为什么python3.8下载matplotlib总是不成功?

python3.8下载matplotlib模块时,总是出现以下错误

ERROR: Command errored out with exit status 1: 'c:\users\air\python\python38\python.exe' -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\Users\air\AppData\Local\Temp\pip-install-5ntug3if\matplotlib\setup.py'"'"'; file='"'"'C:\Users\air\AppData\Local\Temp\pip-install-5ntug3if\matplotlib\setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, file, '"'"'exec'"'"'))' install --record 'C:\Users\air\AppData\Local\Temp\pip-record-rp63qqyg\install-record.txt' --single-version-externally-managed --compile Check the logs for full command output.

图片说明

有那位大神可以帮我看一下?

2个回答

在cmd里输入下面的语句试试:

python -m pip install matplotlib

如果还是不行,再试试这个:

python -m pip install matplotlib --user air

good luck!

qq_43344109
while(true); 回复qq_41271820: 在哪下载升级后的?
23 天之前 回复
u011256698
家在田塍 回复qq_41271820: 搜嘎,学到了!哈哈谢谢~
4 个月之前 回复
qq_41271820
qq_41271820 我已经解决了 是因为python3.8版本太新,matplotlib没有适配3.8的版本,官网把matplotlib升级了之后下载就成功了
4 个月之前 回复

直接pip下载whl,不需要下载源代码编译,这个麻烦多一些

qq_41271820
qq_41271820 是直接在cmd里面pip install matplotlib吗,我也试过,出现同样的错误.
5 个月之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
各位朋友好,请教ubuntu系统python3.4环境下安装matplotlib报错的解决办法
具体的问题是这样的: 我的系统是Ubuntu14.04 的64位系统,python3.4版本下,想使用matplotlib来做图。 由于matplotlib依赖numpy和python的图像库PIL,因此我先安装numpy和PIL然后,再安装matplotlib, 这里附上我的安装matplotlib的shell命令 #安装科学计算库numpy sudo pip3 install numpy #安装图像处理库PIL sudo apt-get install python3.4-dev -y sudo apt-get install libjpeg8-dev zlib1g-dev libfreetype6-dev -y sudo ln -s /usr/lib/x86_64-linux-gnu/libjpeg.so /usr/lib sudo ln -s /usr/lib/x86_64-linux-gnu/libfreetype.so /usr/lib sudo ln -s /usr/lib/x86_64-linux-gnu/libz.so /usr/lib sudo apt-get install python3-pil #安装画图库matplotlib sudo pip3 install matplotlib 但是发现虽然安装成功(在python3的shell交互环境下, import matplotlib 是可以的),但是 执行如下语句 from matplotlib import pyplot as plt 报错: "/usr/local/lib/python3.4/dist-packages/matplotlib-1.5.1-py3.4-linux-x86_64.egg/matplotlib/backends/backend_gtk3.py", line 58, in <module> cursors.MOVE : Gdk.Cursor.new(Gdk.CursorType.FLEUR), TypeError: constructor returned NULL 希望各位朋友能指点一下,十分感谢
为什么虚拟环境pip install 只能安装在真实环境中 而且没法卸载干净?
经过pip3 uninstall mpl_finance, 重启VMware后再操作: ``` (dm) python@ubuntu:~$ sudo -H pip3 install mpl_finance Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from mpl_finance) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->mpl_finance) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->mpl_finance) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->mpl_finance) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->mpl_finance) Requirement already satisfied: numpy>=1.11 in /usr/local/lib/python3.6/dist-packages (from matplotlib->mpl_finance) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from cycler>=0.10->matplotlib->mpl_finance) Installing collected packages: mpl-finance Successfully installed mpl-finance-0.10.1 ``` 成功后找不到 mpl_finance ``` (dm) python@ubuntu:~$ pip3 freeze attrs==19.3.0 ..... MarkupSafe==1.1.1 matplotlib==2.2.2 mistune==0.8.4 more-itertools==8.0.2 ``` 发现原来是安装在真实环境中 ``` (dm) python@ubuntu:~$ deactivate python@ubuntu:~$ pip3 freeze apturl==0.5.2 。。。。。。 Mako==1.0.7 MarkupSafe==1.0 matplotlib==3.2.1 mitmproxy==2.0.2 mpl-finance==0.10.1 ```
Windows下 sklearn:numpy.ufunc has the wrong size
各位大神求指点,我使用ArcGIS10.3自带的Python2.7.8(NumPy 1.7.1,matplotlib 1.3.0)自己去官网下载安装了scipy0.13.3和scikit-learn0.16.0,在编译scikit learn时出现numpy.dtype size问题,还没有运行其他代码,只是导入库就不行了: print('Hello World') # import numpy & scipy import numpy as np from numpy import linalg from numpy.linalg import norm from scipy.spatial.distance import squareform, pdist # import sklearn. import sklearn from sklearn.manifold import TSNE from sklearn.datasets import load_digits from sklearn.preprocessing import scale print "working" ![图片说明](https://img-ask.csdn.net/upload/201601/02/1451704594_425391.png) 新手跪求指点,万分感谢!
关于Python matplotlib的制图问题
为什么x,y坐标中的标签不会半透明呢,教程中的图片如图![图片说明](https://img-ask.csdn.net/upload/201711/16/1510824867_653153.png) 但是实际的图片是这样的 ![图片说明](https://img-ask.csdn.net/upload/201711/16/1510824887_560136.png) 为什么我的没有半透明的背景呢 代码如下: ``` #!python3 # coidng="utf-8" import matplotlib.pyplot as plt import numpy as np if __name__ == "__main__": X = np.linspace(-np.pi, np.pi, 256, endpoint=True) S, Y = np.sin(X), X plt.figure(figsize=(10, 6), dpi=80) plt.subplot(111) plt.xlim(-np.pi * 1.1, np.pi * 1.1) plt.ylim(min(Y) * 1.1, max(Y) * 1.1) plt.xticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], [r"$-\pi$", r"$-\pi/2$", r"$0$", r"$+\pi/2$", r"$+\pi$"]) plt.yticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], [r"$-\pi$", r"$-\pi/2$", r"$0$", r"$+\pi/2$", r"$+\pi$"]) ax = plt.gca() ax.spines["top"].set_color("none") ax.spines["right"].set_color("none") ax.xaxis.set_ticks_position("bottom") ax.yaxis.set_ticks_position("left") ax.spines["bottom"].set_position(["data", 0]) ax.spines["left"].set_position(["data", 0]) for each in ax.get_xticklabels() + ax.get_yticklabels(): each.set_fontsize(16) each.set_bbox(dict(facecolor="white", edgecolor="None", alpha=0.65)) plt.plot(X, S, linewidth=2.5, color="blue", linestyle="-") plt.plot(X, Y, linewidth=2.5, color="red", linestyle="-") t = np.pi / 2 plt.plot([t, t], [0, 1], linewidth=1.5, color="blue", linestyle="--") plt.plot([0, t], [1, 1], linewidth=1.5, color="blue", linestyle="--") plt.scatter([t, ], [1, ], 50, color="blue") plt.plot([-t, -t], [0, -t], linewidth=1.5, color="red", linestyle="--") plt.plot([0, -t], [-t, -t], linewidth=1.5, color="red", linestyle="--") plt.scatter([-t, ], [-t, ], 50, color="red") plt.annotate(r"$\sin(\frac{\pi}{2})=1$", xy=(t, 1), xycoords="data", xytext=(+10, +20), textcoords="offset points", fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.annotate(r"$(\frac{-\pi}{2},\frac{-\pi}{2})$", xy=(-t, -t), xycoords="data", xytext=(+10, -20), textcoords="offset points", fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.savefig(r'C:\Users\rengz\Desktop\exercice_7.png') plt.show() ``` 附图 ![图片说明](https://img-ask.csdn.net/upload/201711/16/1510825148_257177.png)
tensorflow在第一次运行Fashion MNIST会下载数据集,应该网络不好中断了报错不知咋办?
```**tensorflow在第一次运行Fashion MNIST会下载数据集,应该网络不好中断了报错不知咋办?** 代码如下: !/usr/bin/python _*_ coding: utf-8 -*- from __future__ import print_function import tensorflow as tf import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline import numpy as np import sklearn import pandas as pd import os import sys import time from tensorflow import keras print (tf.__version__) print (sys.version_info) for module in mpl ,np, pd, sklearn, tf, keras: print (module.__name__,module.__version__) fashion_mnist = keras.datasets.fashion_mnist (x_train_all,y_train_all),(x_test,y_test) = fashion_mnist.load_data() x_valid,x_train = x_train_all[:5000],x_train_all[5000:] y_valid,y_train = y_train_all[:5000],y_train_all[5000:] print (x_valid.shape, y_valid.shape) print (x_train.shape, y_train.shape) print (x_test.shape, y_test.shape) ``` ``` 报错如下: 2.1.0 sys.version_info(major=2, minor=7, micro=12, releaselevel='final', serial=0) matplotlib 2.2.5 numpy 1.16.6 pandas 0.24.2 sklearn 0.20.4 tensorflow 2.1.0 tensorflow_core.python.keras.api._v2.keras 2.2.4-tf Traceback (most recent call last): File "/home/join/test_demo/test2.py", line 26, in <module> (x_train_all,y_train_all),(x_test,y_test) = fashion_mnist.load_data() File "/usr/local/lib/python2.7/dist-packages/tensorflow_core/python/keras/data sets/fashion_mnist.py", line 59, in load_data imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28) File "/usr/lib/python2.7/gzip.py", line 261, in read self._read(readsize) File "/usr/lib/python2.7/gzip.py", line 315, in _read self._read_eof() File "/usr/lib/python2.7/gzip.py", line 354, in _read_eof hex(self.crc))) IOError: CRC check failed 0xa445bb78 != 0xe7f80d 3fL ``` ```
python使用pandas处理绘图问题
版本:python3.6、anaconda3(64bit) 电脑配置:i7 3.6HZ 8CPU/8G内存 问题描述:使用pandas成功获取SQL数据后,首先我用sql的一个测试库 只有10个数据绘制折线图成功;后用正式库里面有20W条数据,运行后 没有报警,也没有反应等了5分钟也没有。我想知道它有没有在处理,怎 么看(是前后加time语句吗?)还请大神指点 以下是引用的库 import pandas as pd import matplotlib as mb import matplotlib.pyplot as plt import pandas as pd import pymysql
matplotlib绘图时报错
**目前需要解决的问题:** 第一种情况测试,如果subplot2和subplot1不共享x轴,candlestick2_ohlc加上(代码块中被我注释掉了),就不会报错,第二种情况测试,如果共享x轴,去掉candlestick2_ohlc也不报错,但是不去掉sharex=subplot1,第三种情况,就是目前的我需要解决的问题,同时运行candlestick2_ohlc,,并且sharex=subplot1函就会报错,以下是全错信息以及全部代码。 **请运行时把#candlestick2_ohlc(ax=subplot1,opens=historty['open'],highs=historty['high'],lows=historty['low'],closes=historty['close'],width=0.5,colordown='g',colorup='red')的注释取消以查看错误信息。** **报错信息:** ``` view limit minimum -36854.55 is less than 1 and is an invalid Matplotlib date value. This often happens if you pass a non-datetime value to an axis that has datetime units ``` **主要代码:** ``` import pandas import matplotlib import matplotlib.pyplot as plt from mpl_finance import candlestick2_ohlc def stockPricePlot(ticker): #Step1. Load Data historty = pandas.read_csv('./Data/TickerList_CN/daily_history/'+ticker+'.csv',parse_dates=True,index_col=0) #Step2. Data Maniulation volume = historty['volume'] volume = volume.reset_index() volume['timestamp'] = volume['timestamp'].map(matplotlib.dates.date2num) # print('volume-timestamp',volume['timestamp']) ohlc = historty[['open','high','low','close']] ohlc = ohlc.reset_index() #把原索引列timestamp列变成非索引列,索引列重置为012346... ohlc['timestamp'] = ohlc['timestamp'].map(matplotlib.dates.date2num) print(ohlc) #Step3. Plot Figures .Subplot1: scatter plot .Subplot2.candle stick plot. subplot1 = plt.subplot2grid((2,1),(0,0),rowspan=1,colspan=1) subplot1.plot(volume['timestamp'],volume) subplot1.xaxis_date() subplot2 = plt.subplot2grid((2,1),(1,0),rowspan=1,colspan=1,sharex=subplot1) #candlestick2_ohlc(ax=subplot1,opens=historty['open'],highs=historty['high'],lows=historty['low'],closes=historty['close'],width=0.5,colordown='g',colorup='red') plt.show() stockPricePlot('000830') ``` **部分csv内容:** ``` timestamp,open,high,close,low,volume,price_change,p_change,ma5,ma10,ma20,v_ma5,v_ma10,v_ma20 2018-01-02,15.99,17.34,16.9,15.98,757629.44,0.98,6.16,15.86,15.956,16.004,548371.81,530310.18,623883.69 2018-01-03,17.13,17.2,17.15,16.6,638103.5,0.25,1.48,16.136,16.101,16.078,551871.92,533343.05,608798.69 2018-01-04,17.17,18.48,18.04,16.91,887199.19,0.89,5.19,16.644,16.35,16.174,641565.9,575043.65,612220.87 2018-01-05,17.85,18.28,17.98,17.81,468611.03,-0.06,-0.33,17.198,16.523,16.281,646149.99,565940.01,593073.06 2018-01-08,17.99,18.86,18.68,17.81,682480.5,0.7,3.89,17.75,16.765,16.431,686804.73,587491.86,589820.04 2018-01-09,18.5,18.58,18.37,18.01,461303.56,-0.31,-1.66,18.044,16.952,16.542,627539.56,587955.68,581795.08 2018-01-10,18.26,18.27,17.98,17.81,394598.0,-0.39,-2.12,18.21,17.173,16.624,578838.46,565355.19,569994.99 2018-01-11,17.91,18.88,18.51,17.7,522358.72,0.53,2.95,18.304,17.474,16.701,505870.36,573718.13,565724.87 2018-01-12,18.45,18.7,18.13,17.9,403101.12,-0.38,-2.05,18.334,17.766,16.764,492768.38,569459.19,554347.3 2018-01-15,18.0,18.48,17.76,17.6,440299.28,-0.37,-2.04,18.15,17.95,16.85,444332.14,565568.43,542099.03 2018-01-16,17.79,18.64,18.58,17.79,541583.88,0.82,4.62,18.192,18.118,17.037,460388.2,543963.88,537137.03 2018-01-17,18.58,18.66,18.34,17.91,453619.47,-0.24,-1.29,18.264,18.237,17.169,472192.49,525515.48,529429.26 2018-01-18,18.4,19.46,19.46,18.4,674142.25,1.12,6.11,18.454,18.379,17.365,502549.2,504209.78,539626.72 2018-01-19,19.23,19.44,19.28,19.06,394495.88,-0.18,-0.93,18.684,18.509,17.516,500828.15,496798.27,531369.14 2018-01-22,19.44,20.34,20.16,19.42,500034.16,0.88,4.56,19.164,18.657,17.711,512775.13,478553.63,533022.74 2018-01-23,20.06,20.66,20.2,19.97,475477.88,0.04,0.2,19.488,18.84,17.896,499553.93,479971.06,533963.37 2018-01-24,20.06,21.14,20.78,20.05,474656.88,0.58,2.87,19.976,19.12,18.147,503761.41,487976.95,526666.07 2018-01-25,20.78,21.58,21.1,20.31,610635.38,0.32,1.54,20.304,19.379,18.427,491060.04,496804.62,535261.37 2018-01-26,21.17,21.23,20.99,20.17,507878.75,-0.11,-0.52,20.646,19.665,18.716,513736.61,507282.38,538370.78 2018-01-29,21.7,22.35,21.32,21.23,653364.38,0.33,1.57,20.878,20.021,18.986,544402.65,528588.89,547078.66 2018-01-30,21.59,23.38,23.28,21.57,742671.62,1.96,9.19,21.494,20.491,19.305,597841.4,548697.67,546330.77 2018-01-31,23.0,24.38,22.59,22.05,942972.56,-0.69,-2.96,21.856,20.916,19.577,691504.54,597632.97,561574.22 2018-02-01,22.88,23.49,22.88,22.34,612182.88,0.29,1.28,22.212,21.258,19.819,691814.04,591437.04,547823.41 2018-02-02,22.5,23.99,23.89,21.53,650898.12,1.01,4.41,22.792,21.719,20.114,720417.91,617077.26,556937.76 2018-02-05,23.29,24.96,24.9,23.16,648181.88,1.01,4.23,23.508,22.193,20.425,719381.41,631892.03,555222.83 2018-02-06,24.4,25.1,23.44,23.22,777855.06,-1.46,-5.86,23.54,22.517,20.679,726418.1,662129.75,571050.41 2018-02-07,24.2,24.88,21.1,21.1,1272183.25,-2.34,-9.98,23.242,22.549,20.835,792260.24,741882.39,614929.67 2018-02-08,20.62,21.11,21.0,19.78,1028494.56,-0.1,-0.47,22.866,22.539,20.959,875522.57,783668.31,640236.46 2018-02-09,19.9,20.08,18.9,18.9,608822.0,-2.1,-10.0,21.868,22.33,20.998,867107.35,793762.63,650522.51 2018-02-12,18.5,20.0,19.5,17.98,812573.19,0.6,3.17,20.788,22.148,21.085,899985.61,809683.51,669136.2 2018-02-13,19.93,21.18,20.86,19.65,772670.31,1.36,6.97,20.272,21.906,21.199,898948.66,812683.38,680690.52 2018-02-14,20.86,21.65,21.28,20.83,577215.25,0.42,2.01,20.308,21.775,21.346,759955.06,776107.65,686870.31 2018-02-22,21.8,23.35,23.24,21.63,712053.19,1.96,9.21,20.756,21.811,21.535,696666.79,786094.68,688765.86 2018-02-23,23.32,23.94,23.46,22.39,825140.31,0.22,0.95,21.668,21.768,21.744,739930.45,803518.9,710298.08 2018-02-26,23.64,24.51,24.45,23.02,719122.62,0.99,4.22,22.658,21.723,21.958,721240.34,810612.97,721252.5 2018-02-27,24.19,24.4,23.18,23.15,757924.06,-1.27,-5.19,23.122,21.697,22.107,718291.09,808619.87,735374.81 2018-02-28,22.64,23.58,22.98,22.25,612434.44,-0.2,-0.86,23.462,21.885,22.217,725334.92,742644.99,742263.69 2018-03-01,22.54,23.43,22.5,22.41,600968.94,-0.48,-2.09,23.314,22.035,22.287,703118.07,699892.43,741780.37 