime(2019, 11, 12, 8, 46, 46, 474543),
 'log_count/DEBUG': 2,
 'log_count/INFO': 9,
 'log_count/WARNING': 1,
 'memusage/max': 58175488,
 'memusage/startup': 58175488,
 'response_received_count': 2,
 'robotstxt/request_count': 1,
 'robotstxt/response_count': 1,
 'robotstxt/response_status_count/200': 1,
 'scheduler/dequeued': 1,
 'scheduler/dequeued/memory': 1,
 'scheduler/enqueued': 1,
 'scheduler/enqueued/memory': 1,
 'start_time': datetime.datetime(2019, 11, 12, 8, 46, 45, 562775)}
2019-11-12 08:46:46 [scrapy.core.engine] INFO: Spider closed (finished)

求助!!!

1个回答

URLWarning: allowed_domains accepts only domains, not URLs. Ignoring URL entry https://play.google.com/ in allowed_domains.

allowed_domains = ['https://play.google.com/']
应该是 allowed_domains = [play.google.com']

另外抓包看下,google是否可以访问
u013410416
April_Leon 改了之后也没有爬到数据……google也是可以访问的
3 个月之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
用scrapy爬取谷歌应用市场
我在用scrapy框架爬谷歌应用市场,但是只爬了不到10000个app,有大神解答一下这是为什么吗?应该不是被ban的原因,因为我设置了ua池和代理IP。 具体代码如下: ``` # -*- coding: utf-8 -*- import scrapy # from scrapy.spiders import CrawlSpider, Rule # from scrapy.linkextractors import LinkExtractor # from html.parser import HTMLParser as SGMLParser from scrapy import Request from urllib.parse import urljoin from gp.items import GpItem class GoogleSpider(scrapy.Spider): # print("HELLO STARTING") name = 'google' allowed_domains = ['play.google.com'] start_urls = ['https://play.google.com/store/apps/'] ''' rules = [ Rule(LinkExtractor(allow=("https://play\.google\.com/store/apps/details",)), callback='parse_app', follow=True), ] ''' def parse(self, response): print("Calling Parse") selector = scrapy.Selector(response) urls = selector.xpath('//div[@class="LNKfBf"]/ul/li[@class="CRHL7b eZdLre"]/ul[@class="TEOqAc"]/li[@class="KZnDLd"]/a[@class="r2Osbf"]/@href').extract() print(urls) link_flag = 0 links = [] for link in urls: links.append(link) for each in urls: yield Request(url="http://play.google.com" + links[link_flag], callback=self.parse_more, dont_filter=True) print("http://playgoogle.com" + links[link_flag]) link_flag += 1 def parse_more(self, response): selector = scrapy.Selector(response) # print(response.body) urls = selector.xpath('//a[@class="LkLjZd ScJHi U8Ww7d xjAeve nMZKrb id-track-click "]/@href').extract() link_flag = 0 links = [] for link in urls: # print("LINK" + str(link)) links.append(link) for each in urls: yield Request(url="http://play.google.com" + links[link_flag], callback=self.parse_next, dont_filter=True) # print("http://play.google.com" + links[link_flag]) link_flag += 1 def parse_next(self, response): selector = scrapy.Selector(response) # print(response) # app_urls = selector.xpath('//div[@class="details"]/a[@class="title"]/@href').extract() app_urls = selector.xpath('//div[@class="Vpfmgd"]/div[@class="RZEgze"]/div[@class="vU6FJ p63iDd"]/' 'a[@class="JC71ub"]/@href').extract() urls = [] for url in app_urls: url = "http://play.google.com" + url print(url) urls.append(url) link_flag = 0 for each in app_urls: yield Request(url=urls[link_flag], callback=self.parse_app, dont_filter=True) link_flag += 1 def parse_app(self, response): item = GpItem() item['app_url'] = response.url item['app_name'] = response.xpath('//h1[@itemprop="name"]/span').xpath('text()').get() item['app_icon'] = response.xpath('//img[@itemprop="image"]/@src').get() item['app_rate'] = response.xpath('//div[@class="K9wGie"]/div[@class="BHMmbe"]').xpath('text()').get() item['app_version'] = response.xpath('//div[@class="IQ1z0d"]/span[@class="htlgb"]').xpath('text()').get() item['app_description'] = response.xpath('//div[@itemprop="description"]/span/div').xpath('text()').get() # item['app_developer'] = response.xpath('//') # print(response.text) yield item ``` 另一个问题是我能不能通过定义关键词来爬取特定类型的app呀?如果可以的话那在scrapy中该怎么实现呢? 拜托各位大神帮我解答一下吧!
Scrapy爬取谷歌应用市场
我这样写逻辑有错误吗?为什么在parse\_search函数里取不到href的值呢? ``` # -*- coding: utf-8 -*- import scrapy from GP_Spider.items import GpItem from scrapy import Request class GoogleSpider(scrapy.Spider): name = 'google' allowed_domains = ['google.play.com'] start_urls = ['https://play.google.com/store'] def parse(self, response): keywords = [ 'stuttering', 'speech%20therapy', 'speech%20and%20language%20therapy', 'aphasia', 'apraxia', 'dysarthria' ] link_flag = 0 urls = [] for each in keywords: app_url = ("https://play.google.com/store/search?q=" + keywords[link_flag] + '&c=apps') print(app_url) yield Request(url=app_url, callback=self.parse_search, dont_filter=True) link_flag += 1 def parse_search(self, response): print("START PARSING") selector = scrapy.Selector(response) #print(response.body) urls = selector.xpath('//a[@class="poRVub" and aria-hidden="true"]/@href').extract() #urls = selector.xpath('//*[@id="fcxH9b"]/div[4]/c-wiz/div/div[2]/div/c-wiz/c-wiz/c-wiz/div/div[2]/div[1]/c-wiz/div/div/div[1]/div/div/a/@href').extract() print(urls) link_flag = 0 links = [] for link in urls: links.append(link) for each in urls: yield Request(url="https://play.google.com" + links[link_flag], callback=self.parse_detail, dont_filter=True) print("https://play.google.com" + links[link_flag]) link_flag += 1 def parse_detail(self, response): item = GpItem() item['app_url'] = response.url item['app_name'] = response.xpath('//h1[@itemprop="name"]/span').xpath('text()').get() item['app_icon'] = response.xpath('//img[@itemprop="image"]/@src').get() item['app_rate'] = response.xpath('//div[@class="K9wGie"]/div[@class="BHMmbe"]').xpath('text()').get() item['app_version'] = response.xpath('//div[@class="IQ1z0d"]/span[@class="htlgb"]').xpath('text()').get() item['app_description'] = response.xpath('//div[@itemprop="description"]/span/div').xpath('text()').get() # item['app_developer'] = response.xpath('//') # print(response.text) yield item ``` 这个xpath路径是我自己写的,如果直接从chrome浏览器复制下来的话,就可以爬到特定的那个搜索结果页面的url,但是其他搜索结果页就爬不到,这是为什么? 求教各位大佬
如何利用scrapy爬取带标签的网页内容并保存到自己的服务器上?