2018-03-02,22.49,23.03,22.59,21.88,681435.12,0.09,0.4,23.14,22.404,22.367,674377.04,707153.74,750458.19 2018-03-05,22.64,22.75,20.33,20.33,1008017.69,-2.26,-10.0,22.316,22.487,22.318,732156.05,726698.19,768190.85 2018-03-06,20.03,21.15,21.1,19.46,1046506.31,0.77,3.79,21.9,22.511,22.209,789872.5,754081.79,783382.59 2018-03-07,20.98,20.98,19.35,19.0,1157634.38,-1.75,-8.29,21.174,22.318,22.047,898912.49,812123.71,794115.68 2018-03-08,19.24,19.86,19.71,19.1,746500.88,0.36,1.86,20.616,21.965,21.888,928018.88,815568.48,800831.58 2018-03-09,19.78,19.79,19.4,19.31,597694.69,-0.31,-1.57,19.978,21.559,21.664,911270.79,792823.91,798171.41 2018-03-12,19.51,20.32,20.22,18.91,1255197.12,0.82,4.23,19.956,21.136,21.43,960706.68,846431.36,828522.17 2018-03-13,20.08,20.87,20.58,19.89,1038786.5,0.36,1.78,19.852,20.876,21.287,959162.71,874517.61,841568.74 2018-03-14,20.39,20.74,20.33,20.01,639427.25,-0.25,-1.22,20.048,20.611,21.248,855521.29,877216.89,809930.94 2018-03-15,20.25,20.37,19.8,19.45,655907.06,-0.53,-2.61,20.066,20.341,21.188,837402.52,882710.7,791301.57 2018-03-16,19.92,20.35,19.77,19.74,534175.62,-0.03,-0.15,20.14,20.059,21.232,824698.71,867984.75,787569.25 2018-03-19,19.45,19.46,18.14,17.79,1195104.25,-1.63,-8.24,19.724,19.84,21.164,812680.14,886693.41,806695.8 2018-03-20,17.7,18.09,17.86,17.43,604412.62,-0.28,-1.54,19.18,19.516,21.014,725805.36,842484.04,798282.92 2018-03-21,17.85,18.12,17.11,16.9,849386.25,-0.75,-4.2,18.536,19.292,20.805,767797.16,811659.22,811891.47 2018-03-22,17.12,17.6,17.3,17.02,593567.62,0.19,1.11,18.036,19.051,20.508,755329.27,796365.9,805967.19 2018-03-23,16.6,16.74,15.67,15.6,906732.19,-1.63,-9.42,17.216,18.678,20.119,829840.59,827269.65,810046.78 2018-03-26,15.7,16.42,16.35,15.45,699463.69,0.68,4.34,16.858,18.291,19.714,730712.47,771696.31,809063.83 2018-03-27,16.88,17.29,17.13,16.68,745425.44,0.78,4.77,16.712,17.946,19.411,758915.04,742360.2,808438.9 2018-03-28,16.81,17.0,16.18,15.81,844269.5,-0.95,-5.55,16.526,17.531,19.071,757891.69,762844.42,820030.66 2018-03-29,16.3,17.79,17.52,16.03,1062661.88,1.34,8.28,16.57,17.303,18.822,851710.54,803519.91,843115.3 2018-03-30,17.49,17.92,17.56,16.95,821160.5,0.04,0.23,16.948,17.082,18.571,834596.2,832218.39,850101.57 2018-04-02,17.43,18.37,17.79,17.33,749252.0,0.23,1.31,17.236,17.047,18.444,844553.86,787633.17,837163.29 2018-04-03,17.3,17.45,17.16,16.81,610011.38,-0.63,-3.54,17.242,16.977,18.247,817471.05,788193.05,815338.54 2018-04-04,17.31,17.57,16.88,16.85,467604.41,-0.28,-1.63,17.382,16.954,18.123,742138.03,750014.86,780837.04 2018-04-09,17.1,17.21,16.47,15.92,501334.31,-0.41,-2.43,17.172,16.871,17.961,629872.52,740791.53,768578.71 2018-04-10,16.65,17.56,17.54,16.4,716081.75,1.07,6.5,17.168,17.058,17.868,608856.77,721726.49,774498.07 2018-04-11,17.9,18.25,17.78,17.45,866904.25,0.24,1.37,17.166,17.201,17.746,632387.22,738470.54,755083.42 2018-04-12,18.25,18.25,17.78,17.5,668276.25,0.0,0.0,17.29,17.266,17.606,644040.19,730755.62,736557.91 2018-04-13,18.0,18.12,17.88,17.55,556391.44,0.1,0.56,17.49,17.436,17.484,661797.6,701967.82,732406.12 2018-04-16,17.81,17.9,17.44,17.03,617045.06,-0.44,-2.46,17.684,17.428,17.366,684939.75,657406.14,730463.02 2018-04-17,17.3,17.3,16.67,16.54,625413.12,-0.77,-4.42,17.51,17.339,17.211,666806.02,637831.4,735024.9 2018-04-18,16.85,17.28,17.22,16.25,638213.0,0.55,3.3,17.398,17.282,17.165,621067.77,626727.5,707180.33 2018-04-19,17.26,17.85,17.52,17.11,639811.69,0.3,1.74,17.346,17.318,17.148,615374.86,629707.53,708950.29 2018-04-20,17.33,17.33,16.62,16.57,650977.19,-0.9,-5.14,17.094,17.292,17.123,634292.01,648044.81,699029.83 2018-04-23,16.62,17.05,16.93,16.4,382524.53,0.31,1.86,16.992,17.338,17.105,587387.91,636163.83,688477.68 2018-04-24,16.8,18.17,18.02,16.77,1069987.38,1.09,6.44,17.262,17.386,17.222,676302.76,671554.39,696640.44 2018-04-25,17.8,17.95,17.89,17.65,611291.88,-0.13,-0.72,17.396,17.397,17.299,670918.53,645993.15,692231.85 2018-04-26,17.92,17.99,17.08,17.03,760669.38,-0.81,-4.53,17.308,17.327,17.297,695090.07,655232.47,692994.05 2018-04-27,17.19,17.59,17.29,16.83,511055.41,0.21,1.23,17.442,17.268,17.352,667105.72,650698.86,676333.34 2018-05-02,17.33,17.58,17.58,17.0,504534.41,0.29,1.68,17.572,17.282,17.355,691507.69,639447.8,648426.97 2018-05-03,17.39,18.12,17.89,17.08,813721.5,0.31,1.76,17.546,17.404,17.372,640254.52,658278.64,648055.02 2018-05-04,17.84,18.5,18.18,17.64,938110.5,0.29,1.62,17.604,17.5,17.391,705618.24,688268.39,657497.94 2018-05-07,18.26,19.59,19.27,18.23,1107393.38,1.09,6.0,18.042,17.675,17.497,774963.04,735026.56,682367.04 2018-05-08,19.35,19.81,19.57,19.11,859601.12,0.3,1.56,18.498,17.97,17.631,844672.18,755888.95,701966.88 2018-05-09,19.57,19.86,19.74,19.37,657269.62,0.17,0.87,18.93,18.251,17.795,875219.22,783363.46,709763.64 2018-05-10,19.87,20.28,19.6,19.31,896830.94,-0.14,-0.71,19.272,18.409,17.898,891841.11,766047.81,718801.1 2018-05-11,19.6,19.69,18.95,18.84,859166.38,-0.65,-3.32,19.426,18.515,17.956,876052.29,790835.26,718414.21 2018-05-14,18.95,19.31,18.87,18.72,564472.19,-0.08,-0.42,19.346,18.694,18.011,767468.05,771215.55,713224.01 2018-05-15,18.8,19.73,19.67,18.39,802182.19,0.8,4.24,19.366,18.932,18.1,755984.26,800328.22,725513.54 2018-05-16,19.44,19.58,19.15,19.05,623762.62,-0.52,-2.64,19.248,19.089,18.186,749282.86,812251.04,725849.42 2018-05-17,19.15,20.27,19.75,19.15,940693.81,0.6,3.13,19.278,19.275,18.34,758055.44,824948.28,741613.46 2018-05-18,19.93,20.86,20.8,19.93,1222465.62,1.05,5.32,19.648,19.537,18.519,830715.29,853383.79,770826.09 2018-05-21,21.25,21.94,21.26,20.66,1324208.0,0.46,2.21,20.126,19.736,18.706,982662.45,875065.25,805045.9 2018-05-22,21.41,21.88,21.49,21.1,841641.94,0.23,1.08,20.49,19.928,18.949,990554.4,873269.33,814579.14 2018-05-23,21.65,21.8,20.88,20.68,839241.12,-0.61,-2.84,20.836,20.042,19.147,1033650.1,891466.48,837414.97 2018-05-24,20.85,21.35,21.05,20.46,582306.88,0.17,0.81,21.096,20.187,19.298,961972.71,860014.08,813030.94 2018-05-25,20.8,21.0,20.41,20.3,485541.75,-0.64,-3.04,21.018,20.333,19.424,814587.94,822651.61,806743.44 2018-05-28,20.05,20.73,20.38,19.81,472109.69,-0.03,-0.15,20.842,20.484,19.589,644168.28,813415.36,792315.45 2018-05-29,20.3,20.46,19.91,19.72,478850.41,-0.47,-2.31,20.526,20.508,19.72,571609.97,781082.18,790705.2 2018-05-30,19.4,19.4,18.7,18.7,568306.75,-1.21,-6.08,20.09,20.463,19.776,517423.1,775536.6,793893.82 2018-05-31,19.01,19.52,19.45,18.78,521848.62,0.75,4.01,19.77,20.433,19.854,505331.44,733652.08,779300.18 2018-06-01,19.21,19.28,18.77,18.55,476589.69,-0.68,-3.5,19.442,20.23,19.884,503541.03,659064.49,756224.14 2018-06-04,19.03,19.39,19.12,19.0,421888.41,0.35,1.86,19.19,20.016,19.876,493496.78,568832.53,721948.89 2018-06-05,19.29,19.77,19.76,19.07,449022.41,0.64,3.35,19.16,19.843,19.886,487531.18,529570.57,701419.95 2018-06-06,19.77,19.77,19.57,19.37,379771.12,-0.19,-0.96,19.334,19.712,19.877,449824.05,483623.57,687545.03 2018-06-07,19.66,20.24,19.96,19.56,526779.81,0.39,1.99,19.436,19.603,19.895,450810.29,478070.87,669042.47 2018-06-08,19.48,19.9,19.39,19.13,498270.41,-0.57,-2.86,19.56,19.501,19.917,455146.43,479343.73,650997.67 2018-06-11,19.21,19.59,19.29,18.91,300834.94,-0.1,-0.52,19.594,19.392,19.938,430935.74,462216.26,637815.81 2018-06-12,19.28,19.82,19.79,19.23,361271.03,0.5,2.59,19.6,19.38,19.944,413385.46,450458.32,615770.25 2018-06-13,19.7,20.27,19.79,19.6,488584.97,0.0,0.0,19.644,19.489,19.976,435148.23,442486.14,609011.37 2018-06-14,19.5,19.78,19.24,19.1,331041.59,-0.25,-1.28,19.5,19.468,19.951,396000.59,423405.44,578528.76 2018-06-15,19.24,19.45,18.81,18.67,338671.03,-0.43,-2.23,19.384,19.472,19.851,364080.71,409613.57,534339.03 2018-06-19,18.37,18.55,16.93,16.93,598508.81,-1.88,-9.99,18.912,19.253,19.635,423615.49,427275.61,498054.07 2018-06-20,16.6,17.21,17.02,16.4,495535.84,0.09,0.53,18.358,18.979,19.411,450468.45,431926.96,480748.76 2018-06-21,17.01,17.71,16.97,16.85,478381.72,-0.05,-0.29,17.794,18.719,19.216,448427.8,441788.02,462705.79 2018-06-22,16.6,17.36,17.35,16.5,370426.56,0.38,2.24,17.416,18.458,19.031,456304.79,426152.69,452111.78 2018-06-25,17.62,17.81,16.92,16.86,417699.44,-0.43,-2.48,17.038,18.211,18.856,472110.47,418095.59,448719.66 2018-06-26,16.51,17.19,17.09,16.34,297902.31,0.17,1.0,17.07,17.991,18.692,411989.17,417802.33,440009.29 2018-06-27,17.13,17.38,16.67,16.54,320759.31,-0.42,-2.46,17.0,17.679,18.53,377033.87,413751.16,432104.74 2018-06-28,16.64,16.97,16.41,16.4,299115.09,-0.26,-1.56,16.888,17.341,18.415,341180.54,394804.17,418645.16 2018-06-29,16.57,17.09,17.08,16.36,387400.25,0.67,4.08,16.834,17.125,18.297,344575.28,400440.04,411922.74 2018-07-02,17.03,17.14,16.8,16.6,337290.25,-0.28,-1.64,16.81,16.924,18.198,328493.44,400301.96,404957.77 2018-07-03,17.27,17.68,17.58,16.92,524702.12,0.78,4.64,16.908,16.989,18.121,373853.4,392921.29,410098.45 2018-07-04,17.51,17.51,17.08,16.95,406939.91,-0.5,-2.84,16.99,16.995,17.987,391089.52,384061.7,407994.33 2018-07-05,17.1,17.22,16.33,16.31,394887.97,-0.75,-4.39,16.974,16.931,17.825,410244.1,375712.32,408750.17 2018-07-06,16.47,16.91,16.6,16.25,394415.38,0.27,1.65,16.878,16.856,17.657,411647.13,378111.2,402131.95 2018-07-09,16.8,17.62,17.61,16.8,532556.0,1.01,6.08,17.04,16.925,17.568,450700.28,389596.86,403846.23 2018-07-10,17.68,18.25,18.0,17.4,596623.94,0.39,2.21,17.124,17.016,17.504,465084.64,419469.02,418635.68 2018-07-11,17.45,17.68,17.53,16.9,498889.84,-0.47,-2.61,17.214,17.102,17.391,483474.63,437282.08,425516.62 2018-07-12,17.49,18.15,18.04,17.38,524338.06,0.51,2.91,17.556,17.265,17.303,509364.64,459804.37,427304.27 2018-07-13,18.0,18.58,18.42,17.88,483554.56,0.38,2.11,17.92,17.399,17.262,527192.48,469419.8,434929.92 2018-07-16,18.38,18.52,18.13,17.95,420261.91,-0.29,-1.57,18.024,17.532,17.228,504733.66,477716.97,439009.46 2018-07-17,18.0,18.04,17.92,17.57,363463.59,-0.21,-1.16,18.008,17.566,17.278,458101.59,461593.12,427257.2 2018-07-18,17.94,18.25,17.73,17.72,366933.25,-0.19,-1.06,18.048,17.631,17.313,431710.27,457592.45,420827.07 2018-07-19,17.7,17.95,17.68,17.4,307490.81,-0.05,-0.28,17.976,17.766,17.349,388340.82,448852.73,412282.53 2018-07-20,17.67,17.99,17.83,17.4,324515.84,0.15,0.85,17.858,17.889,17.373,356533.08,441862.78,409986.99 2018-07-23,17.8,18.43,18.38,17.6,497954.91,0.55,3.08,17.908,17.966,17.446,372071.68,438402.67,413999.77 2018-07-24,18.36,18.9,18.29,18.2,729152.62,-0.09,-0.49,17.982,17.995,17.506,445209.49,451655.54,435562.28 2018-07-25,18.2,18.53,18.35,18.08,365580.12,0.06,0.33,18.106,18.077,17.59,444938.86,438324.57,437803.32 2018-07-26,18.38,18.44,17.9,17.63,540302.38,-0.45,-2.45,18.15,18.063,17.664,491501.17,439921.0,449862.69 2018-07-27,17.71,17.85,17.49,17.36,376730.62,-0.41,-2.29,18.082,17.97,17.685,501944.13,429238.61,449329.2 2018-07-30,17.52,17.75,17.47,17.27,322805.41,-0.02,-0.11,17.9,17.904,17.718,466914.23,419492.96,448604.96 2018-07-31,17.48,17.55,17.5,17.03,242443.48,0.03,0.17,17.742,17.862,17.714,369572.4,407390.94,434492.03 2018-08-01,17.56,17.65,17.17,17.06,313782.25,-0.33,-1.89,17.506,17.806,17.719,359212.83,402075.84,429834.15 2018-08-02,17.02,17.02,16.52,16.19,403556.16,-0.65,-3.79,17.23,17.69,17.728,331863.58,411682.38,430267.56 2018-08-03,16.46,16.61,16.05,16.04,307096.88,-0.47,-2.85,16.942,17.512,17.701,317936.84,409940.48,425901.63 2018-08-06,15.81,16.23,15.31,15.24,376726.75,-0.74,-4.61,16.51,17.205,17.586,328721.1,397817.67,418110.17 2018-08-07,15.54,16.11,16.08,15.32,414727.16,0.77,5.03,16.226,16.984,17.49,363177.84,366375.12,409015.33 2018-08-08,15.99,16.2,15.67,15.63,324346.16,-0.41,-2.55,15.926,16.716,17.397,365290.62,362251.73,400288.15 2018-08-09,15.61,16.33,16.24,15.58,345264.16,0.57,3.64,15.87,16.55,17.307,353632.22,342747.9,391334.45 2018-08-10,16.28,16.55,16.35,16.13,269443.38,0.11,0.68,15.93,16.436,17.203,346101.52,332019.18,380628.89 2018-08-13,16.05,16.45,16.44,15.95,291159.41,0.09,0.55,16.156,16.333,17.119,328988.05,328854.58,374173.77 2018-08-14,16.4,16.88,16.68,16.31,342743.91,0.24,1.46,16.276,16.251,17.057,314591.4,338884.62,373137.78 2018-08-15,16.68,16.7,16.23,16.11,255974.2,-0.45,-2.7,16.388,16.157,16.982,300917.01,333103.82,367589.83 2018-08-16,16.09,16.53,16.17,15.99,284529.09,-0.06,-0.37,16.374,16.122,16.906,288770.0,321201.11,366441.74 2018-08-17,16.48,16.57,15.98,15.92,270309.12,-0.19,-1.18,16.3,16.115,16.814,288943.15,317522.33,363731.41 2018-08-20,15.98,16.47,16.39,15.71,262445.19,0.41,2.57,16.29,16.223,16.714,283200.3,306094.18,351955.92 2018-08-21,16.36,16.63,16.48,16.31,280936.44,0.09,0.55,16.25,16.263,16.624,270838.81,292715.11,329545.11 2018-08-22,16.35,16.48,16.19,16.08,200156.81,-0.29,-1.76,16.242,16.315,16.516,259675.33,280296.17,321273.95 2018-08-23,16.19,16.33,16.24,15.98,196083.23,0.05,0.31,16.256,16.315,16.433,241986.16,265378.08,304062.99 2018-08-24,16.2,16.25,16.05,15.97,161565.08,-0.19,-1.17,16.27,16.285,16.361,220237.35,254590.25,293304.71 2018-08-27,16.1,16.54,16.49,16.07,309079.53,0.44,2.74,16.29,16.29,16.312,229564.22,256382.26,292618.42 2018-08-28,16.52,16.57,16.36,16.3,179477.77,-0.13,-0.79,16.266,16.258,16.255,209272.48,240055.65,289470.13 2018-08-29,16.39,16.39,16.1,16.08,183395.36,-0.26,-1.59,16.248,16.245,16.201,205920.19,232797.76,282950.79 2018-08-30,16.04,16.17,15.86,15.82,174457.2,-0.24,-1.49,16.172,16.214,16.168,201594.99,221790.57,271495.84 2018-08-31,15.88,15.92,15.57,15.57,160528.69,-0.29,-1.83,16.076,16.173,16.144,201387.71,210812.53,264167.43 2018-09-03,15.55,15.58,15.3,14.91,239321.69,-0.27,-1.73,15.838,16.064,16.144,187436.14,208500.18,257297.18 2018-09-04,15.3,15.53,15.42,15.12,164744.02,0.12,0.78,15.65,15.958,16.111,184489.39,196880.94,244798.02 2018-09-05,15.31,15.34,14.9,14.9,205929.48,-0.52,-3.37,15.41,15.829,16.072,188996.22,197458.21,238877.19 2018-09-06,14.8,15.05,14.69,14.63,164705.98,-0.21,-1.41,15.176,15.674,15.995,187045.97,194320.48,229849.28 2018-09-07,14.74,15.21,14.93,14.66,241514.92,0.24,1.63,15.048,15.562,15.924,203243.22,202315.46,228452.86 2018-09-10,14.79,14.88,14.21,14.13,252462.36,-0.72,-4.82,14.83,15.334,15.812,205871.35,196653.75,226518.0 2018-09-11,14.19,14.32,13.41,12.99,548033.75,-0.8,-5.63,14.428,15.039,15.649,282529.3,233509.35,236782.5 2018-09-12,13.51,13.59,13.45,13.3,206414.64,0.04,0.3,14.138,14.774,15.51,282626.33,235811.27,234304.52 2018-09-13,13.66,13.81,13.68,13.41,242011.34,0.23,1.71,13.936,14.556,15.385,298087.4,242566.69,232178.63 2018-09-14,13.69,13.81,13.49,13.37,230403.0,-0.19,-1.39,13.648,14.348,15.261,295865.02,249554.12,230183.32 2018-09-17,13.4,13.46,12.98,12.96,282570.88,-0.51,-3.78,13.402,14.116,15.09,301886.72,253879.04,231189.61 2018-09-18,13.14,13.83,13.7,13.07,333705.12,0.72,5.55,13.46,13.944,14.951,259021.0,270775.15,233828.04 2018-09-19,13.65,13.92,13.68,13.5,347221.75,-0.02,-0.15,13.506,13.822,14.826,287182.42,284904.37,241181.29 2018-09-20,13.71,14.16,13.83,13.71,382658.91,0.15,1.1,13.536,13.736,14.705,315311.93,306699.67,250510.07 2018-09-21,13.84,14.32,14.18,13.66,396101.44,0.35,2.53,13.674,13.661,14.612,348451.62,322158.32,262236.89 2018-09-25,14.01,14.29,14.07,13.92,253864.16,-0.11,-0.78,13.892,13.647,14.491,342710.28,322298.5,259476.12 2018-09-26,14.15,14.65,14.49,14.1,443698.75,0.42,2.98,14.05,13.755,14.397,364709.0,311865.0,272687.17 2018-09-27,14.41,14.49,14.28,14.26,265452.47,-0.21,-1.45,14.17,13.838,14.306,348355.15,317768.78,276790.03 2018-09-28,14.28,14.64,14.6,14.21,281877.69,0.32,2.24,14.324,13.93,14.243,328198.9,321755.42,282161.05 2018-10-08,14.25,14.43,13.91,13.83,310036.47,-0.69,-4.73,14.27,13.972,14.16,310985.91,329718.76,289636.44 2018-10-09,13.99,14.43,14.24,13.98,326492.97,0.33,2.37,14.304,14.098,14.107,325511.67,334110.97,293995.01 2018-10-10,14.35,14.44,14.1,13.96,273177.59,-0.14,-0.98,14.226,14.138,14.041,291407.44,328058.22,299416.68 2018-10-11,12.99,13.37,12.88,12.73,516710.72,-1.22,-8.65,13.946,14.058,13.94,341659.09,345007.12,314955.75 2018-10-12,12.88,12.96,12.8,12.16,415980.91,-0.08,-0.62,13.586,13.955,13.846,368479.73,348339.32,327519.49 2018-10-15,12.92,13.05,12.47,12.41,263047.88,-0.33,-2.58,13.298,13.784,13.723,359082.01,335033.96,328596.14 2018-10-16,12.48,12.62,11.88,11.7,329883.81,-0.59,-4.73,12.826,13.565,13.606,359760.18,342635.93,332467.21 2018-10-17,12.2,12.27,11.95,11.55,289431.78,0.07,0.59,12.396,13.311,13.533,363011.02,327209.23,319537.11 2018-10-18,11.8,11.93,11.4,11.37,272613.56,-0.55,-4.6,12.1,13.023,13.431,314191.59,327925.34,322847.06 2018-10-19,11.1,11.75,11.68,11.02,333744.97,0.28,2.46,11.876,12.731,13.331,297744.4,333112.07,327433.74 2018-10-22,11.79,12.78,12.64,11.78,500358.97,0.96,8.22,11.91,12.604,13.288,345206.62,352144.32,340931.54 2018-10-23,12.61,12.68,12.14,11.99,406853.97,-0.5,-3.96,11.962,12.394,13.246,360600.65,360180.42,347145.69 2018-10-24,12.04,12.25,11.94,11.88,286348.38,-0.2,-1.65,11.96,12.178,13.158,359983.97,361497.5,344777.86 2018-10-25,11.4,11.77,11.7,11.25,318862.91,-0.24,-2.01,12.02,12.06,13.059,369233.84,341712.71,343359.92 2018-10-26,11.89,11.94,11.65,11.59,224693.7,-0.05,-0.43,12.014,11.945,12.95,347423.59,322583.99,335461.66 2018-10-29,11.6,11.64,11.02,10.96,400754.38,-0.63,-5.41,11.69,11.8,12.792,327502.67,336354.64,335694.3 2018-10-30,10.98,11.36,11.23,10.83,310323.0,0.21,1.91,11.508,11.735,12.65,308196.47,334398.56,338517.24 2018-10-31,11.3,11.78,11.6,11.23,389848.84,0.37,3.29,11.44,11.7,12.506,328896.57,344440.27,335824.75 2018-11-01,11.69,11.84,11.56,11.53,390350.69,-0.04,-0.34,11.412,11.716,12.37,343194.12,356213.98,342069.66 2018-11-02,11.79,12.41,12.38,11.69,690194.94,0.82,7.09,11.558,11.786,12.259,436294.37,391858.98,362485.52 2018-11-05,12.3,12.3,12.11,11.93,473343.53,-0.27,-2.18,11.776,11.733,12.169,450812.2,389157.43,370650.88 2018-11-06,12.03,12.08,11.92,11.74,308357.88,-0.19,-1.57,11.914,11.711,12.053,450419.18,379307.83,369744.12 2018-11-07,11.85,12.1,11.86,11.8,338807.25,-0.06,-0.5,11.966,11.703,11.941,440210.86,384553.71,373025.6 2018-11-08,12.02,12.07,11.66,11.6,320866.38,-0.2,-1.69,11.986,11.699,11.88,426314.0,384754.06,363233.39 2018-11-09,11.59,11.63,11.48,11.45,197784.22,-0.18,-1.54,11.806,11.682,11.814,327831.85,382063.11,352323.55 2018-11-12,11.41,11.85,11.85,11.41,279093.59,0.37,3.22,11.754,11.765,11.783,288981.86,369897.03,353125.84 2018-11-13,11.66,11.99,11.88,11.6,376806.97,0.03,0.25,11.746,11.83,11.783,302671.68,376545.43,355472.0 2018-11-14,11.84,12.05,11.8,11.76,347228.09,-0.08,-0.67,11.734,11.85,11.775,304355.85,372283.35,358361.81 2018-11-15,11.76,12.03,12.03,11.7,324807.19,0.23,1.95,11.808,11.897,11.807,305144.01,365729.0,360971.49 2018-11-16,12.05,12.15,12.02,11.91,373166.47,-0.01,-0.08,11.916,11.861,11.824,340220.46,334026.16,362942.57 2018-11-19,12.04,12.28,12.28,11.96,394610.62,0.26,2.16,12.002,11.878,11.806,363323.87,326152.87,357655.15 2018-11-20,12.17,12.18,11.83,11.81,376581.59,-0.45,-3.66,11.992,11.869,11.79,363278.79,332975.24,356141.53 2018-11-21,11.55,11.7,11.66,11.45,296754.47,-0.17,-1.44,11.964,11.849,11.776,353184.07,328769.96,356661.84 2018-11-22,11.69,11.71,11.61,11.54,175418.84,-0.05,-0.43,11.88,11.844,11.772,323306.4,314225.21,349489.63 2018-11-23,11.57,11.6,10.99,10.95,392558.19,-0.62,-5.34,11.674,11.795,11.739,327184.74,333702.6,357882.86 2018-11-26,11.0,11.01,10.72,10.68,269315.91,-0.27,-2.46,11.362,11.682,11.724,302125.8,332724.83,351310.93 2018-11-27,10.8,10.89,10.77,10.69,166765.59,0.05,0.47,11.15,11.571,11.701,260162.6,311720.7,344133.06 2018-11-28,10.78,10.95,10.93,10.61,219351.48,0.16,1.49,11.004,11.484,11.667,244682.0,298933.04,335608.19 2018-11-29,11.0,11.17,10.65,10.63,292247.12,-0.28,-2.56,10.812,11.346,11.622,268047.66,295677.03,330703.02 2018-11-30,10.67,11.05,10.98,10.61,261958.16,0.33,3.1,10.81,11.242,11.552,241927.65,284556.2,309291.18 2018-12-03,11.32,11.53,11.38,11.16,442939.81,0.4,3.64,10.942,11.152,11.515,276652.43,289389.12,307770.99 2018-12-04,11.38,11.48,11.43,11.29,285608.31,0.05,0.44,11.074,11.112,11.491,300420.98,280291.79,306633.51 2018-12-05,11.15,11.4,11.24,11.08,232678.56,-0.19,-1.66,11.136,11.07,11.46,303086.39,273884.2,301327.08 2018-12-06,11.15,11.2,11.02,11.01,210052.05,-0.22,-1.96,11.21,11.011,11.428,286647.38,277347.52,295786.36 2018-12-07,11.06,11.13,11.07,11.01,122096.74,0.05,0.45,11.228,11.019,11.407,258675.09,250301.37,292001.99 2018-12-10,10.95,11.01,10.76,10.76,183989.98,-0.31,-2.8,11.104,11.023,11.353,206885.13,241768.78,287246.81 2018-12-11,10.79,10.87,10.84,10.77,111350.56,0.08,0.74,10.986,11.03,11.301,172033.58,236227.28,273973.99 2018-12-12,10.89,10.96,10.88,10.83,115065.0,0.04,0.37,10.914,11.025,11.255,148510.87,225798.63,262365.83 2018-12-13,10.9,11.26,11.16,10.84,335119.53,0.28,2.57,10.942,11.076,11.211,173524.36,230085.87,262881.45 2018-12-14,11.12,11.18,10.82,10.78,261024.77,-0.34,-3.05,10.892,11.06,11.151,201309.97,229992.53,257274.36 2018-12-17,10.82,10.85,10.79,10.65,177102.86,-0.03,-0.28,10.898,11.001,11.077,199932.54,203408.84,246398.98 2018-12-18,10.69,10.82,10.79,10.61,173313.94,0.0,0.0,10.888,10.937,11.025,212325.22,192179.4,236235.59 2018-12-19,10.78,10.79,10.64,10.6,129787.8,-0.15,-1.39,10.84,10.877,10.974,215269.78,181890.32,227887.26 2018-12-20,10.61,10.78,10.69,10.61,143630.23,0.05,0.47,10.746,10.844,10.928,176971.92,175248.14,226297.83 2018-12-21,10.66,10.66,10.4,10.32,216065.77,-0.29,-2.71,10.662,10.777,10.898,167980.12,184645.04,217473.21 2018-12-24,10.38,10.59,10.51,10.32,121361.64,0.11,1.06,10.606,10.752,10.888,156831.88,178382.21,210075.5 2018-12-25,10.3,10.35,10.3,10.06,232078.78,-0.21,-2.0,10.508,10.698,10.864,168584.84,190455.03,213341.15 2018-12-26,10.26,10.34,10.09,10.09,149200.69,-0.21,-2.04,10.398,10.619,10.822,172467.42,193868.6,209833.62 2018-12-27,10.32,10.36,10.02,10.0,205026.66,-0.07,-0.69,10.264,10.505,10.791,184746.71,180859.31,205472.59 2018-12-28,10.06,10.08,9.8,9.73,240500.77,-0.22,-2.2,10.144,10.403,10.732,189633.71,178806.91,204399.72 2019-01-02,9.87,9.88,9.72,9.68,141343.12,-0.08,-0.82,9.986,10.296,10.649,193630.0,175230.94,189319.89 2019-01-03,9.75,9.92,9.74,9.68,138029.81,0.02,0.21,9.874,10.191,10.564,174820.21,171702.53,181940.96 2019-01-04,9.64,10.13,10.08,9.58,284748.44,0.34,3.49,9.872,10.135,10.506,201929.76,187198.59,184544.46 2019-01-07,10.19,10.19,10.15,10.04,236167.41,0.07,0.69,9.898,10.081,10.463,208157.91,196452.31,185850.23 2019-01-08,10.13,10.13,10.01,10.0,130892.63,-0.14,-1.38,9.94,10.042,10.41,186236.28,187935.0,186290.02 2019-01-09,10.05,10.45,10.15,10.04,390747.97,0.14,1.4,10.026,10.006,10.379,236117.25,214873.63,196627.92 2019-01-10,10.16,10.2,10.07,10.07,193384.98,-0.08,-0.79,10.092,9.983,10.341,247188.29,211004.25,200729.64 2019-01-11,10.07,10.17,10.12,10.04,155181.94,0.05,0.5,10.1,9.986,10.303,221274.99,211602.37,202735.49 2019-01-14,10.11,10.21,10.09,10.04,155330.03,-0.03,-0.3,10.088,9.993,10.249,205107.51,206632.71,193746.01 2019-01-15,10.08,10.35,10.32,10.04,296667.19,0.23,2.28,10.15,10.045,10.224,238262.42,212249.35,195528.13 2019-01-16,10.31,10.42,10.25,10.21,198482.31,-0.07,-0.68,10.17,10.098,10.197,199809.29,217963.27,196597.11 2019-01-17,10.22,10.25,10.14,10.09,162837.69,-0.11,-1.07,10.184,10.138,10.165,193699.83,220444.06,196073.29 2019-01-18,10.16,10.77,10.65,10.15,565978.06,0.51,5.03,10.29,10.195,10.165,275859.06,248567.02,217882.81 2019-01-21,10.63,11.09,11.02,10.58,559175.38,0.37,3.47,10.476,10.282,10.182,356628.13,280867.82,238660.06 2019-01-22,10.94,11.16,11.15,10.76,481678.84,0.13,1.18,10.642,10.396,10.219,393630.46,315946.44,251940.72 2019-01-23,11.01,11.68,11.49,10.95,779547.06,0.34,3.05,10.89,10.53,10.268,509843.41,354826.35,284849.99 2019-01-24,11.36,11.52,11.4,11.29,422766.12,-0.09,-0.78,11.142,10.663,10.323,561829.09,377764.46,294384.36 2019-01-25,11.4,11.64,11.36,11.3,403042.09,-0.04,-0.35,11.284,10.787,10.387,529241.9,402550.48,307076.43 2019-01-28,11.36,11.49,11.4,11.12,374224.28,0.04,0.35,11.36,10.918,10.456,492251.68,424439.9,315536.31 2019-01-29,11.52,11.75,11.65,11.1,605485.19,0.25,2.19,11.46,11.051,10.548,517012.95,455321.7,333785.53 2019-01-30,11.55,11.94,11.6,11.53,468553.69,-0.05,-0.43,11.482,11.186,10.642,454814.27,482328.84,350146.06 2019-01-31,11.7,11.78,11.72,11.53,394720.84,0.12,1.03,11.546,11.344,10.741,449205.22,505517.16,362980.61 2019-02-01,11.82,12.1,12.06,11.71,443738.44,0.34,2.9,11.686,11.485,10.84,457344.49,493293.19,370930.11 ```
为什么在使用catalyst 时候一直有提示错误ImportError: cannot import name 'run_algorithm'?
如题: 以下为我的环境: py 3.6 aiodns==1.1.1 aiohttp==3.5.4 alabaster==0.7.12 alembic==0.9.7 appnope==0.1.0 asn1crypto==0.24.0 astroid==2.2.5 async-timeout==3.0.1 attrdict==2.0.1 attrs==19.1.0 Babel==2.6.0 backcall==0.1.0 bcolz==1.2.1 bleach==3.1.0 boto3==1.5.27 botocore==1.8.50 Bottleneck==1.2.1 cchardet==2.1.1 ccxt==1.17.94 certifi==2019.3.9 cffi==1.12.3 chardet==3.0.4 click==6.7 cloudpickle==1.0.0 contextlib2==0.5.5 cryptography==2.6.1 cycler==0.10.0 cyordereddict==1.0.0 Cython==0.27.3 cytoolz==0.9.0.1 decorator==4.4.0 defusedxml==0.6.0 docutils==0.14 empyrical==0.2.2 enigma-catalyst==0.5.21 entrypoints==0.3 eth-abi==1.3.0 eth-account==0.2.3 eth-hash==0.2.0 eth-keyfile==0.5.1 eth-keys==0.2.2 eth-rlp==0.1.2 eth-typing==2.1.0 eth-utils==1.6.0 hexbytes==0.1.0 idna==2.8 idna-ssl==1.1.0 imagesize==1.1.0 inflection==0.3.1 intervaltree==2.1.0 ipykernel==5.1.0 ipython==7.5.0 ipython-genutils==0.2.0 isort==4.3.19 jedi==0.13.3 Jinja2==2.10.1 jmespath==0.9.4 jsonschema==3.0.1 jupyter-client==5.2.4 jupyter-core==4.4.0 keyring==18.0.0 kiwisolver==1.1.0 lazy-object-proxy==1.4.1 Logbook==0.12.5 lru-dict==1.1.6 lxml==4.3.3 Mako==1.0.7 MarkupSafe==1.1.1 matplotlib==3.1.0 mccabe==0.6.1 mistune==0.8.4 mkl-fft==1.0.12 mkl-random==1.0.2 more-itertools==7.0.0 multidict==4.5.2 multipledispatch==0.4.9 nbconvert==5.5.0 nbformat==4.4.0 networkx==2.1 numexpr==2.6.4 numpy==1.16.0 numpydoc==0.9.1 packaging==19.0 pandas==0.24.2 pandas-datareader==0.6.0 pandocfilters==1.4.2 parsimonious==0.8.1 parso==0.4.0 patsy==0.5.1 pexpect==4.7.0 pickleshare==0.7.5 prompt-toolkit==2.0.9 psutil==5.6.2 ptyprocess==0.6.0 pycares==3.0.0 pycodestyle==2.5.0 pycparser==2.19 pycryptodome==3.8.2 pyflakes==2.1.1 Pygments==2.4.0 pylint==2.3.1 pyOpenSSL==19.0.0 pyparsing==2.4.0 pyrsistent==0.14.11 PySocks==1.7.0 python-dateutil==2.8.0 python-editor==1.0.4 pytz==2019.1 pyzmq==18.0.0 QtAwesome==0.5.7 qtconsole==4.5.1 QtPy==1.7.1 Quandl==3.4.5 redo==2.0.1 requests==2.21.0 requests-file==1.4.3 requests-ftp==0.3.1 requests-toolbelt==0.8.0 rlp==1.1.0 rope==0.14.0 s3transfer==0.1.13 scipy==1.2.1 six==1.12.0 snowballstemmer==1.2.1 sortedcontainers==1.5.9 Sphinx==2.0.1 sphinxcontrib-applehelp==1.0.1 sphinxcontrib-devhelp==1.0.1 sphinxcontrib-htmlhelp==1.0.2 sphinxcontrib-jsmath==1.0.1 sphinxcontrib-qthelp==1.0.2 sphinxcontrib-serializinghtml==1.1.3 spyder==3.3.4 spyder-kernels==0.4.4 SQLAlchemy==1.2.2 statsmodels==0.9.0 tables==3.4.2 testpath==0.4.2 toolz==0.9.0 tornado==6.0.2 traitlets==4.3.2 typed-ast==1.3.4 typing-extensions==3.7.2 urllib3==1.24.3 wcwidth==0.1.7 web3==4.4.1 webencodings==0.5.1 websockets==5.0.1 wrapt==1.11.1 wurlitzer==1.0.2 yarl==1.1.0 在运行catalyst 的时候会提示: runfile('/Users/mac/Desktop/UPF/Master Thesis/py/crypocurrency/trading.py', wdir='/Users/mac/Desktop/UPF/Master Thesis/py/crypocurrency') Traceback (most recent call last): File "<ipython-input-10-5dde7acc5e52>", line 1, in <module> runfile('/Users/mac/Desktop/UPF/Master Thesis/py/crypocurrency/trading.py', wdir='/Users/mac/Desktop/UPF/Master Thesis/py/crypocurrency') File "/Users/mac/miniconda3/envs/catalyst/lib/python3.6/site-packages/spyder_kernels/customize/spydercustomize.py", line 827, in runfile execfile(filename, namespace) File "/Users/mac/miniconda3/envs/catalyst/lib/python3.6/site-packages/spyder_kernels/customize/spydercustomize.py", line 110, in execfile exec(compile(f.read(), filename, 'exec'), namespace) File "/Users/mac/Desktop/UPF/Master Thesis/py/crypocurrency/trading.py", line 6, in <module> from catalyst import run_algorithm File "/Users/mac/Desktop/UPF/Master Thesis/py/crypocurrency/catalyst.py", line 1, in <module> from catalyst import run_algorithm ImportError: cannot import name 'run_algorithm' 我在网上找了很久的解决方案但是都没有一个能解决到的。 会不会是因为在安装catalyst的时候就已经出了这个问题所导致的? 以下为我在安装的时候发生的错误。 请各位大神帮帮忙! ERROR: Cannot uninstall 'certifi'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall. Note: you may need to restart the kernel to use updated packages.