如何利用scrapy爬取整个网页的内容并将内容保存到自己的服务器上? 现在我想到了两种方式: 1、直接把scrapy爬取到的字符串通过SQLAlchemy保存到mysql数据库。 这种方式我试过但是不知道是不是容量受限制的原因没有保存成功。(爬取到的其他字段都能保存成功,只有这个保存带标签的网页内容的字段没有保存成功。) 2、在自己的服务器上搭建一个ftp服务器。 将爬取到的网页保存到自己的服务器,在mysql中只保存网页在ftp中的路径。 这种方式还没试过,有点不知道怎么操作。 此外还有一个问题需要解决,爬取到的网页中会有一些图文混排的内容,对于这些图片应该怎么处理呢?我想把网页中引用的图片的url改成自己服务器上的地址, 这个操作应该怎么进行呢。 (现在脑子里很乱,请各位大神指教,上代码、提供思路或者推荐参考资料都行。拜托大家了,感谢感谢,撒花撒花~)
scrapy 爬取遇到问题Filtered duplicate
用scrapy请求站点 http://bigfile.co.kr 的时候,显示Filtered duplicate request:no more duplicates错误,然后就结束了,加上dont_filter=True,重新运行,结果一直死循环,无法结束,也不能爬到东西,有没有大神看一下 ```python name = 'WebSpider' start_urls = ['http://bigfile.co.kr'] headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9", "Connection": "keep-alive", 'Referer': 'http://www.baidu.com/', "Upgrade-Insecure-Requests": 1, "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36" } def start_requests(self): request = scrapy.Request(url=self.start_urls[0], headers=self.headers, callback=self.parse) request.meta['url'] = self.start_urls[0] yield request ```
scrapy爬取知乎首页乱码
爬取知乎首页,返回的response.text是乱码,尝试解码response.body,得到的还是乱码,不知道为什么,代码如下: ``` import scrapy HEADERS = { 'Host': 'www.zhihu.com', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-CN,zh;q=0.9', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Origin': 'https://www.zhihu.com', 'Referer': 'https://www.zhihu.com/', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36' } class ZhihuSpider(scrapy.Spider): name = 'zhihu' allowed_domains = ['www.zhihu.com'] start_urls = ['https://www.zhihu.com/'] def start_requests(self): for url in self.start_urls: yield scrapy.Request(url, headers=HEADERS) def parse(self, response): print('========== parse ==========') print(response.text[:100]) body = response.body encodings = ['utf-8', 'gbk', 'gb2312', 'iso-8859-1', 'latin1'] for encoding in encodings: try: print('========== decode ' + encoding) print(body.decode(encoding)[:100]) print('========== decode end\n') except Exception as e: print('########## decode {0}, error: {1}\n'.format(encoding, e)) pass ``` 输出的log如下: D:\workspace_python\ZhihuSpider>scrapy crawl zhihu 2017-12-01 11:12:03 [scrapy.utils.log] INFO: Scrapy 1.4.0 started (bot: ZhihuSpider) 2017-12-01 11:12:03 [scrapy.utils.log] INFO: Overridden settings: {'BOT_NAME': 'ZhihuSpider', 'FEED_EXPORT_ENCODING': 'utf-8', 'NEWSPIDER_MODULE': 'ZhihuSpider.spiders', 'SPIDER_MODULES': ['ZhihuSpider.spiders']} 2017-12-01 11:12:03 [scrapy.middleware] INFO: Enabled extensions: ['scrapy.extensions.corestats.CoreStats', 'scrapy.extensions.telnet.TelnetConsole', 'scrapy.extensions.logstats.LogStats'] 2017-12-01 11:12:04 [scrapy.middleware] INFO: Enabled downloader middlewares: ['scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware', 'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware', 'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware', 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware', 'scrapy.downloadermiddlewares.retry.RetryMiddleware', 'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware', 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware', 'scrapy.downloadermiddlewares.redirect.RedirectMiddleware', 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware', 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware', 'scrapy.downloadermiddlewares.stats.DownloaderStats'] 2017-12-01 11:12:04 [scrapy.middleware] INFO: Enabled spider middlewares: ['scrapy.spidermiddlewares.httperror.HttpErrorMiddleware', 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware', 'scrapy.spidermiddlewares.referer.RefererMiddleware', 'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware', 'scrapy.spidermiddlewares.depth.DepthMiddleware'] 2017-12-01 11:12:04 [scrapy.middleware] INFO: Enabled item pipelines: [] 2017-12-01 11:12:04 [scrapy.core.engine] INFO: Spider opened 2017-12-01 11:12:04 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min) 2017-12-01 11:12:04 [scrapy.extensions.telnet] DEBUG: Telnet console listening on 127.0.0.1:6023 2017-12-01 11:12:04 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.zhihu.com/> (referer: https://www.zhihu.com/) ========== parse ========== ��~!���#5���=B���_��^��ˆ� ═4�� 1���J�╗%Xi��/{�vH�"�� z�I�zLgü^�1� Q)Ա�_k}�䄍���/T����U�3���l��� ========== decode utf-8 ########## decode utf-8, error: 'utf-8' codec can't decode byte 0xe1 in position 0: invalid continuation byte ========== decode gbk ########## decode gbk, error: 'gbk' codec can't decode byte 0xa2 in position 4: illegal multibyte sequence ========== decode gb2312 ########## decode gb2312, error: 'gb2312' codec can't decode byte 0xa2 in position 4: illegal multibyte sequence ========== decode iso-8859-1 áø~!¢ 同样的代码,如果将爬取的网站换成douban,就一点问题都没有,百度找遍了都没找到办法,只能来这里提问了,请各位大神帮帮忙,如果爬虫搞不定,我仿的知乎后台就没数据展示了,真的很着急,。剩下不到5C币,没法悬赏,但真的需要大神的帮助。
scrapy爬虫不能自动爬取所有页面