matplotlib绘图时报错(股市相关ohlc的绘制)
#如果subplot2和subplot1不共享x轴,candlestick2_ohlc加上(代码块中被我注释掉了),也不会报错,如果共享x轴,去掉candlestick2_ohlc也不报错,但是不去掉sharex=subplot1,同时运行candlestick2_ohlc,就会报错,以下是全错信息以及全部代码。 ``` view limit minimum -36854.55 is less than 1 and is an invalid Matplotlib date value. This often happens if you pass a non-datetime value to an axis that has datetime units ``` ``` import pandas import matplotlib import matplotlib.pyplot as plt from mpl_finance import candlestick2_ohlc def stockPricePlot(ticker): #Step1. Load Data historty = pandas.read_csv('./Data/TickerList_CN/daily_history/'+ticker+'.csv',parse_dates=True,index_col=0) #Step2. Data Maniulation volume = historty['volume'] volume = volume.reset_index() volume['timestamp'] = volume['timestamp'].map(matplotlib.dates.date2num) # print('volume-timestamp',volume['timestamp']) ohlc = historty[['open','high','low','close']] ohlc = ohlc.reset_index() #把原索引列timestamp列变成非索引列,索引列重置为012346... ohlc['timestamp'] = ohlc['timestamp'].map(matplotlib.dates.date2num) print(ohlc) #Step3. Plot Figures .Subplot1: scatter plot .Subplot2.candle stick plot. subplot1 = plt.subplot2grid((2,1),(0,0),rowspan=1,colspan=1) subplot1.plot(volume['timestamp'],volume) subplot1.xaxis_date() subplot2 = plt.subplot2grid((2,1),(1,0),rowspan=1,colspan=1,sharex=subplot1) #candlestick2_ohlc(ax=subplot1,opens=historty['open'],highs=historty['high'],lows=historty['low'],closes=historty['close'],width=0.5,colordown='g',colorup='red') plt.show() stockPricePlot('000830') ``` 顺便把csv的内容也贴上 ``` timestamp,open,high,close,low,volume,price_change,p_change,ma5,ma10,ma20,v_ma5,v_ma10,v_ma20 2016-08-03,4.61,4.96,4.86,4.6,626679.94,0.22,4.74,4.86,4.86,4.86,626679.94,626679.94,626679.94 2016-08-04,4.82,4.85,4.82,4.78,288089.19,-0.04,-0.82,4.84,4.84,4.84,457384.57,457384.57,457384.57 2016-08-05,4.82,4.9,4.83,4.81,266873.69,0.01,0.21,4.837,4.837,4.837,393880.94,393880.94,393880.94 2016-08-08,4.84,4.86,4.83,4.76,230093.7,0.0,0.0,4.835,4.835,4.835,352934.13,352934.13,352934.13 2016-08-09,4.82,4.83,4.81,4.78,199009.5,-0.02,-0.41,4.83,4.83,4.83,322149.2,322149.2,322149.2 2016-08-10,4.81,4.82,4.77,4.76,217534.69,-0.04,-0.83,4.812,4.82,4.82,240320.15,304713.45,304713.45 2016-08-11,4.76,4.8,4.72,4.72,181169.86,-0.05,-1.05,4.792,4.806,4.806,218936.29,287064.37,287064.37 2016-08-12,4.73,4.79,4.78,4.72,116452.0,0.06,1.27,4.782,4.803,4.803,188851.95,265737.82,265737.82 2016-08-15,4.81,4.87,4.86,4.79,323216.97,0.08,1.67,4.788,4.809,4.809,207476.6,272124.39,272124.39 2016-08-16,4.87,4.89,4.85,4.85,203649.27,-0.01,-0.21,4.796,4.813,4.813,208404.56,265276.88,265276.88 2016-08-17,4.86,4.92,4.91,4.84,225633.14,0.06,1.24,4.824,4.818,4.822,210024.25,225172.2,261672.9 2016-08-18,4.91,4.93,4.89,4.86,189027.94,-0.02,-0.41,4.858,4.825,4.828,211595.86,215266.08,255619.16 2016-08-19,4.88,4.9,4.86,4.84,138870.8,-0.03,-0.61,4.874,4.828,4.83,216079.62,202465.79,246638.51 2016-08-22,4.86,4.88,4.85,4.84,116605.22,-0.01,-0.21,4.872,4.83,4.831,174757.27,191116.94,237350.42 2016-08-23,4.84,4.92,4.9,4.84,215466.28,0.05,1.03,4.882,4.839,4.836,177120.68,192762.62,235891.48 2016-08-24,4.9,4.91,4.84,4.83,189417.73,-0.06,-1.22,4.868,4.846,4.836,169877.59,189950.92,232986.87 2016-08-25,4.83,4.84,4.8,4.77,160784.48,-0.04,-0.83,4.85,4.854,4.834,164228.9,187912.38,228739.67 2016-08-26,4.8,4.84,4.81,4.79,143496.7,0.01,0.21,4.84,4.857,4.833,165154.08,190616.85,224003.95 2016-08-29,4.79,4.84,4.82,4.79,96111.66,0.01,0.21,4.834,4.853,4.832,161055.37,167906.32,217272.78 2016-08-30,4.82,4.84,4.83,4.81,106218.43,0.01,0.21,4.82,4.851,4.832,139205.8,158163.24,211720.06 2016-08-31,4.83,4.84,4.81,4.8,93226.24,-0.02,-0.41,4.814,4.841,4.83,119967.5,144922.55,185047.37 2016-09-01,4.82,4.86,4.8,4.79,204477.28,-0.01,-0.21,4.814,4.832,4.829,128706.06,146467.48,180866.78 2016-09-02,4.8,4.82,4.78,4.74,135338.0,-0.02,-0.42,4.808,4.824,4.826,127074.32,146114.2,174289.99 2016-09-05,4.8,4.83,4.81,4.78,126023.84,0.03,0.63,4.806,4.82,4.825,133056.76,147056.06,169086.5 2016-09-06,4.8,4.85,4.85,4.78,143903.38,0.04,0.83,4.81,4.815,4.827,140593.75,139899.77,166331.2 2016-09-07,4.85,4.91,4.87,4.83,231990.72,0.02,0.41,4.822,4.818,4.832,168346.64,144157.07,167054.0 2016-09-08,4.87,4.88,4.87,4.84,108384.55,0.0,0.0,4.836,4.825,4.84,149128.1,138917.08,163414.73 2016-09-09,4.87,4.88,4.85,4.83,130496.85,-0.02,-0.41,4.85,4.829,4.843,148159.87,137617.1,164116.97 2016-09-12,4.77,4.82,4.73,4.73,189833.31,-0.12,-2.47,4.834,4.82,4.837,160921.76,146989.26,157447.79 2016-09-13,4.75,4.79,4.78,4.74,94428.45,0.05,1.06,4.82,4.815,4.833,151026.78,145810.26,151986.75 2016-09-14,4.76,4.79,4.77,4.74,92728.25,-0.01,-0.21,4.8,4.811,4.826,123174.28,145760.46,145341.51 2016-09-19,4.77,4.81,4.8,4.76,87807.47,0.03,0.63,4.786,4.811,4.822,119058.87,134093.48,140280.48 2016-09-20,4.81,4.81,4.79,4.78,72566.01,-0.01,-0.21,4.774,4.812,4.818,107472.7,127816.28,136965.24 2016-09-21,4.79,4.86,4.85,4.78,170724.33,0.06,1.25,4.798,4.816,4.818,103650.9,132286.33,139671.2 2016-09-22,4.86,4.89,4.85,4.84,125819.01,0.0,0.0,4.812,4.816,4.816,109929.01,130477.9,135188.83 2016-09-23,4.85,4.88,4.86,4.84,107164.01,0.01,0.21,4.83,4.815,4.817,112816.17,117995.22,131076.15 2016-09-26,4.85,4.86,4.73,4.73,140899.19,-0.13,-2.67,4.816,4.801,4.813,123434.51,121246.69,130081.88 2016-09-27,4.74,4.83,4.82,4.72,157793.09,0.09,1.9,4.822,4.798,4.814,140479.93,123976.31,130796.7 2016-09-28,4.82,4.94,4.92,4.8,305211.53,0.1,2.08,4.836,4.817,4.819,167377.37,135514.13,141251.7 2016-09-29,4.94,4.94,4.91,4.88,181758.17,-0.01,-0.2,4.848,4.83,4.823,178565.2,144247.11,145028.68 2016-09-30,4.89,5.02,4.99,4.88,244755.08,0.08,1.63,4.874,4.852,4.832,206083.41,159449.79,152605.13 2016-10-10,5.02,5.08,5.05,4.98,291363.28,0.06,1.2,4.938,4.877,4.844,236176.23,179805.37,156949.43 2016-10-11,5.05,5.05,5.02,5.0,163352.81,-0.03,-0.59,4.978,4.9,4.856,237288.17,188884.05,158350.17 2016-10-12,5.01,5.02,5.0,4.95,210046.03,-0.02,-0.4,4.994,4.915,4.866,218255.07,192816.22,162551.28 2016-10-13,4.99,5.03,5.01,4.96,139951.05,0.01,0.2,5.014,4.931,4.874,209893.65,194229.42,162353.66 2016-10-14,5.0,5.05,5.03,4.97,179316.45,0.02,0.4,5.022,4.948,4.882,196805.92,201444.67,159719.95 2016-10-17,5.03,5.04,4.94,4.94,175530.81,-0.09,-1.79,5.0,4.969,4.885,173639.43,204907.83,163077.26 2016-10-18,4.94,5.03,5.03,4.94,149136.8,0.09,1.82,5.002,4.99,4.894,170796.23,204042.2,164009.26 2016-10-19,5.03,5.04,5.01,5.0,127851.98,-0.02,-0.4,5.004,4.999,4.908,154357.42,186306.25,160910.19 2016-10-20,5.01,5.01,4.98,4.98,105772.71,-0.03,-0.6,4.998,5.006,4.918,147521.75,178707.7,161477.4 2016-10-21,4.99,5.03,5.0,4.96,137238.02,0.02,0.4,4.992,5.007,4.93,139106.06,167955.99,163702.89 2016-10-24,5.0,5.08,5.06,5.0,224481.55,0.06,1.2,5.016,5.008,4.943,148896.21,161267.82,170536.6 2016-10-25,5.06,5.12,5.08,5.05,184427.17,0.02,0.4,5.026,5.014,4.957,155954.29,163375.26,176129.65 2016-10-26,5.06,5.11,5.06,5.04,138706.59,-0.02,-0.39,5.036,5.02,4.968,158125.21,156241.31,174528.77 2016-10-27,5.05,5.06,5.03,5.0,131975.73,-0.03,-0.59,5.046,5.022,4.977,163365.81,155443.78,174836.6 2016-10-28,5.04,5.29,5.19,5.04,785797.12,0.16,3.18,5.084,5.038,4.993,293077.63,216091.85,208768.26 2016-11-02,5.26,5.35,5.25,5.23,301784.03,-0.01,-0.19,5.122,5.069,5.019,308538.13,228717.17,216812.5 2016-11-03,5.23,5.31,5.3,5.16,376836.0,0.05,0.95,5.166,5.096,5.043,347019.89,251487.09,227764.65 2016-11-04,5.26,5.27,5.23,5.18,274671.59,-0.07,-1.32,5.2,5.118,5.059,374212.89,266169.05,226237.65 2016-11-07,5.23,5.44,5.42,5.19,608581.12,0.19,3.63,5.278,5.162,5.084,469533.97,316449.89,247578.8 2016-11-08,5.4,5.48,5.44,5.35,364300.88,0.02,0.37,5.328,5.206,5.107,385234.72,339156.18,253556.09 2016-11-09,5.42,5.45,5.38,5.2,384702.88,-0.06,-1.1,5.354,5.238,5.123,401818.49,355178.31,258223.07 2016-11-10,5.4,5.46,5.44,5.37,321734.97,0.06,1.11,5.382,5.274,5.144,390798.29,368909.09,266142.17 2016-11-11,5.46,5.57,5.53,5.39,424884.09,0.09,1.65,5.442,5.321,5.171,420840.79,397526.84,276884.08 2016-11-14,5.5,5.66,5.65,5.47,437627.88,0.12,2.17,5.488,5.383,5.203,386650.14,428092.06,291767.92 2016-11-15,5.65,5.65,5.57,5.53,228796.92,-0.08,-1.42,5.514,5.421,5.23,359549.35,372392.04,294241.94 2016-11-16,5.57,5.59,5.5,5.46,228590.28,-0.07,-1.26,5.538,5.446,5.258,328326.83,365072.66,296894.92 2016-11-17,5.5,5.61,5.59,5.47,249515.69,0.09,1.64,5.568,5.475,5.286,313882.97,352340.63,301913.86 2016-11-18,5.6,5.65,5.48,5.48,260436.02,-0.11,-1.97,5.558,5.5,5.309,280993.36,350917.07,308543.06 2016-11-21,5.45,5.54,5.48,5.42,205862.36,0.0,0.0,5.524,5.506,5.334,234640.25,310645.2,313547.54 2016-11-22,5.46,5.53,5.5,5.46,252257.27,0.02,0.36,5.51,5.512,5.359,239332.32,299440.84,319298.51 2016-11-23,5.5,5.52,5.44,5.42,235117.09,-0.06,-1.09,5.498,5.518,5.378,240637.69,284482.26,319830.28 2016-11-24,5.44,5.48,5.45,5.41,163310.2,0.01,0.18,5.47,5.519,5.397,223396.59,268639.78,318774.44 2016-11-25,5.44,5.46,5.4,5.33,196095.88,-0.05,-0.92,5.454,5.506,5.414,210528.56,245760.96,321643.9 2016-11-28,5.41,5.44,5.41,5.38,207827.36,0.01,0.18,5.44,5.482,5.433,210921.56,222780.91,325436.48 2016-11-29,5.42,5.51,5.42,5.39,274153.03,0.01,0.18,5.424,5.467,5.444,215300.71,227316.52,299854.28 2016-11-30,5.41,5.43,5.35,5.33,221440.56,-0.07,-1.29,5.406,5.452,5.449,212565.41,226601.55,295837.1 2016-12-01,5.34,5.42,5.39,5.34,170585.72,0.04,0.75,5.394,5.432,5.454,214020.51,218708.55,285524.59 2016-12-02,5.4,5.4,5.35,5.33,133508.36,-0.04,-0.74,5.384,5.419,5.46,201503.01,206015.78,278466.43 2016-12-05,5.32,5.47,5.38,5.28,250378.88,0.03,0.56,5.378,5.409,5.458,210013.31,210467.44,260556.32 2016-12-06,5.39,5.43,5.36,5.33,102467.55,-0.02,-0.37,5.366,5.395,5.454,175676.21,195488.46,247464.65 2016-12-07,5.35,5.41,5.4,5.34,144105.52,0.04,0.75,5.376,5.391,5.455,160209.21,186387.31,235434.78 2016-12-08,5.4,5.42,5.39,5.36,129851.06,-0.01,-0.18,5.376,5.385,5.452,152062.27,183041.39,225840.59 2016-12-09,5.39,5.44,5.44,5.38,190243.28,0.05,0.93,5.394,5.389,5.448,163409.26,182456.13,214108.55 2016-12-12,5.44,5.56,5.3,5.26,346679.38,-0.14,-2.57,5.378,5.378,5.43,182669.36,196341.33,209561.12 2016-12-13,5.23,5.38,5.35,5.21,158232.72,0.05,0.94,5.376,5.371,5.419,193822.39,184749.3,206032.91 2016-12-14,5.34,5.63,5.49,5.33,594432.31,0.14,2.62,5.394,5.385,5.419,283887.75,222048.48,224325.01 2016-12-15,5.48,5.59,5.51,5.45,313357.97,0.02,0.36,5.418,5.397,5.415,320589.13,236325.7,227517.13 2016-12-16,5.57,5.65,5.54,5.51,355211.72,0.03,0.54,5.438,5.416,5.418,353582.82,258496.04,232255.91 2016-12-19,5.55,5.85,5.78,5.49,516997.12,0.24,4.33,5.534,5.456,5.433,387646.37,285157.86,247812.65 2016-12-20,5.71,5.76,5.64,5.61,334309.03,-0.14,-2.42,5.592,5.484,5.44,422861.63,308342.01,251915.24 2016-12-21,5.68,5.74,5.69,5.62,234914.2,0.05,0.89,5.632,5.513,5.452,350958.01,317422.88,251905.09 2016-12-22,5.65,5.77,5.71,5.55,318071.28,0.02,0.35,5.672,5.545,5.465,351900.67,336244.9,259643.15 2016-12-23,5.69,5.78,5.74,5.68,279325.12,0.03,0.53,5.712,5.575,5.482,336723.35,345153.09,263804.61 2016-12-26,5.78,5.78,5.72,5.58,190401.44,-0.02,-0.35,5.7,5.617,5.498,271404.21,329525.29,262933.31 2016-12-27,5.7,5.72,5.63,5.6,171411.41,-0.09,-1.57,5.698,5.645,5.508,238824.69,330843.16,257796.23 2016-12-28,5.67,5.95,5.82,5.63,477251.31,0.19,3.38,5.724,5.678,5.532,287292.11,319125.06,270586.77 2016-12-29,5.75,5.78,5.64,5.63,327869.56,-0.18,-3.09,5.71,5.691,5.544,289251.77,320576.22,278450.96 2016-12-30,5.66,5.71,5.59,5.59,210506.0,-0.05,-0.89,5.68,5.696,5.556,275487.94,306105.65,282300.84 2017-01-03,5.61,5.7,5.64,5.59,160105.34,0.05,0.89,5.664,5.682,5.569,269428.72,270416.47,277787.17 2017-01-04,5.64,5.78,5.78,5.63,375232.0,0.14,2.48,5.694,5.696,5.59,310192.84,274508.77,291425.39 2017-01-05,5.76,5.9,5.74,5.72,376577.75,-0.04,-0.69,5.678,5.701,5.607,290058.13,288675.12,303049.0 2017-01-06,5.73,5.94,5.87,5.7,507822.16,0.13,2.27,5.724,5.717,5.631,326048.65,307650.21,321947.56 2017-01-09,5.89,5.95,5.95,5.78,430466.25,0.08,1.36,5.796,5.738,5.657,370040.7,322764.32,333958.7 2017-01-10,5.91,6.01,5.89,5.85,366784.03,-0.06,-1.01,5.846,5.755,5.686,411376.44,340402.58,334963.94 2017-01-11,5.88,5.92,5.81,5.79,226509.8,-0.08,-1.36,5.852,5.773,5.709,381632.0,345912.42,338377.79 2017-01-12,5.81,5.85,5.7,5.69,174526.0,-0.11,-1.89,5.844,5.761,5.72,341221.65,315639.89,317382.47 2017-01-13,5.69,5.74,5.66,5.64,124501.01,-0.04,-0.7,5.802,5.763,5.727,264557.42,295303.03,307939.63 2017-01-16,5.65,5.68,5.43,5.21,302959.91,-0.23,-4.06,5.698,5.747,5.722,239056.15,304548.43,305327.04 2017-01-17,5.39,5.49,5.49,5.39,111416.42,0.06,1.1,5.618,5.732,5.707,187982.63,299679.53,285048.0 2017-01-18,5.48,5.52,5.46,5.45,90600.41,-0.03,-0.55,5.548,5.7,5.698,160800.75,271216.37,272862.57 2017-01-19,5.46,5.48,5.44,5.41,79258.0,-0.02,-0.37,5.496,5.67,5.686,141747.15,241484.4,265079.76 2017-01-20,5.44,5.5,5.47,5.42,105897.97,0.03,0.55,5.458,5.63,5.674,138026.54,201291.98,254471.09 2017-01-23,5.48,5.57,5.54,5.48,125080.38,0.07,1.28,5.48,5.589,5.664,102450.64,170753.39,246758.86 2017-01-24,5.52,5.58,5.55,5.52,84048.67,0.01,0.18,5.492,5.555,5.655,96977.09,142479.86,241441.22 2017-01-25,5.53,5.6,5.57,5.52,97402.88,0.02,0.36,5.514,5.531,5.652,98337.58,129569.17,237740.79 2017-01-26,5.58,5.59,5.56,5.54,77465.0,-0.01,-0.18,5.538,5.517,5.639,97978.98,119863.07,217751.48 2017-02-02,5.56,5.57,5.56,5.56,24.0,0.0,0.0,5.556,5.507,5.635,76804.19,107415.36,201359.2 2017-02-03,5.56,5.57,5.54,5.52,61016.06,-0.02,-0.36,5.556,5.518,5.633,63991.32,83220.98,193884.7 2017-02-06,5.55,5.67,5.65,5.55,121645.17,0.11,1.99,5.576,5.534,5.633,71510.62,84243.85,191961.69 2017-02-07,5.67,5.72,5.68,5.61,135713.55,0.03,0.53,5.598,5.556,5.628,79172.76,88755.17,179985.77 2017-02-08,5.68,5.7,5.7,5.61,109303.34,0.02,0.35,5.626,5.582,5.626,85540.42,91759.7,166622.05 2017-02-09,5.71,5.72,5.71,5.67,139079.14,0.01,0.17,5.656,5.606,5.618,113351.45,95077.82,148184.9 2017-02-10,5.71,5.73,5.7,5.65,257816.23,-0.01,-0.17,5.688,5.622,5.606,152711.49,108351.4,139552.4 2017-02-13,5.74,5.86,5.84,5.72,372431.03,0.14,2.46,5.726,5.651,5.603,202868.66,137189.64,139834.75 2017-02-14,5.82,5.82,5.78,5.73,182502.72,-0.06,-1.03,5.746,5.672,5.602,212226.49,145699.62,137634.39 2017-02-15,5.79,5.82,5.7,5.69,199568.77,-0.08,-1.38,5.746,5.686,5.602,230279.58,157910.0,138886.53 2017-02-16,5.7,5.79,5.76,5.68,142791.84,0.06,1.05,5.756,5.706,5.607,231022.12,172186.79,139801.07 2017-02-17,5.79,5.88,5.75,5.74,244642.52,-0.01,-0.17,5.766,5.727,5.623,228387.38,190549.43,136885.21 2017-02-20,5.76,5.9,5.88,5.74,347226.56,0.13,2.26,5.774,5.75,5.642,223346.48,213107.57,148675.71 2017-02-21,5.87,5.9,5.9,5.83,224756.08,0.02,0.34,5.798,5.772,5.664,231797.15,222011.82,155383.5 2017-02-22,5.9,5.94,5.9,5.85,253411.12,0.0,0.0,5.838,5.792,5.687,242565.62,236422.6,164091.15 2017-02-23,5.9,5.91,5.86,5.83,169689.16,-0.04,-0.68,5.858,5.807,5.707,247945.09,239483.6,167280.71 2017-02-24,5.86,5.91,5.9,5.84,155459.5,0.04,0.68,5.888,5.827,5.725,230108.48,229247.93,168799.67 2017-02-27,5.92,6.49,6.49,5.9,1825508.0,0.59,10.0,6.01,5.892,5.772,525764.77,374555.63,255872.63 2017-02-28,6.53,6.66,6.39,6.26,1193195.38,-0.1,-1.54,6.108,5.953,5.813,719452.63,475624.89,310662.26 2017-03-01,6.29,6.54,6.37,6.28,892830.5,-0.02,-0.31,6.202,6.02,5.853,847336.51,544951.07,351430.53 2017-03-02,6.35,6.44,6.28,6.23,621133.0,-0.09,-1.41,6.286,6.072,5.889,937625.28,592785.18,382485.98 2017-03-03,6.25,6.36,6.33,6.23,359014.09,0.05,0.8,6.372,6.13,5.929,978336.19,604222.34,397385.89 2017-03-06,6.3,6.41,6.37,6.23,332092.03,0.04,0.63,6.348,6.179,5.965,679653.0,602708.89,407908.23 2017-03-07,6.43,6.43,6.14,6.03,534065.25,-0.23,-3.61,6.298,6.203,5.988,547826.97,633639.8,427825.81 2017-03-08,6.16,6.23,6.15,6.03,366088.0,0.01,0.16,6.254,6.228,6.01,442478.47,644907.49,440665.05 2017-03-09,6.14,6.14,6.05,6.03,245602.69,-0.1,-1.63,6.208,6.247,6.027,367372.41,652498.84,445991.22 2017-03-10,6.06,6.13,6.06,6.03,207482.81,0.01,0.17,6.154,6.263,6.045,337066.16,657701.18,443474.55 2017-03-13,6.06,6.15,6.13,5.93,355819.44,0.07,1.16,6.106,6.227,6.06,341811.64,510732.32,442643.97 2017-03-14,6.11,6.14,6.03,6.02,191354.14,-0.1,-1.63,6.084,6.191,6.072,273269.42,410548.2,443086.54 2017-03-15,6.02,6.06,5.93,5.89,235951.48,-0.1,-1.66,6.04,6.147,6.084,247242.11,344860.29,444905.68 2017-03-16,5.96,6.02,5.99,5.96,157317.92,0.06,1.01,6.028,6.118,6.095,229585.16,298478.79,445631.98 2017-03-17,6.02,6.07,5.92,5.9,229742.86,-0.07,-1.17,6.0,6.077,6.104,234037.17,285551.66,444887.0 2017-03-20,5.91,5.96,5.86,5.8,243509.77,-0.06,-1.01,5.946,6.026,6.103,211575.23,276693.44,439701.16 2017-03-21,5.87,5.89,5.86,5.8,193624.44,0.0,0.0,5.912,5.998,6.101,212029.29,242649.36,438144.58 2017-03-22,5.84,5.89,5.89,5.8,171621.55,0.03,0.51,5.904,5.972,6.1,199163.31,223202.71,434055.1 2017-03-23,5.88,5.92,5.78,5.75,261048.88,-0.11,-1.87,5.862,5.945,6.096,219909.5,224747.33,438623.09 2017-03-24,5.78,5.84,5.82,5.76,245341.84,0.04,0.69,5.842,5.921,6.092,223029.3,228533.23,443117.2 2017-03-27,5.82,5.85,5.84,5.76,261348.16,0.02,0.34,5.838,5.892,6.06,226596.97,219086.1,364909.21 2017-03-28,5.83,5.85,5.84,5.8,151144.23,0.0,0.0,5.834,5.873,6.032,218100.93,215065.11,312806.65 2017-03-29,5.85,5.9,5.85,5.81,218558.95,0.01,0.17,5.826,5.865,6.006,227488.41,213325.86,279093.08 2017-03-30,5.84,5.85,5.65,5.65,286519.41,-0.2,-3.42,5.8,5.831,5.975,232582.52,226246.01,262362.4 2017-03-31,5.65,5.68,5.62,5.59,141881.16,-0.03,-0.53,5.76,5.801,5.939,211890.38,217459.84,251505.75 2017-04-05,5.65,5.77,5.75,5.65,153245.52,0.13,2.31,5.742,5.79,5.908,190269.85,208433.41,242563.43 2017-04-06,5.78,5.86,5.85,5.73,235799.2,0.1,1.74,5.744,5.789,5.894,207200.85,212650.89,227650.12 2017-04-07,5.84,6.02,6.0,5.82,477810.31,0.15,2.56,5.774,5.8,5.886,259051.12,243269.77,233236.24 2017-04-10,5.95,6.06,5.96,5.88,316332.03,-0.04,-0.67,5.836,5.818,5.882,265013.64,248798.08,236772.71 2017-04-11,6.22,6.29,6.06,6.03,561705.69,0.1,1.68,5.924,5.842,5.882,348978.55,280434.47,254483.85 2017-04-12,6.07,6.07,5.93,5.93,328435.22,-0.13,-2.15,5.96,5.851,5.872,384016.49,287143.17,253114.64 2017-04-13,5.91,6.04,5.97,5.9,178446.69,0.04,0.68,5.984,5.864,5.869,372545.99,289873.42,252469.27 2017-04-14,5.98,6.02,5.96,5.93,188015.2,-0.01,-0.17,5.976,5.875,5.87,314586.97,286819.04,250072.45 2017-04-17,5.99,6.06,6.03,5.96,220216.48,0.07,1.17,5.99,5.913,5.872,295363.86,280188.75,253217.38 2017-04-18,6.09,6.24,6.11,6.08,539141.0,0.08,1.33,6.0,5.962,5.882,290850.92,319914.73,268687.29 2017-04-19,6.11,6.38,6.3,6.08,665684.31,0.19,3.11,6.074,6.017,5.904,358300.74,371158.61,289796.01 2017-04-20,6.31,6.45,6.36,6.21,583207.38,0.06,0.95,6.152,6.068,5.929,439252.87,405899.43,309275.16 2017-04-21,6.34,6.45,6.29,6.27,340997.12,-0.07,-1.1,6.218,6.097,5.949,469849.26,392218.11,317743.94 2017-04-24,6.25,6.27,6.08,6.07,398227.75,-0.21,-3.34,6.228,6.109,5.964,505451.51,400407.68,324602.88 2017-04-25,6.08,6.37,6.34,6.08,516582.47,0.26,4.28,6.274,6.137,5.99,500939.81,395895.36,338164.91 2017-04-26,6.37,6.42,6.31,6.29,370343.59,-0.03,-0.47,6.276,6.175,6.013,441871.66,400086.2,343614.69 2017-04-27,6.3,6.53,6.49,6.22,597322.25,0.18,2.85,6.302,6.227,6.046,444694.64,441973.76,365923.59 2017-04-28,6.44,6.51,6.45,6.38,340168.72,-0.04,-0.62,6.334,6.276,6.076,444528.96,457189.11,372004.08 2017-05-02,6.47,6.64,6.38,6.36,480343.44,-0.07,-1.08,6.394,6.311,6.112,460952.09,483201.8,381695.28 2017-05-03,6.35,6.43,6.39,6.27,352221.91,0.01,0.16,6.404,6.339,6.151,428079.98,464509.89,392212.31 2017-05-04,6.37,6.4,6.24,6.22,293371.59,-0.15,-2.35,6.39,6.333,6.175,412685.58,427278.62,399218.62 2017-05-05,6.22,6.26,6.13,6.08,307159.78,-0.11,-1.76,6.318,6.31,6.189,354653.09,399673.86,402786.65 2017-05-08,6.11,6.19,6.09,6.09,210296.95,-0.04,-0.65,6.246,6.29,6.194,328678.73,386603.85,389410.98 2017-05-09,6.09,6.2,6.18,6.03,226576.88,0.09,1.48,6.206,6.3,6.205,277925.42,369438.76,384923.22 2017-05-10,6.19,6.22,6.04,6.04,256266.52,-0.14,-2.27,6.136,6.27,6.204,258734.34,343407.16,369651.26 2017-05-11,6.01,6.07,6.07,5.88,274932.19,0.03,0.5,6.102,6.246,6.211,255046.46,333866.02,366976.11 2017-05-12,6.06,6.09,5.97,5.97,210075.0,-0.1,-1.65,6.07,6.194,6.211,235629.51,295141.3,368557.53 2017-05-15,5.99,6.03,5.97,5.96,127264.79,0.0,0.0,6.046,6.146,6.211,219023.08,273850.91,365520.01 2017-05-16,5.97,6.22,6.2,5.96,325223.88,0.23,3.85,6.05,6.128,6.22,238752.48,258338.95,370770.38 2017-05-17,6.18,6.3,6.2,6.17,251683.84,0.0,0.0,6.082,6.109,6.224,237835.94,248285.14,356397.52 2017-05-18,6.14,6.34,6.25,6.11,272882.75,0.05,0.81,6.118,6.11,6.222,237426.05,246236.26,336757.44 2017-05-19,6.25,6.31,6.24,6.19,161461.73,-0.01,-0.16,6.172,6.121,6.216,227703.4,231666.45,315670.16 2017-05-22,6.26,6.28,6.15,6.1,202534.77,-0.09,-1.44,6.208,6.127,6.209,242757.39,230890.24,308747.04 2017-05-23,6.13,6.14,5.97,5.96,200261.86,-0.18,-2.93,6.162,6.106,6.203,217764.99,228258.73,298848.75 2017-05-24,5.95,6.06,6.05,5.82,193257.0,0.08,1.34,6.132,6.107,6.189,206079.62,221957.78,282682.47 2017-05-25,6.05,6.25,6.22,5.94,279575.91,0.17,2.81,6.126,6.122,6.184,207418.25,222422.15,278144.09 2017-05-26,6.18,6.25,6.14,6.13,188079.44,-0.08,-1.29,6.106,6.139,6.167,212741.8,220222.6,257681.95 2017-05-31,6.23,6.25,6.15,6.14,184733.92,0.01,0.16,6.106,6.157,6.152,209181.63,225969.51,249910.21 2017-06-01,6.14,6.17,5.96,5.93,260544.8,-0.19,-3.09,6.104,6.133,6.131,221238.21,219501.6,238920.28 2017-06-02,5.92,6.09,6.05,5.91,190577.73,0.09,1.51,6.104,6.118,6.114,220702.36,213390.99,230838.07 2017-06-05,6.08,6.09,6.03,6.01,150556.22,-0.02,-0.33,6.066,6.096,6.103,194898.42,201158.34,223697.3 2017-06-06,6.01,6.06,6.04,6.01,112455.94,0.01,0.17,6.046,6.076,6.099,179773.72,196257.76,213962.11 2017-06-07,6.04,6.2,6.18,6.03,266042.69,0.14,2.32,6.052,6.079,6.103,196035.48,202608.55,216749.39 2017-06-08,6.18,6.22,6.22,6.15,205607.56,0.04,0.65,6.104,6.104,6.105,185048.03,203143.12,215700.93 2017-06-09,6.21,6.26,6.23,6.16,187358.23,0.01,0.16,6.14,6.122,6.115,184404.13,202553.24,212255.51 2017-06-12,6.22,6.4,6.33,6.18,445544.41,0.1,1.6,6.2,6.133,6.128,243401.77,219150.09,220786.12 2017-06-13,6.32,6.38,6.35,6.28,253827.28,0.02,0.32,6.262,6.154,6.147,271676.03,225724.88,222973.74 2017-06-14,6.34,6.35,6.26,6.26,204573.92,-0.09,-1.42,6.278,6.165,6.161,259382.28,227708.88,226839.19 2017-06-15,6.26,6.45,6.44,6.26,364106.72,0.18,2.88,6.322,6.213,6.173,291082.11,238065.07,228783.34 2017-06-16,6.43,6.45,6.39,6.35,192166.59,-0.05,-0.78,6.354,6.247,6.183,292043.78,238223.96,225807.47 2017-06-19,6.36,6.43,6.41,6.33,167135.7,0.02,0.31,6.37,6.285,6.191,236362.04,239881.9,220520.12 2017-06-20,6.41,6.53,6.36,6.34,275194.88,-0.05,-0.78,6.372,6.317,6.197,240635.56,256155.8,226206.78 2017-06-21,6.36,6.57,6.55,6.34,411794.19,0.19,2.99,6.43,6.354,6.217,282079.62,270730.95,236669.75 2017-06-22,6.52,6.63,6.37,6.36,346270.59,-0.18,-2.75,6.416,6.369,6.237,278512.39,284797.25,243970.19 2017-06-23,6.37,6.79,6.7,6.37,600814.88,0.33,5.18,6.478,6.416,6.269,360242.05,326142.92,264348.08 2017-06-26,6.75,6.93,6.9,6.66,667428.56,0.2,2.98,6.576,6.473,6.303,460300.62,348331.33,283740.71 2017-06-27,6.84,6.94,6.87,6.79,377957.03,-0.03,-0.43,6.678,6.525,6.34,480853.05,360744.31,293234.59 2017-06-28,6.87,7.07,6.94,6.85,513857.47,0.07,1.02,6.756,6.593,6.379,501265.71,391672.66,309690.77 2017-06-29,6.94,7.0,6.97,6.88,259032.64,0.03,0.43,6.876,6.646,6.43,483818.12,381165.25,309615.16 2017-06-30,6.93,7.04,6.9,6.9,308187.53,-0.07,-1.0,6.916,6.697,6.472,425292.65,392767.35,315495.65 2017-07-03,6.92,7.09,7.05,6.81,541487.75,0.15,2.17,6.946,6.761,6.523,400104.48,430202.55,335042.23 2017-07-04,7.03,7.17,7.02,6.99,390192.91,-0.03,-0.43,6.976,6.827,6.572,402551.66,441702.36,348929.08 2017-07-05,7.03,7.07,7.07,6.95,334635.81,0.05,0.71,7.002,6.879,6.617,366707.33,433986.52,352358.73 2017-07-06,6.98,7.02,6.91,6.83,532985.56,-0.16,-2.26,6.99,6.933,6.651,421497.91,452658.01,368727.63 2017-07-07,6.87,7.21,7.19,6.87,584674.88,0.28,4.05,7.048,6.982,6.699,476795.38,451044.01,388593.47 2017-07-10,7.16,7.33,7.13,7.11,489186.25,-0.06,-0.83,7.064,7.005,6.739,466335.08,433219.78,390775.56 2017-07-11,7.12,7.16,7.0,6.96,376755.59,-0.13,-1.82,7.06,7.018,6.772,463647.62,433099.64,396921.97 2017-07-12,7.01,7.07,7.01,6.81,345449.41,0.01,0.14,7.048,7.025,6.809,465810.34,416258.83,403965.75 2017-07-13,6.95,7.07,6.94,6.89,322259.31,-0.07,-1.0,7.054,7.022,6.834,423665.09,422581.5,401873.38 2017-07-14,6.93,7.1,7.02,6.92,286149.41,0.08,1.15,7.02,7.034,6.866,363959.99,420377.69,406572.52 2017-07-17,7.0,7.03,6.67,6.6,423862.44,-0.35,-4.99,6.928,6.996,6.879,350895.23,408615.16,419408.85 2017-07-18,6.63,6.93,6.93,6.62,286374.03,0.26,3.9,6.914,6.987,6.907,332818.92,398233.27,419967.81 2017-07-19,6.93,7.28,7.25,6.92,640094.75,0.32,4.62,6.962,7.005,6.942,391747.99,428779.16,431382.84 2017-07-20,7.23,7.35,7.26,7.15,503418.56,0.01,0.14,7.026,7.04,6.987,427979.84,425822.46,439240.24 2017-07-21,7.34,7.59,7.36,7.3,703312.5,0.1,1.38,7.094,7.057,7.02,511412.46,437686.23,444365.12 2017-07-24,7.5,8.1,8.0,7.5,1424531.62,0.64,8.7,7.36,7.144,7.075,711546.29,531220.76,482220.27 2017-07-25,8.0,8.46,8.29,7.91,1396905.62,0.29,3.62,7.632,7.273,7.146,933652.61,633235.77,533167.7 2017-07-26,8.2,9.12,9.04,8.08,1602366.25,0.75,9.05,7.99,7.476,7.251,1126106.91,758927.45,587593.14 2017-07-27,9.08,9.6,8.9,8.69,1873206.5,-0.14,-1.55,8.318,7.672,7.347,1400064.5,914022.17,668301.83 2017-07-28,8.88,9.36,9.34,8.73,1521884.5,0.44,4.94,8.714,7.904,7.469,1563778.9,1037595.68,728986.68 2017-07-31,9.15,9.65,9.4,8.95,1741168.5,0.06,0.64,8.994,8.177,7.587,1627106.27,1169326.28,788970.72 2017-08-01,9.28,9.59,8.89,8.76,1455542.75,-0.51,-5.43,9.114,8.373,7.68,1638833.7,1286243.16,842238.21 2017-08-02,8.89,9.14,8.8,8.66,1202941.12,-0.09,-1.01,9.066,8.528,7.767,1558948.67,1342527.79,885653.48 2017-08-03,8.75,8.93,8.89,8.68,876029.19,0.09,1.02,9.064,8.691,7.866,1359513.21,1379788.86,902805.66 2017-08-04,8.85,9.32,9.0,8.7,1266356.62,0.11,1.24,8.996,8.855,7.956,1308407.64,1436093.27,936889.75 2017-08-07,8.9,8.95,8.74,8.31,958742.94,-0.26,-2.89,8.864,8.929,8.037,1151922.52,1389514.4,960367.58 2017-08-08,8.76,9.1,8.8,8.6,813915.06,0.06,0.69,8.846,8.98,8.127,1023596.99,1331215.34,982225.55 2017-08-09,8.75,9.05,9.05,8.7,709466.81,0.25,2.84,8.896,8.981,8.229,924902.12,1241925.4,1000426.42 2017-08-10,9.1,9.34,9.2,9.0,928435.06,0.15,1.66,8.958,9.011,8.342,935383.3,1147448.26,1030735.21 2017-08-11,9.0,9.05,8.3,8.28,767893.44,-0.9,-9.78,8.818,8.907,8.406,835690.66,1072049.15,1054822.41 2017-08-14,8.29,8.62,8.36,8.21,586827.19,0.06,0.72,8.742,8.803,8.49,761307.51,956615.02,1062970.65 2017-08-15,8.43,8.95,8.88,8.4,648579.75,0.52,6.22,8.758,8.802,8.588,728240.45,875918.72,1081080.94 2017-08-16,8.99,9.07,8.88,8.61,678944.31,0.0,0.0,8.724,8.81,8.669,722135.95,823519.04,1083023.41 2017-08-17,8.9,9.16,9.05,8.77,603764.81,0.17,1.91,8.694,8.826,8.759,657201.9,796292.6,1088040.73 2017-08-18,8.87,9.33,9.12,8.83,814726.75,0.07,0.77,8.858,8.838,8.847,666568.56,751129.61,1093611.44 2017-08-21,9.04,9.18,9.11,8.94,482388.25,-0.01,-0.11,9.008,8.875,8.902,645680.77,703494.14,1046504.27 2017-08-22,9.1,9.11,8.84,8.81,465401.12,-0.27,-2.96,9.0,8.879,8.93,609045.05,668642.75,999929.05 2017-08-23,8.83,9.03,8.68,8.63,392492.0,-0.16,-1.81,8.96,8.842,8.912,551754.59,636945.27,939435.33 2017-08-24,8.67,8.78,8.58,8.53,319549.84,-0.1,-1.15,8.866,8.78,8.896,494911.59,576056.75,861752.5 2017-08-25,8.6,8.85,8.74,8.59,350858.16,0.16,1.86,8.79,8.824,8.866,402137.87,534353.22,803201.18 2017-08-28,8.75,9.23,9.1,8.72,518856.72,0.36,4.12,8.788,8.898,8.851,409431.57,527556.17,742085.59 2017-08-29,9.11,9.24,8.99,8.93,454043.59,-0.11,-1.21,8.818,8.909,8.856,407160.06,508102.56,692010.64 2017-08-30,8.99,9.89,9.74,8.99,1200346.5,0.75,8.34,9.03,8.995,8.903,568730.96,560242.77,691880.91 2017-08-31,9.76,10.1,9.95,9.51,1025727.25,0.21,2.16,9.304,9.085,8.956,709966.44,602439.02,699365.81 2017-09-01,9.81,10.34,10.21,9.78,941844.5,0.26,2.61,9.598,9.194,9.016,828163.71,615150.79,683140.2 2017-09-04,10.17,10.35,10.01,9.92,626573.31,-0.2,-1.96,9.78,9.284,9.08,849707.03,629569.3,666531.72 2017-09-05,9.95,10.08,9.84,9.72,499019.41,-0.17,-1.7,9.95,9.384,9.132,858702.19,632931.13,650786.94 2017-09-06,9.78,10.05,10.05,9.7,455932.44,0.21,2.13,10.012,9.521,9.182,709819.38,639275.17,638110.22 2017-09-07,10.07,10.14,9.68,9.67,541538.0,-0.37,-3.68,9.958,9.631,9.206,612981.53,661473.99,618765.37 2017-09-08,9.65,9.83,9.62,9.58,386122.47,-0.06,-0.62,9.84,9.719,9.272,501837.13,665000.42,599676.82 2017-09-11,9.62,9.73,9.7,9.55,350497.47,0.08,0.83,9.778,9.779,9.339,446621.96,648164.49,587860.33 2017-09-12,9.87,10.35,9.99,9.87,906556.0,0.29,2.99,9.808,9.879,9.394,528129.28,693415.74,600759.15 2017-09-13,10.02,10.37,10.21,9.98,660665.19,0.22,2.2,9.84,9.926,9.461,569075.83,639447.6,599845.19 2017-09-14,10.19,10.34,10.18,10.0,479756.62,-0.03,-0.29,9.94,9.949,9.517,556719.55,584850.54,593644.78 2017-09-15,10.13,10.17,9.7,9.58,657341.5,-0.48,-4.71,9.956,9.898,9.546,610963.36,556400.24,585775.52 2017-09-18,9.6,9.82,9.78,9.57,276135.28,0.08,0.82,9.972,9.875,9.58,596090.92,521356.44,575462.87 2017-09-19,9.82,9.93,9.67,9.61,284644.19,-0.11,-1.12,9.908,9.858,9.621,471708.56,499918.92,566425.02 2017-09-20,9.71,9.94,9.89,9.59,364742.09,0.22,2.27,9.844,9.842,9.682,412523.94,490799.88,565037.53 2017-09-21,9.89,10.28,9.79,9.79,597900.81,-0.1,-1.01,9.766,9.853,9.742,436152.77,496436.16,578955.08 2017-09-22,9.7,9.87,9.79,9.49,404799.91,0.0,0.0,9.784,9.87,9.795,385644.46,498303.91,581652.16 2017-09-25,9.75,10.12,9.93,9.75,538833.12,0.14,1.43,9.814,9.893,9.836,438184.02,517137.47,582650.98 2017-09-26,10.3,10.92,10.92,10.21,1425031.62,0.99,9.97,10.064,9.986,9.933,666261.51,568985.03,631200.38 2017-09-27,10.99,11.55,11.49,10.8,1428321.5,0.57,5.22,10.384,10.114,10.02,878977.39,645750.66,642599.13 2017-09-28,11.4,11.44,11.2,11.15,784457.5,-0.29,-2.52,10.666,10.216,10.083,916288.73,676220.75,630535.65 2017-09-29,11.29,11.33,11.12,11.01,662312.0,-0.08,-0.71,10.932,10.358,10.128,967791.15,676717.8,616559.02 2017-10-09,11.28,11.49,11.26,10.93,693752.5,0.14,1.26,11.198,10.506,10.191,998775.02,718479.52,619917.98 2017-10-10,11.16,11.3,11.1,10.97,490569.0,-0.16,-1.42,11.234,10.649,10.254,811882.5,739072.01,619495.46 2017-10-11,11.08,11.08,10.81,10.77,479113.44,-0.29,-2.61,11.098,10.741,10.292,622040.89,750509.14,620654.51 2017-10-12,10.77,10.95,10.82,10.67,340964.47,0.01,0.09,11.022,10.844,10.349,533342.28,724815.51,610625.83 2017-10-13,10.79,10.96,10.86,10.7,316355.66,0.04,0.37,10.97,10.951,10.411,464151.01,715971.08,607137.49 