学习scrapy第三天,在爬取[wooyun白帽子精华榜](http://wooyun.org/whitehats/do/1/page/1 "")的时候,不能爬取所有的页面。 items.py ``` # -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class WooyunrankautoItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() ''' 以下信息分别为 注册日期 woyun昵称 精华漏洞数 精华比例 wooyun个人主页 ''' register_date = scrapy.Field() nick_name = scrapy.Field() rank_level = scrapy.Field() essence_count = scrapy.Field() essence_ratio = scrapy.Field() ``` pipelines.py ``` # -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import sys import csv class WooyunrankautoPipeline(object): ''' process the item returned from the spider ''' def __init__(self): reload(sys) if sys.getdefaultencoding()!="utf-8": sys.setdefaultencoding("utf-8") file_obj = open("wooyunrank.csv","wb") fieldnames = ["register_date","nick_name","rank_level","essence_count","essence_ratio"] self.dict_writer = csv.DictWriter(file_obj,fieldnames=fieldnames) self.dict_writer.writeheader() def process_item(self,item,spider): self.dict_writer.writerow(item) return item ``` spider.py ```python #!/usr/bin/python # -*- coding:utf-8 -*- import sys from scrapy.spider import Spider from scrapy.selector import Selector from wooyunrankauto.items import WooyunrankautoItem from scrapy.contrib.spiders import CrawlSpider,Rule from scrapy.contrib.linkextractors import LinkExtractor class WooyunSpider(CrawlSpider): ''' 爬取wooyun漏洞精华榜单 ''' name = "wooyunrankauto" # 爬取速度为1s download_delay = 2 allowed_domains = ["wooyun.org"] start_urls = [ "http://wooyun.org/whitehats/do/1/page/1" ] rules=[ Rule(LinkExtractor(allow=("/whitehats/do/1/page/\d+")),follow=True,callback='parse_item') ] # def __init__(self): # reload(sys) # if sys.getdefaultencoding()!="utf-8": # sys.setdefaultencoding("utf-8") def parse_item(self,response): sel = Selector(response) infos = sel.xpath("/html/body/div[5]/table/tbody/tr") items = [] for info in infos: item = WooyunrankautoItem() item["register_date"] = info.xpath("th[1]/text()").extract()[0] item["rank_level"] = info.xpath("th[2]/text()").extract()[0] item["essence_count"] = info.xpath("th[3]/text()").extract()[0] item["essence_ratio"] = info.xpath("th[4]/text()").extract()[0] item["nick_name"] = info.xpath("td/a/text()").extract()[0] items.append(item) return items ``` 上面的spider.py只能爬取1,2,3,4,5页(日志中显示爬取六次,第一页被重复爬取了) 但是浏览第5页的时候,6,7,8,9页也会出现啊,这里为什么没有爬取到6,7,8,9 第二个版本的spider.py ``` def parse_item(self,response): sel = Selector(response) infos = sel.xpath("/html/body/div[5]/table/tbody/tr") items = [] for info in infos: item = WooyunrankautoItem() item["register_date"] = info.xpath("th[1]/text()").extract()[0] item["rank_level"] = info.xpath("th[2]/text()").extract()[0] item["essence_count"] = info.xpath("th[3]/text()").extract()[0] item["essence_ratio"] = info.xpath("th[4]/text()").extract()[0] item["nick_name"] = info.xpath("td/a/text()").extract()[0] items.append(item) return item ``` 这个版本可以爬取所有页面,但是每个页面有20条信息,我只能取到第一条信息(循环第一条的时候就返回了,这里可以理解)但是为什么这里就可以爬取所有页面 可能是我对scrapy理解还不深入,这里实在不知道什么问题了,我想自动爬取所有页面(而且不会重复爬取),每个页面有20条信息,应该就是20个item。
用anaconda的scrapy爬取数据,按照步骤设置好了,却爬不到数据,求助大神救救菜鸟
这是运行的全部结果: (D:\Anaconda2) C:\Users\luyue>cd C:\Users\luyue\movie250 (D:\Anaconda2) C:\Users\luyue\movie250>scrapy crawl movie250 -o items.json 2017-05-12 19:24:26 [scrapy.utils.log] INFO: Scrapy 1.3.3 started (bot: movie250) 2017-05-12 19:24:26 [scrapy.utils.log] INFO: Overridden settings: {'NEWSPIDER_MODULE': 'movie250.spiders', 'FEED_URI': 'items.json', 'SPIDER_MODULES': ['movie250.spiders'], 'BOT_NAME': 'movie250', 'ROBOTSTXT_OBEY': True, 'FEED_FORMAT': 'json'} 2017-05-12 19:24:26 [scrapy.middleware] INFO: Enabled extensions: ['scrapy.extensions.feedexport.FeedExporter', 'scrapy.extensions.logstats.LogStats', 'scrapy.extensions.telnet.TelnetConsole', 'scrapy.extensions.corestats.CoreStats'] 2017-05-12 19:24:26 [scrapy.middleware] INFO: Enabled downloader middlewares: ['scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware', 'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware', 'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware', 'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware', 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware', 'scrapy.downloadermiddlewares.retry.RetryMiddleware', 'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware', 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware', 'scrapy.downloadermiddlewares.redirect.RedirectMiddleware', 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware', 'scrapy.downloadermiddlewares.stats.DownloaderStats'] 2017-05-12 19:24:26 [scrapy.middleware] INFO: Enabled spider middlewares: ['scrapy.spidermiddlewares.httperror.HttpErrorMiddleware', 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware', 'scrapy.spidermiddlewares.referer.RefererMiddleware', 'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware', 'scrapy.spidermiddlewares.depth.DepthMiddleware'] 2017-05-12 19:24:26 [scrapy.middleware] INFO: Enabled item pipelines: [] 2017-05-12 19:24:26 [scrapy.core.engine] INFO: Spider opened 2017-05-12 19:24:26 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min) 2017-05-12 19:24:26 [scrapy.extensions.telnet] DEBUG: Telnet console listening on 127.0.0.1:6023 2017-05-12 19:24:26 [scrapy.core.engine] DEBUG: Crawled (403) <GET http://movie.douban.com/robots.txt> (referer: None) 2017-05-12 19:24:26 [scrapy.core.engine] DEBUG: Crawled (403) <GET http://movie.douban.com/top250/> (referer: None) 2017-05-12 19:24:27 [scrapy.spidermiddlewares.httperror] INFO: Ignoring response <403 http://movie.douban.com/top250/>: HTTP status code is not handled or not allowed 2017-05-12 19:24:27 [scrapy.core.engine] INFO: Closing spider (finished) 2017-05-12 19:24:27 [scrapy.statscollectors] INFO: Dumping Scrapy stats: {'downloader/request_bytes': 445, 'downloader/request_count': 2, 'downloader/request_method_count/GET': 2, 'downloader/response_bytes': 496, 'downloader/response_count': 2, 'downloader/response_status_count/403': 2, 'finish_reason': 'finished', 'finish_time': datetime.datetime(2017, 5, 12, 11, 24, 27, 13000), 'log_count/DEBUG': 3, 'log_count/INFO': 8, 'response_received_count': 2, 'scheduler/dequeued': 1, 'scheduler/dequeued/memory': 1, 'scheduler/enqueued': 1, 'scheduler/enqueued/memory': 1, 'start_time': datetime.datetime(2017, 5, 12, 11, 24, 26, 675000)} 2017-05-12 19:24:27 [scrapy.core.engine] INFO: Spider closed (finished)
Scrapy爬取下来的数据不全,为什么总会有遗漏?
本人小白一枚,刚接触Scrapy框架没多久,写了一个简单的Spider,但是发现每一次爬取后的结果都比网页上的真实数据量要少,比如网站上一共有100条,但我爬下来的结果一般会少几条至几十条不等,很少有100条齐的时候。 整个爬虫有两部分,一部分是页面的横向爬取(进入下一页),另一个是纵向的爬取(进入页面中每一产品的详细页面)。之前我一直以为是pipelines存储到excel的时候数据丢失了,后来经过Debug调试,发现是在Spider中,数据就遗漏了,def parse函数中的item数量是齐的,包括yield Request加入到队列中,但是调用def parse_item函数时,就有些产品的详细页面无法进入。这是什么原因呢,是因为Scrapy异步加载受网速之类的影响么,本身就有缺陷,还是说是我设计上面的问题?有什么解决的方法么,不然数据量一大那丢失的不是就很严重么。 求帮助,谢谢各位了。 ``` class MyFirstSpider(Spider): name = "MyFirstSpider" allowed_doamins = ["e-shenhua.com"] start_urls = ["https://www.e-shenhua.com/ec/auction/oilAuctionList.jsp?_DARGS=/ec/auction/oilAuctionList.jsp"] url = 'https://www.e-shenhua.com/ec/auction/oilAuctionList.jsp' def parse(self, response): items = [] selector = Selector(response) contents = selector.xpath('//table[@class="table expandable table-striped"]/tbody/tr') urldomain = 'https://www.e-shenhua.com' for content in contents: item = CyfirstItem() productId = content.xpath('td/a/text()').extract()[0].strip() productUrl = content.xpath('td/a/@href').extract()[0] totalUrl = urldomain + productUrl productName = content.xpath('td/a/text()').extract()[1].strip() deliveryArea = content.xpath('td/text()').extract()[-5].strip() saleUnit = content.xpath('td/text()').extract()[-4] item['productId'] = productId item['totalUrl'] = totalUrl item['productName'] = productName item['deliveryArea'] = deliveryArea item['saleUnit'] = saleUnit items.append(item) print(len(items)) # **************进入每个产品的子网页 for item in items: yield Request(item['totalUrl'],meta={'item':item},callback=self.parse_item) # print(item['productId']) # 下一页的跳转 nowpage = selector.xpath('//div[@class="pagination pagination-small"]/ul/li[@class="active"]/a/text()').extract()[0] nextpage = int(nowpage) + 1 str_nextpage = str(nextpage) nextLink = selector.xpath('//div[@class="pagination pagination-small"]/ul/li[last()]/a/@onclick').extract() if (len(nextLink)): yield scrapy.FormRequest.from_response(response, formdata={ *************** }, callback = self.parse ) # 产品子网页内容的抓取 def parse_item(self,response): sel = Selector(response) item = response.meta['item'] # print(item['productId']) productInfo = sel.xpath('//div[@id="content-products-info"]/table/tbody/tr') titalBidQty = ''.join(productInfo.xpath('td[3]/text()').extract()).strip() titalBidUnit = ''.join(productInfo.xpath('td[3]/span/text()').extract()) titalBid = titalBidQty + " " +titalBidUnit minBuyQty = ''.join(productInfo.xpath('td[4]/text()').extract()).strip() minBuyUnit = ''.join(productInfo.xpath('td[4]/span/text()').extract()) minBuy = minBuyQty + " " + minBuyUnit isminVarUnit = ''.join(sel.xpath('//div[@id="content-products-info"]/table/thead/tr/th[5]/text()').extract()) if(isminVarUnit == '最小变量单位'): minVarUnitsl = ''.join(productInfo.xpath('td[5]/text()').extract()).strip() minVarUnitdw = ''.join(productInfo.xpath('td[5]/span/text()').extract()) minVarUnit = minVarUnitsl + " " + minVarUnitdw startPrice = ''.join(productInfo.xpath('td[6]/text()').extract()).strip().rstrip('/') minAddUnit = ''.join(productInfo.xpath('td[7]/text()').extract()).strip() else: minVarUnit = '' startPrice = ''.join(productInfo.xpath('td[5]/text()').extract()).strip().rstrip('/') minAddUnit = ''.join(productInfo.xpath('td[6]/text()').extract()).strip() item['titalBid'] = titalBid item['minBuyQty'] = minBuy item['minVarUnit'] = minVarUnit item['startPrice'] = startPrice item['minAddUnit'] = minAddUnit # print(item) return item ```
scrapy爬虫如何爬取表格 td 中带有“rowspan”标签的内容?
我使用的是Scrapy爬虫,目前需要爬取的网页格式内容如下: ![图片说明](https://img-ask.csdn.net/upload/201707/15/1500123572_591178.png) HTML代码如下: ![图片说明](https://img-ask.csdn.net/upload/201707/15/1500124547_3336.png) 除去标题外,一共是7行,即7个<tr>标签,但实际上显示的表格只有5行数据,因为有2个tr数据是一样的,如第二个“华南”中用到了"rowspan=2",那么第三个<tr></tr>就没写了。 现在我需要的形式是,我的item[ ]每一次循环tr的时候,都能获取到五个数据(也就是第一个tr中的五个td内容),我的Item如下: ![图片说明](https://img-ask.csdn.net/upload/201707/15/1500124634_618915.png) 那么请问在已知外循环tr数量的情况下,我该如何遍历获取?
Python scrapy爬取网页解码问题
尝试爬取淘宝网页,在parse中解析response希望获得解码后的文本 使用response.text 会在log中记录有报错:有无法解码的信息 使用response.body.decode('utf-8','ignore')也会出现同样的问题 使用response.xpath('xxxxxx').extract()可以获取相关信息 但是希望使用正则表达式进行检索,希望大神帮助,如何能过跳过那些不规则的编码获取网页文本
scrapy爬取中华英才网职位发现职位数量不一致,代码逻辑应该没问题,是什么原因?用scrapy-redis能解决吗?
用scrapy爬取中华英才网,抓取完毕发现职位数量和实际职位数量不一致,检查了代码逻辑应该不会出错,不知道是什么原因,能够证明解决吗?或者用scrapy-redis能够解决数据缺失的问题吗?求大神解答,拜托了!!
请问scrapy爬虫使用代理的问题
我用scrapy爬虫来抓取数据,购买了一些代理,看scrapy文档上面介绍使用代理的话要编写Middleware,但是我不打算使用Middleware,我尝试了这样 ``` def start_requests(self): name = my_name password = password proxy = my proxy return[ FormRequest(url,formate={'account':my_name,'password':password}, meta={'proxy':proxy}, callback=self.after_login) ] def after_login(self, response): response.xpath ``` 但是返回了错误,请问各位老师如何不使用middleware然后可以使用代理?谢谢
python爬虫:为什么用requests可以爬到数据,用scrapy爬到数据为空?
"http://detail.zol.com.cn/index.php?c=SearchList&keyword=%C8%FD%D0%C7&page=1" 用requests可以爬到数据,scrapy爬的状态码是200,但响应没有数据,什么原因?
python scrapy 爬取的数据保存不了
# python scrapy 爬取的数据保存不了 上代码 spider代码: ``` from textsc.items import TextscItem from scrapy.selector import Selector from scrapy.contrib.spiders import CrawlSpider, Rule from scrapy.contrib.linkextractors import LinkExtractor class Baispider(CrawlSpider): name = "Baidu" allowed_domains = ["baidu.com"] start_urls = [ "https://zhidao.baidu.com/list" ] rules = ( Rule(LinkExtractor(allow=('/shop', ), deny=('fr', )), callback='parse_item'), ) def parse_item(self, response): sel= Selector(response) items=[] item=TextscItem() title=sel.xpath('//div[@class="shop-menu"]/ul/li/a/text()').extract() for i in title: items.append(i) item['TitleName'] = items print (item['TitleName']) return item ``` items.py代码 ``` import scrapy import json class TextscItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() TitleName = scrapy.Field() pass ``` scrapy的版本是1.4.0 运行没有报错 但是json文件里面什么都没有 求解答 谢过!..