2017-10-16,10.87,10.87,10.51,10.49,398679.59,-0.35,-3.22,10.82,11.009,10.451,405136.43,701955.73,609546.6 2017-10-17,10.54,10.93,10.92,10.52,413235.97,0.41,3.9,10.784,11.009,10.498,389669.83,600776.16,584880.6 2017-10-18,10.84,10.94,10.58,10.55,331492.25,-0.34,-3.11,10.738,10.918,10.516,360145.59,491093.24,568421.95 2017-10-19,10.46,10.5,9.87,9.62,667514.56,-0.71,-6.71,10.548,10.785,10.501,425455.61,479398.94,577809.85 2017-10-20,9.81,10.18,10.17,9.76,281644.97,0.3,3.04,10.41,10.69,10.524,418513.47,441332.24,559025.02 2017-10-23,10.16,10.59,10.55,10.12,353421.25,0.38,3.74,10.418,10.619,10.563,409461.8,407299.12,562889.32 2017-10-24,10.47,11.24,10.82,10.47,604015.5,0.27,2.56,10.398,10.591,10.62,447617.71,418643.77,578857.89 2017-10-25,11.3,11.4,10.95,10.9,623711.38,0.13,1.2,10.472,10.605,10.673,506061.53,433103.56,591806.35 2017-10-26,11.09,12.01,11.96,11.06,990685.69,1.01,9.22,10.89,10.719,10.782,570695.76,498075.68,611445.59 2017-10-27,11.91,11.96,11.66,11.59,625814.69,-0.3,-2.51,11.188,10.799,10.875,639529.7,529021.59,622496.33 2017-10-30,11.77,11.99,11.66,11.38,524622.75,0.0,0.0,11.41,10.914,10.962,673770.0,541615.9,621785.81 2017-10-31,11.63,11.74,11.56,11.22,454368.84,-0.1,-0.86,11.558,10.978,10.994,643840.67,545729.19,573252.68 2017-11-01,11.5,11.95,11.75,11.46,494145.25,0.19,1.64,11.718,11.095,11.007,617927.44,561994.49,526543.86 2017-11-02,11.79,11.95,11.41,11.41,453049.19,-0.34,-2.89,11.608,11.249,11.017,510400.14,540547.95,509973.45 2017-11-03,11.37,11.67,11.49,11.3,398435.09,0.08,0.7,11.574,11.381,11.036,464924.22,552226.96,496779.6 2017-11-06,11.55,12.31,12.15,11.46,660458.0,0.66,5.74,11.672,11.541,11.08,492091.27,582930.64,495114.88 2017-11-07,12.12,12.42,12.34,11.95,483433.53,0.19,1.56,11.828,11.693,11.142,497904.21,570872.44,494758.1 2017-11-08,12.22,12.44,12.08,12.05,397452.12,-0.26,-2.11,11.894,11.806,11.206,478565.59,548246.52,490675.04 2017-11-09,12.05,12.8,12.66,12.05,478987.12,0.58,4.8,12.144,11.876,11.298,483753.17,497076.66,497576.17 2017-11-10,12.69,13.1,12.93,12.48,500596.28,0.27,2.13,12.432,12.003,11.401,504185.41,484554.82,506788.2 2017-11-13,12.03,12.82,12.79,11.74,1133650.62,-0.14,-1.08,12.56,12.116,11.515,598823.93,545457.6,543536.75 2017-11-14,12.58,13.46,12.68,12.48,799910.88,-0.11,-0.86,12.628,12.228,11.603,662119.4,580011.81,562870.5 2017-11-15,12.7,13.32,13.3,12.39,698985.81,0.62,4.89,12.872,12.383,11.739,722426.14,600495.86,581245.18 2017-11-16,13.3,13.93,13.77,13.01,701927.62,0.47,3.53,13.094,12.619,11.934,767014.24,625383.71,582965.83 2017-11-17,13.68,14.48,13.75,13.6,866747.38,-0.02,-0.14,13.258,12.845,12.113,840244.46,672214.94,612220.95 2017-11-20,13.71,15.0,15.0,13.48,797864.56,1.25,9.09,13.7,13.13,12.336,773087.25,685955.59,634443.12 2017-11-21,15.0,15.33,15.14,14.48,942483.75,0.14,0.93,14.192,13.41,12.552,801601.82,731860.61,651366.53 2017-11-22,15.0,15.2,14.77,14.45,716290.88,-0.37,-2.44,14.486,13.679,12.743,805062.84,763744.49,655995.5 2017-11-23,14.56,14.7,13.9,13.65,836901.06,-0.87,-5.89,14.512,13.803,12.84,832057.53,799535.88,648306.27 2017-11-24,13.85,14.23,13.7,13.46,586149.69,-0.2,-1.44,14.502,13.88,12.942,775937.99,808091.23,646323.02 2017-11-27,13.71,14.08,13.98,13.21,600763.31,0.28,2.04,14.298,13.999,13.058,736517.74,754802.49,650130.05 2017-11-28,13.89,15.12,14.97,13.8,827383.12,0.99,7.08,14.264,14.228,13.228,713497.61,757549.72,668780.76 2017-11-29,14.91,15.75,15.55,14.9,881863.06,0.58,3.87,14.42,14.453,13.418,746612.05,775837.44,688166.65 2017-11-30,15.47,16.58,16.4,15.24,853176.06,0.85,5.47,14.92,14.716,13.668,749867.05,790962.29,708173.0 2017-12-01,16.45,16.64,15.95,15.71,660712.5,-0.45,-2.74,15.37,14.936,13.891,764779.61,770358.8,721286.87 2017-12-04,15.81,17.42,17.42,15.81,777929.69,1.47,9.22,16.058,15.178,14.154,800212.89,768365.31,727160.45 2017-12-05,16.96,17.24,15.68,15.68,939803.5,-1.74,-9.99,16.2,15.232,14.321,822696.96,768097.29,749978.95 2017-12-06,15.47,16.34,16.12,15.1,818755.75,0.44,2.81,16.314,15.367,14.523,810075.5,778343.77,771044.13 2017-12-07,15.85,17.04,15.84,15.79,851567.19,-0.28,-1.74,16.202,15.561,14.682,809753.73,779810.39,789673.14 2017-12-08,15.84,16.23,15.67,15.24,747540.81,-0.17,-1.07,16.146,15.758,14.819,827119.39,795949.5,802020.36 2017-12-11,15.68,16.24,16.16,15.41,621802.88,0.49,3.13,15.894,15.976,14.988,795894.03,798053.46,776427.98 2017-12-12,16.11,16.86,16.34,16.11,630599.75,0.18,1.11,16.026,16.113,15.171,734053.28,778375.12,767962.42 2017-12-13,16.35,17.08,16.97,16.19,607761.06,0.63,3.86,16.196,16.255,15.354,691854.34,750964.92,763401.18 2017-12-14,17.17,17.34,16.87,16.65,630652.5,-0.1,-0.59,16.402,16.302,15.509,647671.4,728712.56,759837.43 2017-12-15,16.77,17.05,16.04,15.75,685264.81,-0.83,-4.92,16.476,16.311,15.624,635216.2,731167.79,750763.3 2017-12-18,16.04,16.1,14.83,14.66,640823.81,-1.21,-7.54,16.21,16.052,15.615,639020.39,717457.21,742911.26 2017-12-19,15.0,15.7,15.7,14.9,607774.81,0.87,5.87,16.082,16.054,15.643,634455.4,684254.34,726175.81 2017-12-20,15.55,15.78,15.55,15.1,470193.16,-0.15,-0.95,15.798,15.997,15.682,606941.82,649398.08,713870.93 2017-12-21,15.62,16.41,16.25,15.42,559647.5,0.7,4.5,15.674,16.038,15.8,592740.82,620206.11,700008.25 2017-12-22,16.26,16.7,16.26,16.21,466962.0,0.01,0.06,15.718,16.097,15.928,549080.26,592148.23,694048.86 2017-12-25,16.29,16.52,16.5,16.0,456665.28,0.24,1.48,16.052,16.131,16.054,512248.55,575634.47,686843.96 2017-12-26,16.51,16.6,15.77,15.54,620602.94,-0.73,-4.42,16.066,16.074,16.094,514814.18,574634.79,676504.95 2017-12-27,15.7,16.1,15.5,15.39,438729.31,-0.27,-1.71,16.056,15.927,16.091,508521.41,557731.61,654348.27 2017-12-28,15.41,15.66,15.21,15.11,445690.56,-0.29,-1.87,15.848,15.761,16.032,485730.02,539235.42,633973.99 2017-12-29,15.24,16.11,15.92,15.24,479206.81,0.71,4.67,15.78,15.749,16.03,488178.98,518629.62,624898.71 2018-01-02,15.99,17.34,16.9,15.98,757629.44,0.98,6.16,15.86,15.956,16.004,548371.81,530310.18,623883.69 2018-01-03,17.13,17.2,17.15,16.6,638103.5,0.25,1.48,16.136,16.101,16.078,551871.92,533343.05,608798.69 2018-01-04,17.17,18.48,18.04,16.91,887199.19,0.89,5.19,16.644,16.35,16.174,641565.9,575043.65,612220.87 2018-01-05,17.85,18.28,17.98,17.81,468611.03,-0.06,-0.33,17.198,16.523,16.281,646149.99,565940.01,593073.06 2018-01-08,17.99,18.86,18.68,17.81,682480.5,0.7,3.89,17.75,16.765,16.431,686804.73,587491.86,589820.04 2018-01-09,18.5,18.58,18.37,18.01,461303.56,-0.31,-1.66,18.044,16.952,16.542,627539.56,587955.68,581795.08 2018-01-10,18.26,18.27,17.98,17.81,394598.0,-0.39,-2.12,18.21,17.173,16.624,578838.46,565355.19,569994.99 2018-01-11,17.91,18.88,18.51,17.7,522358.72,0.53,2.95,18.304,17.474,16.701,505870.36,573718.13,565724.87 2018-01-12,18.45,18.7,18.13,17.9,403101.12,-0.38,-2.05,18.334,17.766,16.764,492768.38,569459.19,554347.3 2018-01-15,18.0,18.48,17.76,17.6,440299.28,-0.37,-2.04,18.15,17.95,16.85,444332.14,565568.43,542099.03 2018-01-16,17.79,18.64,18.58,17.79,541583.88,0.82,4.62,18.192,18.118,17.037,460388.2,543963.88,537137.03 2018-01-17,18.58,18.66,18.34,17.91,453619.47,-0.24,-1.29,18.264,18.237,17.169,472192.49,525515.48,529429.26 2018-01-18,18.4,19.46,19.46,18.4,674142.25,1.12,6.11,18.454,18.379,17.365,502549.2,504209.78,539626.72 2018-01-19,19.23,19.44,19.28,19.06,394495.88,-0.18,-0.93,18.684,18.509,17.516,500828.15,496798.27,531369.14 2018-01-22,19.44,20.34,20.16,19.42,500034.16,0.88,4.56,19.164,18.657,17.711,512775.13,478553.63,533022.74 2018-01-23,20.06,20.66,20.2,19.97,475477.88,0.04,0.2,19.488,18.84,17.896,499553.93,479971.06,533963.37 2018-01-24,20.06,21.14,20.78,20.05,474656.88,0.58,2.87,19.976,19.12,18.147,503761.41,487976.95,526666.07 2018-01-25,20.78,21.58,21.1,20.31,610635.38,0.32,1.54,20.304,19.379,18.427,491060.04,496804.62,535261.37 2018-01-26,21.17,21.23,20.99,20.17,507878.75,-0.11,-0.52,20.646,19.665,18.716,513736.61,507282.38,538370.78 2018-01-29,21.7,22.35,21.32,21.23,653364.38,0.33,1.57,20.878,20.021,18.986,544402.65,528588.89,547078.66 2018-01-30,21.59,23.38,23.28,21.57,742671.62,1.96,9.19,21.494,20.491,19.305,597841.4,548697.67,546330.77 2018-01-31,23.0,24.38,22.59,22.05,942972.56,-0.69,-2.96,21.856,20.916,19.577,691504.54,597632.97,561574.22 2018-02-01,22.88,23.49,22.88,22.34,612182.88,0.29,1.28,22.212,21.258,19.819,691814.04,591437.04,547823.41 2018-02-02,22.5,23.99,23.89,21.53,650898.12,1.01,4.41,22.792,21.719,20.114,720417.91,617077.26,556937.76 2018-02-05,23.29,24.96,24.9,23.16,648181.88,1.01,4.23,23.508,22.193,20.425,719381.41,631892.03,555222.83 2018-02-06,24.4,25.1,23.44,23.22,777855.06,-1.46,-5.86,23.54,22.517,20.679,726418.1,662129.75,571050.41 2018-02-07,24.2,24.88,21.1,21.1,1272183.25,-2.34,-9.98,23.242,22.549,20.835,792260.24,741882.39,614929.67 2018-02-08,20.62,21.11,21.0,19.78,1028494.56,-0.1,-0.47,22.866,22.539,20.959,875522.57,783668.31,640236.46 2018-02-09,19.9,20.08,18.9,18.9,608822.0,-2.1,-10.0,21.868,22.33,20.998,867107.35,793762.63,650522.51 2018-02-12,18.5,20.0,19.5,17.98,812573.19,0.6,3.17,20.788,22.148,21.085,899985.61,809683.51,669136.2 2018-02-13,19.93,21.18,20.86,19.65,772670.31,1.36,6.97,20.272,21.906,21.199,898948.66,812683.38,680690.52 2018-02-14,20.86,21.65,21.28,20.83,577215.25,0.42,2.01,20.308,21.775,21.346,759955.06,776107.65,686870.31 2018-02-22,21.8,23.35,23.24,21.63,712053.19,1.96,9.21,20.756,21.811,21.535,696666.79,786094.68,688765.86 2018-02-23,23.32,23.94,23.46,22.39,825140.31,0.22,0.95,21.668,21.768,21.744,739930.45,803518.9,710298.08 2018-02-26,23.64,24.51,24.45,23.02,719122.62,0.99,4.22,22.658,21.723,21.958,721240.34,810612.97,721252.5 2018-02-27,24.19,24.4,23.18,23.15,757924.06,-1.27,-5.19,23.122,21.697,22.107,718291.09,808619.87,735374.81 2018-02-28,22.64,23.58,22.98,22.25,612434.44,-0.2,-0.86,23.462,21.885,22.217,725334.92,742644.99,742263.69 2018-03-01,22.54,23.43,22.5,22.41,600968.94,-0.48,-2.09,23.314,22.035,22.287,703118.07,699892.43,741780.37 2018-03-02,22.49,23.03,22.59,21.88,681435.12,0.09,0.4,23.14,22.404,22.367,674377.04,707153.74,750458.19 2018-03-05,22.64,22.75,20.33,20.33,1008017.69,-2.26,-10.0,22.316,22.487,22.318,732156.05,726698.19,768190.85 2018-03-06,20.03,21.15,21.1,19.46,1046506.31,0.77,3.79,21.9,22.511,22.209,789872.5,754081.79,783382.59 2018-03-07,20.98,20.98,19.35,19.0,1157634.38,-1.75,-8.29,21.174,22.318,22.047,898912.49,812123.71,794115.68 2018-03-08,19.24,19.86,19.71,19.1,746500.88,0.36,1.86,20.616,21.965,21.888,928018.88,815568.48,800831.58 2018-03-09,19.78,19.79,19.4,19.31,597694.69,-0.31,-1.57,19.978,21.559,21.664,911270.79,792823.91,798171.41 2018-03-12,19.51,20.32,20.22,18.91,1255197.12,0.82,4.23,19.956,21.136,21.43,960706.68,846431.36,828522.17 2018-03-13,20.08,20.87,20.58,19.89,1038786.5,0.36,1.78,19.852,20.876,21.287,959162.71,874517.61,841568.74 2018-03-14,20.39,20.74,20.33,20.01,639427.25,-0.25,-1.22,20.048,20.611,21.248,855521.29,877216.89,809930.94 2018-03-15,20.25,20.37,19.8,19.45,655907.06,-0.53,-2.61,20.066,20.341,21.188,837402.52,882710.7,791301.57 2018-03-16,19.92,20.35,19.77,19.74,534175.62,-0.03,-0.15,20.14,20.059,21.232,824698.71,867984.75,787569.25 2018-03-19,19.45,19.46,18.14,17.79,1195104.25,-1.63,-8.24,19.724,19.84,21.164,812680.14,886693.41,806695.8 2018-03-20,17.7,18.09,17.86,17.43,604412.62,-0.28,-1.54,19.18,19.516,21.014,725805.36,842484.04,798282.92 2018-03-21,17.85,18.12,17.11,16.9,849386.25,-0.75,-4.2,18.536,19.292,20.805,767797.16,811659.22,811891.47 2018-03-22,17.12,17.6,17.3,17.02,593567.62,0.19,1.11,18.036,19.051,20.508,755329.27,796365.9,805967.19 2018-03-23,16.6,16.74,15.67,15.6,906732.19,-1.63,-9.42,17.216,18.678,20.119,829840.59,827269.65,810046.78 2018-03-26,15.7,16.42,16.35,15.45,699463.69,0.68,4.34,16.858,18.291,19.714,730712.47,771696.31,809063.83 2018-03-27,16.88,17.29,17.13,16.68,745425.44,0.78,4.77,16.712,17.946,19.411,758915.04,742360.2,808438.9 2018-03-28,16.81,17.0,16.18,15.81,844269.5,-0.95,-5.55,16.526,17.531,19.071,757891.69,762844.42,820030.66 2018-03-29,16.3,17.79,17.52,16.03,1062661.88,1.34,8.28,16.57,17.303,18.822,851710.54,803519.91,843115.3 2018-03-30,17.49,17.92,17.56,16.95,821160.5,0.04,0.23,16.948,17.082,18.571,834596.2,832218.39,850101.57 2018-04-02,17.43,18.37,17.79,17.33,749252.0,0.23,1.31,17.236,17.047,18.444,844553.86,787633.17,837163.29 2018-04-03,17.3,17.45,17.16,16.81,610011.38,-0.63,-3.54,17.242,16.977,18.247,817471.05,788193.05,815338.54 2018-04-04,17.31,17.57,16.88,16.85,467604.41,-0.28,-1.63,17.382,16.954,18.123,742138.03,750014.86,780837.04 2018-04-09,17.1,17.21,16.47,15.92,501334.31,-0.41,-2.43,17.172,16.871,17.961,629872.52,740791.53,768578.71 2018-04-10,16.65,17.56,17.54,16.4,716081.75,1.07,6.5,17.168,17.058,17.868,608856.77,721726.49,774498.07 2018-04-11,17.9,18.25,17.78,17.45,866904.25,0.24,1.37,17.166,17.201,17.746,632387.22,738470.54,755083.42 2018-04-12,18.25,18.25,17.78,17.5,668276.25,0.0,0.0,17.29,17.266,17.606,644040.19,730755.62,736557.91 2018-04-13,18.0,18.12,17.88,17.55,556391.44,0.1,0.56,17.49,17.436,17.484,661797.6,701967.82,732406.12 2018-04-16,17.81,17.9,17.44,17.03,617045.06,-0.44,-2.46,17.684,17.428,17.366,684939.75,657406.14,730463.02 2018-04-17,17.3,17.3,16.67,16.54,625413.12,-0.77,-4.42,17.51,17.339,17.211,666806.02,637831.4,735024.9 2018-04-18,16.85,17.28,17.22,16.25,638213.0,0.55,3.3,17.398,17.282,17.165,621067.77,626727.5,707180.33 2018-04-19,17.26,17.85,17.52,17.11,639811.69,0.3,1.74,17.346,17.318,17.148,615374.86,629707.53,708950.29 2018-04-20,17.33,17.33,16.62,16.57,650977.19,-0.9,-5.14,17.094,17.292,17.123,634292.01,648044.81,699029.83 2018-04-23,16.62,17.05,16.93,16.4,382524.53,0.31,1.86,16.992,17.338,17.105,587387.91,636163.83,688477.68 2018-04-24,16.8,18.17,18.02,16.77,1069987.38,1.09,6.44,17.262,17.386,17.222,676302.76,671554.39,696640.44 2018-04-25,17.8,17.95,17.89,17.65,611291.88,-0.13,-0.72,17.396,17.397,17.299,670918.53,645993.15,692231.85 2018-04-26,17.92,17.99,17.08,17.03,760669.38,-0.81,-4.53,17.308,17.327,17.297,695090.07,655232.47,692994.05 2018-04-27,17.19,17.59,17.29,16.83,511055.41,0.21,1.23,17.442,17.268,17.352,667105.72,650698.86,676333.34 2018-05-02,17.33,17.58,17.58,17.0,504534.41,0.29,1.68,17.572,17.282,17.355,691507.69,639447.8,648426.97 2018-05-03,17.39,18.12,17.89,17.08,813721.5,0.31,1.76,17.546,17.404,17.372,640254.52,658278.64,648055.02 2018-05-04,17.84,18.5,18.18,17.64,938110.5,0.29,1.62,17.604,17.5,17.391,705618.24,688268.39,657497.94 2018-05-07,18.26,19.59,19.27,18.23,1107393.38,1.09,6.0,18.042,17.675,17.497,774963.04,735026.56,682367.04 2018-05-08,19.35,19.81,19.57,19.11,859601.12,0.3,1.56,18.498,17.97,17.631,844672.18,755888.95,701966.88 2018-05-09,19.57,19.86,19.74,19.37,657269.62,0.17,0.87,18.93,18.251,17.795,875219.22,783363.46,709763.64 2018-05-10,19.87,20.28,19.6,19.31,896830.94,-0.14,-0.71,19.272,18.409,17.898,891841.11,766047.81,718801.1 2018-05-11,19.6,19.69,18.95,18.84,859166.38,-0.65,-3.32,19.426,18.515,17.956,876052.29,790835.26,718414.21 2018-05-14,18.95,19.31,18.87,18.72,564472.19,-0.08,-0.42,19.346,18.694,18.011,767468.05,771215.55,713224.01 2018-05-15,18.8,19.73,19.67,18.39,802182.19,0.8,4.24,19.366,18.932,18.1,755984.26,800328.22,725513.54 2018-05-16,19.44,19.58,19.15,19.05,623762.62,-0.52,-2.64,19.248,19.089,18.186,749282.86,812251.04,725849.42 2018-05-17,19.15,20.27,19.75,19.15,940693.81,0.6,3.13,19.278,19.275,18.34,758055.44,824948.28,741613.46 