scrapy爬某非空网站时,response响应值为200,body却是空的
如题,爬的网站为http://detail.zol.com.cn/index.php?c=SearchList&keyword=%C8%FD%D0%C7&page=1 parse方法中输出response.body 为 b''
使用scrapy爬取动漫网站,有一个方法就是进不去
![图片说明](https://img-ask.csdn.net/upload/201810/08/1539007199_754078.png) 不管是第一步还是第二步都没有进我的那个parse_cartoon_detail这个方法,控制台也没有报错,我不知道是为什么调用不到
python scrapy 爬取多页合并问题
scrapy学习有几个月了,普通scrapy和crawl都能够实现,现在碰到一个问题: 在使用scrapy爬取多分页后,如何把多分页内容合并写入到一个item[x]内? 我现在使用 yield Request 至 def art_url 来获取分页内容,用append把内容集合后,用 item['image_urls'] = self.art_urls 来接收结果, 但结果一直接收,每篇内容的分页的接收导致很多,请教一下,如何把每篇的分页内容合并写入一项itme? 刚学不到半年,代码凌乱,望包含,主要是想学习如何爬取小说站,把每一章都合并在一起,不要分页搞很多数据,和合适代码推荐下,研究学习,谢谢了 我的代码: ``` art_urls = [] rules = ( Rule(LinkExtractor(allow='wenzhang/',restrict_xpaths=('//table[@id="dlNews"]')), callback='parse_item', follow=True), ) def parse_item(self, response): print(response.url) item = SpiderItem() conn = Redis(host='127.0.0.1', port=6379) item['title'] = response.xpath('//h1/text()').extract_first() ex = conn.sadd('movies_url', response.url) for next_href in response.xpath('//div[@class="pager"]/ul/li/a/@href').extract(): next_url = self.base_url + next_href.replace('../','') if ex == 1: # print('开始解析单页') yield Request(next_url, callback=self.art_url) # yield scrapy.Request(url=next_url, callback=self.parse_detail, meta={'title': title,'img_src':img_src}) else: print("无数据更新!!!") # print(self.art_urls) item['image_urls'] = self.art_urls # print(len(item['image_urls'])) # print(item) yield item def art_url(self, response): art_urls = response.xpath('//div[@id="content"]/div/p/img/@src').extract() for art_url in art_urls: # 开始解析分页 art_url = art_url.replace('../../upload/','') self.art_urls.append(art_url) ```
flask+scrapy的爬虫问题
刚刚开始学习爬虫,现在已经可以通过scrapy crawl myscrapy的方式启动一个爬虫, 现在我想实现这样一个功能:用flask定义一个接口,别人调用这个接口的时候传递一个 url参数,拿到这个参数之后自动启动爬虫进行爬取数据,爬取到的数据以json数组的形式 返回给调用接口的人。想问下大家有什么实现思路吗?拜托了,感谢各位。
在scrapy中如何实现在多个页面上进行爬取
目标是 爬取http://download.kaoyan.com/list-1到http://download.kaoyan.com/list-1500之间的内容,每个页面中的又有翻页的list-1p1到list-1p20。目前只能实现在list1p上面爬取,应该如何修改代码跳转到list-6上面?list-2是404 ``` # -*- coding: utf-8 -*- import scrapy from Kaoyan.items import KaoyanItem class KaoyanbangSpider(scrapy.Spider): name = "Kaoyanbang" allowed_domains = ['kaoyan.com'] baseurl = 'http://download.kaoyan.com/list-' linkuseurl = 'http://download.kaoyan.com' offset = 1 pset = 1 start_urls = [baseurl+str(offset)+'p'+str(pset)] handle_httpstatus_list = [404, 500] def parse(self, response): node_list = response.xpath('//table/tr/th/span/a') for node in node_list: item = KaoyanItem() item['name'] = node.xpath('./text()').extract()[0].encode('utf - 8') item['link'] = (self.linkuseurl + node.xpath('./@href').extract()[0]).encode('utf-8') yield item while self.offset < 1500: while self.pset < 50: self.pset = self.pset + 1 url = self.baseurl+str(self.offset)+'p'+str(self.pset) y = scrapy.Request(url, callback=self.parse) yield y self.offset = self.offset + 5 ```
终于明白阿里百度这样的大公司,为什么面试经常拿ThreadLocal考验求职者了
点击上面↑「爱开发」关注我们每晚10点,捕获技术思考和创业资源洞察什么是ThreadLocalThreadLocal是一个本地线程副本变量工具类,各个线程都拥有一份线程私有的数
win10系统安装教程(U盘PE+UEFI安装)
一、准备工作 u盘,电脑一台,win10原版镜像(msdn官网) 二、下载wepe工具箱  极力推荐微pe(微pe官方下载) 下载64位的win10 pe,使用工具箱制作启动U盘打开软件,   选择安装到U盘(按照操作无需更改) 三、重启进入pe系统   1、关机后,将U盘插入电脑 2、按下电源后,按住F12进入启动项选择(技嘉主板是F12)     选择需要启
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小人工智障。 思路可以运用在不同地方,主要介绍的是思路。
Nginx 软件层面加强Nginx性能优化的面试问答和解决方案
Nginx 软件层面加强Nginx性能优化的面试问答和解决方案 去年我去爱卡汽车面试PHP,一轮和二轮面的都不错,在三轮面到Nginx的时候很多问题当时不知道怎么回答,确实没有深入学习过,花了一段时间的学习,终于能解答Nginx高性能优化的问题了,10月24号为了获得程序员勋章,发布了半个优化笔记,浏览到了1000+,受到这个鼓舞,我抽时间在仔细整理下关于Nginx性能优化的问题,我们从软件说起。...
【管理系统课程设计】美少女手把手教你后台管理
【文章后台管理系统】URL设计与建模分析+项目源码+运行界面 栏目管理、文章列表、用户管理、角色管理、权限管理模块(文章最后附有源码) 1. 这是一个什么系统? 1.1 学习后台管理系统的原因 随着时代的变迁,现如今各大云服务平台横空出世,市面上有许多如学生信息系统、图书阅读系统、停车场管理系统等的管理系统,而本人家里就有人在用烟草销售系统,直接在网上完成挑选、购买与提交收货点,方便又快捷。 试想,若没有烟草销售系统,本人家人想要购买烟草,还要独自前往药...