2018-05-18,19.93,20.86,20.8,19.93,1222465.62,1.05,5.32,19.648,19.537,18.519,830715.29,853383.79,770826.09 2018-05-21,21.25,21.94,21.26,20.66,1324208.0,0.46,2.21,20.126,19.736,18.706,982662.45,875065.25,805045.9 2018-05-22,21.41,21.88,21.49,21.1,841641.94,0.23,1.08,20.49,19.928,18.949,990554.4,873269.33,814579.14 2018-05-23,21.65,21.8,20.88,20.68,839241.12,-0.61,-2.84,20.836,20.042,19.147,1033650.1,891466.48,837414.97 2018-05-24,20.85,21.35,21.05,20.46,582306.88,0.17,0.81,21.096,20.187,19.298,961972.71,860014.08,813030.94 2018-05-25,20.8,21.0,20.41,20.3,485541.75,-0.64,-3.04,21.018,20.333,19.424,814587.94,822651.61,806743.44 2018-05-28,20.05,20.73,20.38,19.81,472109.69,-0.03,-0.15,20.842,20.484,19.589,644168.28,813415.36,792315.45 2018-05-29,20.3,20.46,19.91,19.72,478850.41,-0.47,-2.31,20.526,20.508,19.72,571609.97,781082.18,790705.2 2018-05-30,19.4,19.4,18.7,18.7,568306.75,-1.21,-6.08,20.09,20.463,19.776,517423.1,775536.6,793893.82 2018-05-31,19.01,19.52,19.45,18.78,521848.62,0.75,4.01,19.77,20.433,19.854,505331.44,733652.08,779300.18 2018-06-01,19.21,19.28,18.77,18.55,476589.69,-0.68,-3.5,19.442,20.23,19.884,503541.03,659064.49,756224.14 2018-06-04,19.03,19.39,19.12,19.0,421888.41,0.35,1.86,19.19,20.016,19.876,493496.78,568832.53,721948.89 2018-06-05,19.29,19.77,19.76,19.07,449022.41,0.64,3.35,19.16,19.843,19.886,487531.18,529570.57,701419.95 2018-06-06,19.77,19.77,19.57,19.37,379771.12,-0.19,-0.96,19.334,19.712,19.877,449824.05,483623.57,687545.03 2018-06-07,19.66,20.24,19.96,19.56,526779.81,0.39,1.99,19.436,19.603,19.895,450810.29,478070.87,669042.47 2018-06-08,19.48,19.9,19.39,19.13,498270.41,-0.57,-2.86,19.56,19.501,19.917,455146.43,479343.73,650997.67 2018-06-11,19.21,19.59,19.29,18.91,300834.94,-0.1,-0.52,19.594,19.392,19.938,430935.74,462216.26,637815.81 2018-06-12,19.28,19.82,19.79,19.23,361271.03,0.5,2.59,19.6,19.38,19.944,413385.46,450458.32,615770.25 2018-06-13,19.7,20.27,19.79,19.6,488584.97,0.0,0.0,19.644,19.489,19.976,435148.23,442486.14,609011.37 2018-06-14,19.5,19.78,19.24,19.1,331041.59,-0.25,-1.28,19.5,19.468,19.951,396000.59,423405.44,578528.76 2018-06-15,19.24,19.45,18.81,18.67,338671.03,-0.43,-2.23,19.384,19.472,19.851,364080.71,409613.57,534339.03 2018-06-19,18.37,18.55,16.93,16.93,598508.81,-1.88,-9.99,18.912,19.253,19.635,423615.49,427275.61,498054.07 2018-06-20,16.6,17.21,17.02,16.4,495535.84,0.09,0.53,18.358,18.979,19.411,450468.45,431926.96,480748.76 2018-06-21,17.01,17.71,16.97,16.85,478381.72,-0.05,-0.29,17.794,18.719,19.216,448427.8,441788.02,462705.79 2018-06-22,16.6,17.36,17.35,16.5,370426.56,0.38,2.24,17.416,18.458,19.031,456304.79,426152.69,452111.78 2018-06-25,17.62,17.81,16.92,16.86,417699.44,-0.43,-2.48,17.038,18.211,18.856,472110.47,418095.59,448719.66 2018-06-26,16.51,17.19,17.09,16.34,297902.31,0.17,1.0,17.07,17.991,18.692,411989.17,417802.33,440009.29 2018-06-27,17.13,17.38,16.67,16.54,320759.31,-0.42,-2.46,17.0,17.679,18.53,377033.87,413751.16,432104.74 2018-06-28,16.64,16.97,16.41,16.4,299115.09,-0.26,-1.56,16.888,17.341,18.415,341180.54,394804.17,418645.16 2018-06-29,16.57,17.09,17.08,16.36,387400.25,0.67,4.08,16.834,17.125,18.297,344575.28,400440.04,411922.74 2018-07-02,17.03,17.14,16.8,16.6,337290.25,-0.28,-1.64,16.81,16.924,18.198,328493.44,400301.96,404957.77 2018-07-03,17.27,17.68,17.58,16.92,524702.12,0.78,4.64,16.908,16.989,18.121,373853.4,392921.29,410098.45 2018-07-04,17.51,17.51,17.08,16.95,406939.91,-0.5,-2.84,16.99,16.995,17.987,391089.52,384061.7,407994.33 2018-07-05,17.1,17.22,16.33,16.31,394887.97,-0.75,-4.39,16.974,16.931,17.825,410244.1,375712.32,408750.17 2018-07-06,16.47,16.91,16.6,16.25,394415.38,0.27,1.65,16.878,16.856,17.657,411647.13,378111.2,402131.95 2018-07-09,16.8,17.62,17.61,16.8,532556.0,1.01,6.08,17.04,16.925,17.568,450700.28,389596.86,403846.23 2018-07-10,17.68,18.25,18.0,17.4,596623.94,0.39,2.21,17.124,17.016,17.504,465084.64,419469.02,418635.68 2018-07-11,17.45,17.68,17.53,16.9,498889.84,-0.47,-2.61,17.214,17.102,17.391,483474.63,437282.08,425516.62 2018-07-12,17.49,18.15,18.04,17.38,524338.06,0.51,2.91,17.556,17.265,17.303,509364.64,459804.37,427304.27 2018-07-13,18.0,18.58,18.42,17.88,483554.56,0.38,2.11,17.92,17.399,17.262,527192.48,469419.8,434929.92 2018-07-16,18.38,18.52,18.13,17.95,420261.91,-0.29,-1.57,18.024,17.532,17.228,504733.66,477716.97,439009.46 2018-07-17,18.0,18.04,17.92,17.57,363463.59,-0.21,-1.16,18.008,17.566,17.278,458101.59,461593.12,427257.2 2018-07-18,17.94,18.25,17.73,17.72,366933.25,-0.19,-1.06,18.048,17.631,17.313,431710.27,457592.45,420827.07 2018-07-19,17.7,17.95,17.68,17.4,307490.81,-0.05,-0.28,17.976,17.766,17.349,388340.82,448852.73,412282.53 2018-07-20,17.67,17.99,17.83,17.4,324515.84,0.15,0.85,17.858,17.889,17.373,356533.08,441862.78,409986.99 2018-07-23,17.8,18.43,18.38,17.6,497954.91,0.55,3.08,17.908,17.966,17.446,372071.68,438402.67,413999.77 2018-07-24,18.36,18.9,18.29,18.2,729152.62,-0.09,-0.49,17.982,17.995,17.506,445209.49,451655.54,435562.28 2018-07-25,18.2,18.53,18.35,18.08,365580.12,0.06,0.33,18.106,18.077,17.59,444938.86,438324.57,437803.32 2018-07-26,18.38,18.44,17.9,17.63,540302.38,-0.45,-2.45,18.15,18.063,17.664,491501.17,439921.0,449862.69 2018-07-27,17.71,17.85,17.49,17.36,376730.62,-0.41,-2.29,18.082,17.97,17.685,501944.13,429238.61,449329.2 2018-07-30,17.52,17.75,17.47,17.27,322805.41,-0.02,-0.11,17.9,17.904,17.718,466914.23,419492.96,448604.96 2018-07-31,17.48,17.55,17.5,17.03,242443.48,0.03,0.17,17.742,17.862,17.714,369572.4,407390.94,434492.03 2018-08-01,17.56,17.65,17.17,17.06,313782.25,-0.33,-1.89,17.506,17.806,17.719,359212.83,402075.84,429834.15 2018-08-02,17.02,17.02,16.52,16.19,403556.16,-0.65,-3.79,17.23,17.69,17.728,331863.58,411682.38,430267.56 2018-08-03,16.46,16.61,16.05,16.04,307096.88,-0.47,-2.85,16.942,17.512,17.701,317936.84,409940.48,425901.63 2018-08-06,15.81,16.23,15.31,15.24,376726.75,-0.74,-4.61,16.51,17.205,17.586,328721.1,397817.67,418110.17 2018-08-07,15.54,16.11,16.08,15.32,414727.16,0.77,5.03,16.226,16.984,17.49,363177.84,366375.12,409015.33 2018-08-08,15.99,16.2,15.67,15.63,324346.16,-0.41,-2.55,15.926,16.716,17.397,365290.62,362251.73,400288.15 2018-08-09,15.61,16.33,16.24,15.58,345264.16,0.57,3.64,15.87,16.55,17.307,353632.22,342747.9,391334.45 2018-08-10,16.28,16.55,16.35,16.13,269443.38,0.11,0.68,15.93,16.436,17.203,346101.52,332019.18,380628.89 2018-08-13,16.05,16.45,16.44,15.95,291159.41,0.09,0.55,16.156,16.333,17.119,328988.05,328854.58,374173.77 2018-08-14,16.4,16.88,16.68,16.31,342743.91,0.24,1.46,16.276,16.251,17.057,314591.4,338884.62,373137.78 2018-08-15,16.68,16.7,16.23,16.11,255974.2,-0.45,-2.7,16.388,16.157,16.982,300917.01,333103.82,367589.83 2018-08-16,16.09,16.53,16.17,15.99,284529.09,-0.06,-0.37,16.374,16.122,16.906,288770.0,321201.11,366441.74 2018-08-17,16.48,16.57,15.98,15.92,270309.12,-0.19,-1.18,16.3,16.115,16.814,288943.15,317522.33,363731.41 2018-08-20,15.98,16.47,16.39,15.71,262445.19,0.41,2.57,16.29,16.223,16.714,283200.3,306094.18,351955.92 2018-08-21,16.36,16.63,16.48,16.31,280936.44,0.09,0.55,16.25,16.263,16.624,270838.81,292715.11,329545.11 2018-08-22,16.35,16.48,16.19,16.08,200156.81,-0.29,-1.76,16.242,16.315,16.516,259675.33,280296.17,321273.95 2018-08-23,16.19,16.33,16.24,15.98,196083.23,0.05,0.31,16.256,16.315,16.433,241986.16,265378.08,304062.99 2018-08-24,16.2,16.25,16.05,15.97,161565.08,-0.19,-1.17,16.27,16.285,16.361,220237.35,254590.25,293304.71 2018-08-27,16.1,16.54,16.49,16.07,309079.53,0.44,2.74,16.29,16.29,16.312,229564.22,256382.26,292618.42 2018-08-28,16.52,16.57,16.36,16.3,179477.77,-0.13,-0.79,16.266,16.258,16.255,209272.48,240055.65,289470.13 2018-08-29,16.39,16.39,16.1,16.08,183395.36,-0.26,-1.59,16.248,16.245,16.201,205920.19,232797.76,282950.79 2018-08-30,16.04,16.17,15.86,15.82,174457.2,-0.24,-1.49,16.172,16.214,16.168,201594.99,221790.57,271495.84 2018-08-31,15.88,15.92,15.57,15.57,160528.69,-0.29,-1.83,16.076,16.173,16.144,201387.71,210812.53,264167.43 2018-09-03,15.55,15.58,15.3,14.91,239321.69,-0.27,-1.73,15.838,16.064,16.144,187436.14,208500.18,257297.18 2018-09-04,15.3,15.53,15.42,15.12,164744.02,0.12,0.78,15.65,15.958,16.111,184489.39,196880.94,244798.02 2018-09-05,15.31,15.34,14.9,14.9,205929.48,-0.52,-3.37,15.41,15.829,16.072,188996.22,197458.21,238877.19 2018-09-06,14.8,15.05,14.69,14.63,164705.98,-0.21,-1.41,15.176,15.674,15.995,187045.97,194320.48,229849.28 2018-09-07,14.74,15.21,14.93,14.66,241514.92,0.24,1.63,15.048,15.562,15.924,203243.22,202315.46,228452.86 2018-09-10,14.79,14.88,14.21,14.13,252462.36,-0.72,-4.82,14.83,15.334,15.812,205871.35,196653.75,226518.0 2018-09-11,14.19,14.32,13.41,12.99,548033.75,-0.8,-5.63,14.428,15.039,15.649,282529.3,233509.35,236782.5 2018-09-12,13.51,13.59,13.45,13.3,206414.64,0.04,0.3,14.138,14.774,15.51,282626.33,235811.27,234304.52 2018-09-13,13.66,13.81,13.68,13.41,242011.34,0.23,1.71,13.936,14.556,15.385,298087.4,242566.69,232178.63 2018-09-14,13.69,13.81,13.49,13.37,230403.0,-0.19,-1.39,13.648,14.348,15.261,295865.02,249554.12,230183.32 2018-09-17,13.4,13.46,12.98,12.96,282570.88,-0.51,-3.78,13.402,14.116,15.09,301886.72,253879.04,231189.61 2018-09-18,13.14,13.83,13.7,13.07,333705.12,0.72,5.55,13.46,13.944,14.951,259021.0,270775.15,233828.04 2018-09-19,13.65,13.92,13.68,13.5,347221.75,-0.02,-0.15,13.506,13.822,14.826,287182.42,284904.37,241181.29 2018-09-20,13.71,14.16,13.83,13.71,382658.91,0.15,1.1,13.536,13.736,14.705,315311.93,306699.67,250510.07 2018-09-21,13.84,14.32,14.18,13.66,396101.44,0.35,2.53,13.674,13.661,14.612,348451.62,322158.32,262236.89 2018-09-25,14.01,14.29,14.07,13.92,253864.16,-0.11,-0.78,13.892,13.647,14.491,342710.28,322298.5,259476.12 2018-09-26,14.15,14.65,14.49,14.1,443698.75,0.42,2.98,14.05,13.755,14.397,364709.0,311865.0,272687.17 2018-09-27,14.41,14.49,14.28,14.26,265452.47,-0.21,-1.45,14.17,13.838,14.306,348355.15,317768.78,276790.03 2018-09-28,14.28,14.64,14.6,14.21,281877.69,0.32,2.24,14.324,13.93,14.243,328198.9,321755.42,282161.05 2018-10-08,14.25,14.43,13.91,13.83,310036.47,-0.69,-4.73,14.27,13.972,14.16,310985.91,329718.76,289636.44 2018-10-09,13.99,14.43,14.24,13.98,326492.97,0.33,2.37,14.304,14.098,14.107,325511.67,334110.97,293995.01 2018-10-10,14.35,14.44,14.1,13.96,273177.59,-0.14,-0.98,14.226,14.138,14.041,291407.44,328058.22,299416.68 2018-10-11,12.99,13.37,12.88,12.73,516710.72,-1.22,-8.65,13.946,14.058,13.94,341659.09,345007.12,314955.75 2018-10-12,12.88,12.96,12.8,12.16,415980.91,-0.08,-0.62,13.586,13.955,13.846,368479.73,348339.32,327519.49 2018-10-15,12.92,13.05,12.47,12.41,263047.88,-0.33,-2.58,13.298,13.784,13.723,359082.01,335033.96,328596.14 2018-10-16,12.48,12.62,11.88,11.7,329883.81,-0.59,-4.73,12.826,13.565,13.606,359760.18,342635.93,332467.21 2018-10-17,12.2,12.27,11.95,11.55,289431.78,0.07,0.59,12.396,13.311,13.533,363011.02,327209.23,319537.11 2018-10-18,11.8,11.93,11.4,11.37,272613.56,-0.55,-4.6,12.1,13.023,13.431,314191.59,327925.34,322847.06 2018-10-19,11.1,11.75,11.68,11.02,333744.97,0.28,2.46,11.876,12.731,13.331,297744.4,333112.07,327433.74 2018-10-22,11.79,12.78,12.64,11.78,500358.97,0.96,8.22,11.91,12.604,13.288,345206.62,352144.32,340931.54 2018-10-23,12.61,12.68,12.14,11.99,406853.97,-0.5,-3.96,11.962,12.394,13.246,360600.65,360180.42,347145.69 2018-10-24,12.04,12.25,11.94,11.88,286348.38,-0.2,-1.65,11.96,12.178,13.158,359983.97,361497.5,344777.86 2018-10-25,11.4,11.77,11.7,11.25,318862.91,-0.24,-2.01,12.02,12.06,13.059,369233.84,341712.71,343359.92 2018-10-26,11.89,11.94,11.65,11.59,224693.7,-0.05,-0.43,12.014,11.945,12.95,347423.59,322583.99,335461.66 2018-10-29,11.6,11.64,11.02,10.96,400754.38,-0.63,-5.41,11.69,11.8,12.792,327502.67,336354.64,335694.3 2018-10-30,10.98,11.36,11.23,10.83,310323.0,0.21,1.91,11.508,11.735,12.65,308196.47,334398.56,338517.24 2018-10-31,11.3,11.78,11.6,11.23,389848.84,0.37,3.29,11.44,11.7,12.506,328896.57,344440.27,335824.75 2018-11-01,11.69,11.84,11.56,11.53,390350.69,-0.04,-0.34,11.412,11.716,12.37,343194.12,356213.98,342069.66 2018-11-02,11.79,12.41,12.38,11.69,690194.94,0.82,7.09,11.558,11.786,12.259,436294.37,391858.98,362485.52 2018-11-05,12.3,12.3,12.11,11.93,473343.53,-0.27,-2.18,11.776,11.733,12.169,450812.2,389157.43,370650.88 2018-11-06,12.03,12.08,11.92,11.74,308357.88,-0.19,-1.57,11.914,11.711,12.053,450419.18,379307.83,369744.12 2018-11-07,11.85,12.1,11.86,11.8,338807.25,-0.06,-0.5,11.966,11.703,11.941,440210.86,384553.71,373025.6 2018-11-08,12.02,12.07,11.66,11.6,320866.38,-0.2,-1.69,11.986,11.699,11.88,426314.0,384754.06,363233.39 2018-11-09,11.59,11.63,11.48,11.45,197784.22,-0.18,-1.54,11.806,11.682,11.814,327831.85,382063.11,352323.55 2018-11-12,11.41,11.85,11.85,11.41,279093.59,0.37,3.22,11.754,11.765,11.783,288981.86,369897.03,353125.84 2018-11-13,11.66,11.99,11.88,11.6,376806.97,0.03,0.25,11.746,11.83,11.783,302671.68,376545.43,355472.0 2018-11-14,11.84,12.05,11.8,11.76,347228.09,-0.08,-0.67,11.734,11.85,11.775,304355.85,372283.35,358361.81 2018-11-15,11.76,12.03,12.03,11.7,324807.19,0.23,1.95,11.808,11.897,11.807,305144.01,365729.0,360971.49 2018-11-16,12.05,12.15,12.02,11.91,373166.47,-0.01,-0.08,11.916,11.861,11.824,340220.46,334026.16,362942.57 2018-11-19,12.04,12.28,12.28,11.96,394610.62,0.26,2.16,12.002,11.878,11.806,363323.87,326152.87,357655.15 2018-11-20,12.17,12.18,11.83,11.81,376581.59,-0.45,-3.66,11.992,11.869,11.79,363278.79,332975.24,356141.53 2018-11-21,11.55,11.7,11.66,11.45,296754.47,-0.17,-1.44,11.964,11.849,11.776,353184.07,328769.96,356661.84 2018-11-22,11.69,11.71,11.61,11.54,175418.84,-0.05,-0.43,11.88,11.844,11.772,323306.4,314225.21,349489.63 2018-11-23,11.57,11.6,10.99,10.95,392558.19,-0.62,-5.34,11.674,11.795,11.739,327184.74,333702.6,357882.86 2018-11-26,11.0,11.01,10.72,10.68,269315.91,-0.27,-2.46,11.362,11.682,11.724,302125.8,332724.83,351310.93 2018-11-27,10.8,10.89,10.77,10.69,166765.59,0.05,0.47,11.15,11.571,11.701,260162.6,311720.7,344133.06 2018-11-28,10.78,10.95,10.93,10.61,219351.48,0.16,1.49,11.004,11.484,11.667,244682.0,298933.04,335608.19 2018-11-29,11.0,11.17,10.65,10.63,292247.12,-0.28,-2.56,10.812,11.346,11.622,268047.66,295677.03,330703.02 2018-11-30,10.67,11.05,10.98,10.61,261958.16,0.33,3.1,10.81,11.242,11.552,241927.65,284556.2,309291.18 2018-12-03,11.32,11.53,11.38,11.16,442939.81,0.4,3.64,10.942,11.152,11.515,276652.43,289389.12,307770.99 2018-12-04,11.38,11.48,11.43,11.29,285608.31,0.05,0.44,11.074,11.112,11.491,300420.98,280291.79,306633.51 2018-12-05,11.15,11.4,11.24,11.08,232678.56,-0.19,-1.66,11.136,11.07,11.46,303086.39,273884.2,301327.08 2018-12-06,11.15,11.2,11.02,11.01,210052.05,-0.22,-1.96,11.21,11.011,11.428,286647.38,277347.52,295786.36 2018-12-07,11.06,11.13,11.07,11.01,122096.74,0.05,0.45,11.228,11.019,11.407,258675.09,250301.37,292001.99 2018-12-10,10.95,11.01,10.76,10.76,183989.98,-0.31,-2.8,11.104,11.023,11.353,206885.13,241768.78,287246.81 2018-12-11,10.79,10.87,10.84,10.77,111350.56,0.08,0.74,10.986,11.03,11.301,172033.58,236227.28,273973.99 2018-12-12,10.89,10.96,10.88,10.83,115065.0,0.04,0.37,10.914,11.025,11.255,148510.87,225798.63,262365.83 2018-12-13,10.9,11.26,11.16,10.84,335119.53,0.28,2.57,10.942,11.076,11.211,173524.36,230085.87,262881.45 