11月19日科技资讯|华为明日发布鸿蒙整体战略;京东宣告全面向技术转型;Kotlin 1.3.60 发布
「极客头条」—— 技术人员的新闻圈! CSDN 的读者朋友们早上好哇,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。扫描上方二维码进入 CSDN App 可以收听御姐萌妹 Style 的人工版音频哟。 一分钟速览新闻点! 6G 专家组成员:速率是 5G 的 10 至 100 倍,预计 2030 年商用 雷军:很多人多次劝我放弃WPS,能坚持下来并不是纯粹的商业决定 ...
C语言魔塔游戏
很早就很想写这个,今天终于写完了。 游戏截图: 编译环境: VS2017 游戏需要一些图片,如果有想要的或者对游戏有什么看法的可以加我的QQ 2985486630 讨论,如果暂时没有回应,可以在博客下方留言,到时候我会看到。 下面我来介绍一下游戏的主要功能和实现方式 首先是玩家的定义,使用结构体,这个名字是可以自己改变的 struct gamerole { char n
化繁为简 - 腾讯计费高一致TDXA的实践之路
导语:腾讯计费是孵化于支撑腾讯内部业务千亿级营收的互联网计费平台,在如此庞大的业务体量下,腾讯计费要支撑业务的快速增长,同时还要保证每笔交易不错账。采用最终一致性或离线补...
Python爬虫爬取淘宝,京东商品信息
小编是一个理科生,不善长说一些废话。简单介绍下原理然后直接上代码。 使用的工具(Python+pycharm2019.3+selenium+xpath+chromedriver)其中要使用pycharm也可以私聊我selenium是一个框架可以通过pip下载 pip install selenium -i https://pypi.tuna.tsinghua.edu.cn/simple/ 
Java学习笔记(七十二)—— Cookie
概述 会话技术: 会话:一次会话中包含多次请求和响应 一次会话:浏览器第一次给服务器发送资源请求,会话建立,直到有一方断开为止 功能:在一次会话的范围内的多次请求间,共享数据 方式: 客户端会话技术:Cookie,把数据存储到客户端 服务器端会话技术:Session,把数据存储到服务器端 Cookie 概念:客户端会话技术,将数据存储到客户端 快速入门: 使用步骤: 创建C
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
Java工作4年来应聘要16K最后没要,细节如下。。。
前奏: 今天2B哥和大家分享一位前几天面试的一位应聘者,工作4年26岁,统招本科。 以下就是他的简历和面试情况。 基本情况: 专业技能: 1、&nbsp;熟悉Sping了解SpringMVC、SpringBoot、Mybatis等框架、了解SpringCloud微服务 2、&nbsp;熟悉常用项目管理工具:SVN、GIT、MAVEN、Jenkins 3、&nbsp;熟悉Nginx、tomca
2020年,冯唐49岁:我给20、30岁IT职场年轻人的建议
点击“技术领导力”关注∆  每天早上8:30推送 作者| Mr.K   编辑| Emma 来源| 技术领导力(ID:jishulingdaoli) 前天的推文《冯唐:职场人35岁以后,方法论比经验重要》,收到了不少读者的反馈,觉得挺受启发。其实,冯唐写了不少关于职场方面的文章,都挺不错的。可惜大家只记住了“春风十里不如你”、“如何避免成为油腻腻的中年人”等不那么正经的文章。 本文整理了冯
程序员该看的几部电影
##1、骇客帝国(1999) 概念:在线/离线,递归,循环,矩阵等 剧情简介: 不久的将来,网络黑客尼奥对这个看似正常的现实世界产生了怀疑。 他结识了黑客崔妮蒂,并见到了黑客组织的首领墨菲斯。 墨菲斯告诉他,现实世界其实是由一个名叫“母体”的计算机人工智能系统控制,人们就像他们饲养的动物,没有自由和思想,而尼奥就是能够拯救人类的救世主。 可是,救赎之路从来都不会一帆风顺,到底哪里才是真实的世界?
作为一个程序员,CPU的这些硬核知识你必须会!
CPU对每个程序员来说,是个既熟悉又陌生的东西? 如果你只知道CPU是中央处理器的话,那可能对你并没有什么用,那么作为程序员的我们,必须要搞懂的就是CPU这家伙是如何运行的,尤其要搞懂它里面的寄存器是怎么一回事,因为这将让你从底层明白程序的运行机制。 随我一起,来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说,我们首先就要搞明白它是怎么回事,也就是它的内部构造,当然,CPU那么牛的一个东
@程序员,如何花式构建线程?
作者 |曾建责编 | 郭芮出品 | CSDN(ID:CSDNnews)在项目和业务的开发中,我们难免要经常使用线程来进行业务处理,使用线程可以保证我们的业务在相互处理之间可以保证原子性...
破14亿,Python分析我国存在哪些人口危机!
2020年1月17日,国家统计局发布了2019年国民经济报告,报告中指出我国人口突破14亿。 猪哥的朋友圈被14亿人口刷屏,但是很多人并没有看到我国复杂的人口问题:老龄化、男女比例失衡、生育率下降、人口红利下降等。 今天我们就来分析一下我们国家的人口数据吧! 一、背景 1.人口突破14亿 2020年1月17日,国家统计局发布了 2019年国民经济报告 ,报告中指出:年末中国大陆总人口(包括31个
强烈推荐10本程序员在家读的书
很遗憾,这个鼠年春节注定是刻骨铭心的,新型冠状病毒让每个人的神经都是紧绷的。那些处在武汉的白衣天使们,尤其值得我们的尊敬。而我们这些窝在家里的程序员,能不外出就不外出,就是对社会做出的最大的贡献。 有些读者私下问我,窝了几天,有点颓丧,能否推荐几本书在家里看看。我花了一天的时间,挑选了 10 本我最喜欢的书,你可以挑选感兴趣的来读一读。读书不仅可以平复恐惧的压力,还可以对未来充满希望,毕竟苦难终
Linux自学篇——linux命令英文全称及解释
man: Manual 意思是手册,可以用这个命令查询其他命令的用法。 pwd:Print working directory 显示当前目录 su:Swith user 切换用户,切换到root用户 cd:Change directory 切换目录 ls:List files 列出目录下的文件 ps:Process Status 进程状态 mk
Python实战:抓肺炎疫情实时数据,画2019-nCoV疫情地图
文章目录1. 前言2. 数据下载3. 数据处理4. 数据可视化 1. 前言 今天,群里白垩老师问如何用python画武汉肺炎疫情地图。白垩老师是研究海洋生态与地球生物的学者,国家重点实验室成员,于不惑之年学习python,实为我等学习楷模。先前我并没有关注武汉肺炎的具体数据,也没有画过类似的数据分布图。于是就拿了两个小时,专门研究了一下,遂成此文。 2月6日追记:本文发布后,腾讯的数据源多次变更u
智力题(程序员面试经典)
NO.1  有20瓶药丸,其中19瓶装有1克/粒的药丸,余下一瓶装有1.1克/粒的药丸。给你一台称重精准的天平,怎么找出比较重的那瓶药丸?天平只能用一次。 解法 有时候,严格的限制条件有可能反倒是解题的线索。在这个问题中,限制条件是天平只能用一次。 因为天平只能用一次,我们也得以知道一个有趣的事实:一次必须同时称很多药丸,其实更准确地说,是必须从19瓶拿出药丸进行称重。否则,如果跳过两瓶或更多瓶药
在家远程办公效率低?那你一定要收好这个「在家办公」神器!
相信大家都已经收到国务院延长春节假期的消息,接下来,在家远程办公可能将会持续一段时间。 但是问题来了。远程办公不是人在电脑前就当坐班了,相反,对于沟通效率,文件协作,以及信息安全都有着极高的要求。有着非常多的挑战,比如: 1在异地互相不见面的会议上,如何提高沟通效率? 2文件之间的来往反馈如何做到及时性?如何保证信息安全? 3如何规划安排每天工作,以及如何进行成果验收? ......
作为一个程序员,内存和磁盘的这些事情,你不得不知道啊!!!
截止目前,我已经分享了如下几篇文章: 一个程序在计算机中是如何运行的?超级干货!!! 作为一个程序员,CPU的这些硬核知识你必须会! 作为一个程序员,内存的这些硬核知识你必须懂! 这些知识可以说是我们之前都不太重视的基础知识,可能大家在上大学的时候都学习过了,但是嘞,当时由于老师讲解的没那么有趣,又加上这些知识本身就比较枯燥,所以嘞,大家当初几乎等于没学。 再说啦,学习这些,也看不出来有什么用啊!
2020年的1月,我辞掉了我的第一份工作
其实,这篇文章,我应该早点写的,毕竟现在已经2月份了。不过一些其它原因,或者是我的惰性、还有一些迷茫的念头,让自己迟迟没有试着写一点东西,记录下,或者说是总结下自己前3年的工作上的经历、学习的过程。 我自己知道的,在写自己的博客方面,我的文笔很一般,非技术类的文章不想去写;另外我又是一个还比较热衷于技术的人,而平常复杂一点的东西,如果想写文章写的清楚点,是需要足够...
别低估自己的直觉,也别高估自己的智商
所有群全部吵翻天,朋友圈全部沦陷,公众号疯狂转发。这两周没怎么发原创,只发新闻,可能有人注意到了。我不是懒,是文章写了却没发,因为大家的关注力始终在这次的疫情上面,发了也没人看。当然,我...
Java坑人面试题系列: 包装类(中级难度)
Java Magazine上面有一个专门坑人的面试题系列: https://blogs.oracle.com/javamagazine/quiz-2。 这些问题的设计宗旨,主要是测试面试者对Java语言的了解程度,而不是为了用弯弯绕绕的手段把面试者搞蒙。 如果你看过往期的问题,就会发现每一个都不简单。 这些试题模拟了认证考试中的一些难题。 而 “中级(intermediate)” 和 “高级(ad
Spring Boot 2.x基础教程:使用JdbcTemplate访问MySQL数据库
在第2章节中,我们介绍了如何通过Spring Boot来实现HTTP接口,以及围绕HTTP接口相关的单元测试、文档生成等实用技能。但是,这些内容还不足以帮助我们构建一个动态应用的服务端程序。不论我们是要做App、小程序、还是传统的Web站点,对于用户的信息、相关业务的内容,通常都需要对其进行存储,而不是像第2章节中那样,把用户信息存储在内存中(重启就丢了!)。 对于信息的存储,现在已经有非常非常多...
基于Python的人脸自动戴口罩系统
目录 1、项目背景 2、页面设计 3、器官识别 4、退出系统 1、项目背景 2019年新型冠状病毒感染的肺炎疫情发生以来,牵动人心,举国哀痛,口罩、酒精、消毒液奇货可居。 抢不到口罩,怎么办?作为技术人今天分享如何使用Python实现自动戴口罩系统,来安慰自己,系统效果如下所示: 本系统的实现原理是借助 Dlib模块的Landmark人脸68个关键点检测库轻松识别出人脸五官
这个世界上人真的分三六九等,你信吗?
偶然间,在知乎上看到一个问题 一时间,勾起了我深深的回忆。 以前在厂里打过两次工,做过家教,干过辅导班,做过中介。零下几度的晚上,贴过广告,满脸、满手地长冻疮。 再回首那段岁月,虽然苦,但让我学会了坚持和忍耐。让我明白了,在这个世界上,无论环境多么的恶劣,只要心存希望,星星之火,亦可燎原。 下文是原回答,希望能对你能有所启发。 如果我说,这个世界上人真的分三六九等,...
相关热词 c# 为空 判断 委托 c#记事本颜色 c# 系统默认声音 js中调用c#方法参数 c#引入dll文件报错 c#根据名称实例化 c#从邮件服务器获取邮件 c# 保存文件夹 c#代码打包引用 c# 压缩效率
立即提问