2018-12-14,11.12,11.18,10.82,10.78,261024.77,-0.34,-3.05,10.892,11.06,11.151,201309.97,229992.53,257274.36 2018-12-17,10.82,10.85,10.79,10.65,177102.86,-0.03,-0.28,10.898,11.001,11.077,199932.54,203408.84,246398.98 2018-12-18,10.69,10.82,10.79,10.61,173313.94,0.0,0.0,10.888,10.937,11.025,212325.22,192179.4,236235.59 2018-12-19,10.78,10.79,10.64,10.6,129787.8,-0.15,-1.39,10.84,10.877,10.974,215269.78,181890.32,227887.26 2018-12-20,10.61,10.78,10.69,10.61,143630.23,0.05,0.47,10.746,10.844,10.928,176971.92,175248.14,226297.83 2018-12-21,10.66,10.66,10.4,10.32,216065.77,-0.29,-2.71,10.662,10.777,10.898,167980.12,184645.04,217473.21 2018-12-24,10.38,10.59,10.51,10.32,121361.64,0.11,1.06,10.606,10.752,10.888,156831.88,178382.21,210075.5 2018-12-25,10.3,10.35,10.3,10.06,232078.78,-0.21,-2.0,10.508,10.698,10.864,168584.84,190455.03,213341.15 2018-12-26,10.26,10.34,10.09,10.09,149200.69,-0.21,-2.04,10.398,10.619,10.822,172467.42,193868.6,209833.62 2018-12-27,10.32,10.36,10.02,10.0,205026.66,-0.07,-0.69,10.264,10.505,10.791,184746.71,180859.31,205472.59 2018-12-28,10.06,10.08,9.8,9.73,240500.77,-0.22,-2.2,10.144,10.403,10.732,189633.71,178806.91,204399.72 2019-01-02,9.87,9.88,9.72,9.68,141343.12,-0.08,-0.82,9.986,10.296,10.649,193630.0,175230.94,189319.89 2019-01-03,9.75,9.92,9.74,9.68,138029.81,0.02,0.21,9.874,10.191,10.564,174820.21,171702.53,181940.96 2019-01-04,9.64,10.13,10.08,9.58,284748.44,0.34,3.49,9.872,10.135,10.506,201929.76,187198.59,184544.46 2019-01-07,10.19,10.19,10.15,10.04,236167.41,0.07,0.69,9.898,10.081,10.463,208157.91,196452.31,185850.23 2019-01-08,10.13,10.13,10.01,10.0,130892.63,-0.14,-1.38,9.94,10.042,10.41,186236.28,187935.0,186290.02 2019-01-09,10.05,10.45,10.15,10.04,390747.97,0.14,1.4,10.026,10.006,10.379,236117.25,214873.63,196627.92 2019-01-10,10.16,10.2,10.07,10.07,193384.98,-0.08,-0.79,10.092,9.983,10.341,247188.29,211004.25,200729.64 2019-01-11,10.07,10.17,10.12,10.04,155181.94,0.05,0.5,10.1,9.986,10.303,221274.99,211602.37,202735.49 2019-01-14,10.11,10.21,10.09,10.04,155330.03,-0.03,-0.3,10.088,9.993,10.249,205107.51,206632.71,193746.01 2019-01-15,10.08,10.35,10.32,10.04,296667.19,0.23,2.28,10.15,10.045,10.224,238262.42,212249.35,195528.13 2019-01-16,10.31,10.42,10.25,10.21,198482.31,-0.07,-0.68,10.17,10.098,10.197,199809.29,217963.27,196597.11 2019-01-17,10.22,10.25,10.14,10.09,162837.69,-0.11,-1.07,10.184,10.138,10.165,193699.83,220444.06,196073.29 2019-01-18,10.16,10.77,10.65,10.15,565978.06,0.51,5.03,10.29,10.195,10.165,275859.06,248567.02,217882.81 2019-01-21,10.63,11.09,11.02,10.58,559175.38,0.37,3.47,10.476,10.282,10.182,356628.13,280867.82,238660.06 2019-01-22,10.94,11.16,11.15,10.76,481678.84,0.13,1.18,10.642,10.396,10.219,393630.46,315946.44,251940.72 2019-01-23,11.01,11.68,11.49,10.95,779547.06,0.34,3.05,10.89,10.53,10.268,509843.41,354826.35,284849.99 2019-01-24,11.36,11.52,11.4,11.29,422766.12,-0.09,-0.78,11.142,10.663,10.323,561829.09,377764.46,294384.36 2019-01-25,11.4,11.64,11.36,11.3,403042.09,-0.04,-0.35,11.284,10.787,10.387,529241.9,402550.48,307076.43 2019-01-28,11.36,11.49,11.4,11.12,374224.28,0.04,0.35,11.36,10.918,10.456,492251.68,424439.9,315536.31 2019-01-29,11.52,11.75,11.65,11.1,605485.19,0.25,2.19,11.46,11.051,10.548,517012.95,455321.7,333785.53 2019-01-30,11.55,11.94,11.6,11.53,468553.69,-0.05,-0.43,11.482,11.186,10.642,454814.27,482328.84,350146.06 2019-01-31,11.7,11.78,11.72,11.53,394720.84,0.12,1.03,11.546,11.344,10.741,449205.22,505517.16,362980.61 2019-02-01,11.82,12.1,12.06,11.71,443738.44,0.34,2.9,11.686,11.485,10.84,457344.49,493293.19,370930.11 ```
请问用Python的matplotlib可以将特定区域的陆地透明化,海洋根据数值进行上色,然后出图吗
from scipy.stats.kde import gaussian_kde import numpy from scipy.io import netcdf import gdal from gdalconst import * #import numpy,osr,sys import netCDF4 import pdb import datetime from scipy import interpolate import scipy.io as sio import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap ,shiftgrid import numpy as np import math #import seawater as sw from scipy import interpolate from math import radians, cos, sin, asin, sqrt import netCDF4 import glob import os import datetime from matplotlib.path import Path from collections import Counter data=netCDF4.Dataset(os.path.join('E:\\HYcom1\\uv\\uv1\\hycom_glb_911_2016010100_t000_uv3z.nc')) latitudes = data.variables['lat'][1188:1626] longitudes = data.variables['lon'][750:2063] lons, lats = np.meshgrid(longitudes,latitudes) v=np.zeros([438,1313])#空的二维数组 u=np.zeros([438,1313])#空的二维数组 gird= [[0 for col in range(1313)] for row in range(438)] k=0 tempv=data.variables['water_v'][0][k] tempu=data.variables['water_u'][0][k] #k=4 for i in range(1188,1626): for j in range(750,2063): if math.isnan(tempv[i][j]): v[i-1188][j-750]=0 else: v[i-1188][j-750]=tempv[i][j] if math.isnan(tempu[i][j]): u[i-1188][j-750]=0 else: u[i-1188][j-750]=tempu[i][j] #将为nan的数值赋值为0 for i in range(0,438):#当分辨率改变时需要改变 for j in range(0,1313): gird[i][j]=math.sqrt(u[i][j]*u[i][j]+v[i][j]*v[i][j]) #格网数据标量化 for i in range (1,438,2): for j in range (1,1313,2): gird[i-1][j-1]=(gird[i-1][j-1]+gird[i-1][j]+gird[i][j-1]+gird[i][j])/4 for i in range (0,438): for j in range (0,1313): gird[i][j]=gird[int(i/2)*2][int(j/2)*2] #双for循环,第一个将范围内的平均值存在左上角的位置,第二个将左上角的数据赋值所选范围内 gird= np.array(gird) m = Basemap(llcrnrlon=60,urcrnrlon=165,llcrnrlat=15,urcrnrlat=50) fig = plt.figure(edgecolor='none',frameon='false')#1124 figsize=(8,4),dpi=20 fig.set_size_inches(64,21.4) x, y = m(lons, lats) m.bluemarble() m.pcolor(x,y,gird,cmap=plt.cm.RdBu_r) m.fillcontinents(color='#CCCCCC',lake_color='#CCCCCC')#,alpha=0.0 plt.subplots_adjust(top=1,bottom=0,left=0,right=1,hspace=0,wspace=0)#输出图像边框设置 plt.savefig(os.path.join(r'E:\34\prectice\1202\\'+'64214.png')) plt.close() 以上是代码,其中读取NC数据,将特定区域的信息进行提取,进行绘图,但是最终需要的是陆地透明化的![图片说明](https://img-ask.csdn.net/upload/201712/02/1512183403_250442.png) 而我出图只能出成这样的![图片说明](https://img-ask.csdn.net/upload/201712/02/1512183388_746963.png) 不知在Python中是否有操作可以是陆地透明化,亦或者陆地填充成NASA的地图图片也可以,但是海洋地区一定是要根据处理出来的值来画的!求解~~~
报错Traceback (most recent call last): File... .format(val=len(data), ind=len(index))) ValueError: Length of passed values is 400, index implies 1
我是个小菜鸟,在尝试写生成高斯分布的作业时被报错: ``` D:\Anaconda\python.exe "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py" Traceback (most recent call last): File "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py", line 20, in <module> y = func(x, mean, std) File "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py", line 15, in func f = math.exp(-((x - mu) ^ 2)/(2*sigma ^ 2))/(sigma * math.sqrt(2 * math.pi)) File "D:\Anaconda\lib\site-packages\pandas\core\ops.py", line 1071, in wrapper index=left.index, name=res_name, dtype=None) File "D:\Anaconda\lib\site-packages\pandas\core\ops.py", line 980, in _construct_result out = left._constructor(result, index=index, dtype=dtype) File "D:\Anaconda\lib\site-packages\pandas\core\series.py", line 262, in __init__ .format(val=len(data), ind=len(index))) ValueError: Length of passed values is 400, index implies 1 Process finished with exit code 1 ``` 我有安装anaconda,但是报错中貌似表明panda这个package的问题。请问大神大佬,我存在什么问题呀应该怎么解决⊙︿⊙,我好像没在网上找到和我一样的问题,不敢和网上的回答一样在命令提示符里输入命令怕搞错(。•́︿•̀。),是我比较菜鸟又急着所以麻烦了!! 附上我的作业代码: ``` import math import pandas as pd import numpy as np import matplotlib.pyplot as plt # import matplotlib.mlab as mlb data = pd.read_csv('example-exercise6.csv') # read file of data # data = data_['time'] mean = data.mean() # average of data std = data.std() # std def func(x, mu, sigma): f = math.exp(-((x - mu) ^ 2)/(2*sigma ^ 2))/(sigma * math.sqrt(2 * math.pi)) return f x = np.arange(60, 100, 0.1) y = func(x, mean, std) plt.plot(x, y) plt.hist(data, bins=10, rwidth=0.9, normed=True) # x = np.arange(145, 155,0.2) # y = normfun(x, mean, std) # plt.plot(x,y,'g',linewidth = 3) # plt.hist(data, bins = 6, color = 'b', alpha=0.5, rwidth = 0.9, normed=True) # plt.title('stakes distribution') # plt.xlabel('stakes time') # plt.ylabel('Probability') plt.show() ``` ( 其中csv文件是:) ``` 87 88 83 83 86 80 84 90 84 80 94 89 76 ```
用matplotlib作图时设置了x轴主副刻度,怎样旋转副刻度坐标?
用matplotlib作图时设置了x轴主副刻度,主刻度是年月日,副刻度是时分秒,想把副坐标标签旋转,怎么实现呢? 不旋转的话,坐标值会重叠,用plt.xticks(rotation=90)只能旋转主刻度坐标 ![图片说明](https://img-ask.csdn.net/upload/201912/19/1576759414_237846.png) ``` fig,ax = plt.subplots(figsize=(8,3),dpi=128) #把刻度线设置在图的里面 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' #设置x轴主刻度 ax.xaxis.set_major_locator(mdates.DayLocator()) ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) #设置x轴副刻度 ax.xaxis.set_minor_locator(mdates.HourLocator(interval=6)) ax.xaxis.set_minor_formatter(mdates.DateFormatter('%H:%M:%S')) ax.plot(jin_data['datetime'],jin_data['data'],linewidth=1,label='进水温度') ax.plot(hui_data['datetime'],hui_data['data'],linewidth=1,label='回水温度') ax.set(xlabel='时间',ylabel='温度(℃)') lengend = ax.legend(loc='best') ax.grid(linestyle='--',linewidth=0.5) plt.tick_params(labelsize=8) # 设置坐标字体大小 plt.xticks(rotation=90) plt.show() ```
matplotlib中add_subplot出错
以下代码是天文包astroML中的例子,运行时出错,调试发现是 一起 fig = plt.figure(figsize=(5, 1.66)) 与 ax = fig.add_subplot(131) 一起运行时出错。但不知道为什么? 还有很奇怪的时以前可以运行的代码,在运行完下面代码出错后,在运行也会出同样的错误 代码: ``` """ EM example: Gaussian Mixture Models ----------------------------------- Figure 6.6 A two-dimensional mixture of Gaussians for the stellar metallicity data. The left panel shows the number density of stars as a function of two measures of their chemical composition: metallicity ([Fe/H]) and alpha-element abundance ([alpha/Fe]). The right panel shows the density estimated using mixtures of Gaussians together with the positions and covariances (2-sigma levels) of those Gaussians. The center panel compares the information criteria AIC and BIC (see Sections 4.3.2 and 5.4.3). """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from __future__ import print_function import numpy as np from matplotlib import pyplot as plt from sklearn.mixture import GaussianMixture from astroML.datasets import fetch_sdss_sspp from astroML.utils.decorators import pickle_results from astroML.plotting.tools import draw_ellipse #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. if "setup_text_plots" not in globals(): from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Get the Segue Stellar Parameters Pipeline data data = fetch_sdss_sspp(cleaned=True) X = np.vstack([data['FeH'], data['alphFe']]).T # truncate dataset for speed X = X[::5] #------------------------------------------------------------ # Compute GaussianMixture models & AIC/BIC N = np.arange(1, 14) @pickle_results("GMM_metallicity.pkl") def compute_GaussianMixture(N, covariance_type='full', max_iter=1000): models = [None for n in N] for i in range(len(N)): print(N[i]) models[i] = GaussianMixture(n_components=N[i], max_iter=max_iter, covariance_type=covariance_type) models[i].fit(X) return models models = compute_GaussianMixture(N) AIC = [m.aic(X) for m in models] BIC = [m.bic(X) for m in models] i_best = np.argmin(BIC) gmm_best = models[i_best] print("best fit converged:", gmm_best.converged_) print("BIC: n_components = %i" % N[i_best]) #------------------------------------------------------------ # compute 2D density FeH_bins = 51 alphFe_bins = 51 H, FeH_bins, alphFe_bins = np.histogram2d(data['FeH'], data['alphFe'], (FeH_bins, alphFe_bins)) Xgrid = np.array(list(map(np.ravel, np.meshgrid(0.5 * (FeH_bins[:-1] + FeH_bins[1:]), 0.5 * (alphFe_bins[:-1] + alphFe_bins[1:]))))).T log_dens = gmm_best.score_samples(Xgrid).reshape((51, 51)) #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 1.66)) fig.subplots_adjust(wspace=0.45, bottom=0.25, top=0.9, left=0.1, right=0.97) # plot density ax = fig.add_subplot(131) ax.imshow(H.T, origin='lower', interpolation='nearest', aspect='auto', extent=[FeH_bins[0], FeH_bins[-1], alphFe_bins[0], alphFe_bins[-1]], cmap=plt.cm.binary) ax.set_xlabel(r'$\rm [Fe/H]$') ax.set_ylabel(r'$\rm [\alpha/Fe]$') ax.xaxis.set_major_locator(plt.MultipleLocator(0.3)) ax.set_xlim(-1.101, 0.101) ax.text(0.93, 0.93, "Input", va='top', ha='right', transform=ax.transAxes) # plot AIC/BIC ax = fig.add_subplot(132) ax.plot(N, AIC, '-k', label='AIC') ax.plot(N, BIC, ':k', label='BIC') ax.legend(loc=1) ax.set_xlabel('N components') plt.setp(ax.get_yticklabels(), fontsize=7) # plot best configurations for AIC and BIC ax = fig.add_subplot(133) ax.imshow(np.exp(log_dens), origin='lower', interpolation='nearest', aspect='auto', extent=[FeH_bins[0], FeH_bins[-1], alphFe_bins[0], alphFe_bins[-1]], cmap=plt.cm.binary) ax.scatter(gmm_best.means_[:, 0], gmm_best.means_[:, 1], c='w') for mu, C, w in zip(gmm_best.means_, gmm_best.covariances_, gmm_best.weights_): draw_ellipse(mu, C, scales=[1.5], ax=ax, fc='none', ec='k') ax.text(0.93, 0.93, "Converged", va='top', ha='right', transform=ax.transAxes) ax.set_xlim(-1.101, 0.101) ax.set_ylim(alphFe_bins[0], alphFe_bins[-1]) ax.xaxis.set_major_locator(plt.MultipleLocator(0.3)) ax.set_xlabel(r'$\rm [Fe/H]$') ax.set_ylabel(r'$\rm [\alpha/Fe]$') plt.show() ```
小白用python编写的爬虫小程序突然失效,是ip被封还是其他问题,求教?
# 编写的python小程序,爬取豆瓣评论,昨天还可以用,今天就失效了,试过很多种解决方法,都没有成功,求教? ## 可能的问题是ip被封或者cookies? 主程序 ``` # -*- coding: utf-8 -*- import ReviewCollection from snownlp import SnowNLP from matplotlib import pyplot as plt #画饼状图 def PlotPie(ratio, labels, colors): plt.figure(figsize=(6, 8)) explode = (0.05,0) patches,l_text,p_text = plt.pie(ratio,explode=explode,labels=labels,colors=colors, labeldistance=1.1,autopct='%3.1f%%',shadow=False, startangle=90,pctdistance=0.6) plt.axis('equal') plt.legend() plt.show() def main(): #初始url url = 'https://movie.douban.com/subject/30176393/' #保存评论文件 outfile = 'review.txt' (reviews, sentiment) = ReviewCollection.CollectReivew(url, 20, outfile) numOfRevs = len(sentiment) print(numOfRevs) #print(sentiment) positive = 0.0 negative = 0.0 accuracy = 0.0 #利用snownlp逐条分析每个评论的情感 for i in range(numOfRevs): # if sentiment[i] == 1: # positive += 1 # else: # negative += 1 print(reviews[i]+str(i)) sent = SnowNLP(reviews[i]) predict = sent.sentiments #print(predict,end=' ') if predict >= 0.5: positive += 1 if sentiment[i] == 1: accuracy += 1 else: negative += 1 if sentiment[i] == 0: accuracy += 1 #计算情感分析的精度 print('情感预测精度为: ' + str(accuracy/numOfRevs)) # print(positive,negative) #绘制饼状图 #定义饼状图的标签 labels = ['Positive Reviews', 'Negetive Reviews'] #每个标签占的百分比 ratio = [positive/numOfRevs, negative/numOfRevs] # print(ratio[0],ratio[1]) colors = ['red','yellowgreen'] PlotPie(ratio, labels, colors) if __name__=="__main__": main() ``` 次程序 ``` #!/usr/bin/python # -*- coding: utf-8 -*- from bs4 import BeautifulSoup import requests import csv import re import time import codecs import random def StartoSentiment(star): ''' 将评分转换为情感标签,简单起见 我们将大于或等于三星的评论当做正面评论 小于三星的评论当做负面评论 ''' score = int(star[-2]) if score >= 3: return 1 else: return 0 def CollectReivew(root, n, outfile): ''' 收集给定电影url的前n条评论 ''' reviews = [] sentiment = [] urlnumber = 0 headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.75 Safari/537.36','Connection': 'close','cookie': 'll="108303"; bid=DOSjemTnbi0; _pk_ses.100001.4cf6=*; ap_v=0,6.0; __utma=30149280.1517093765.1576143949.1576143949.1576143949.1; __utmb=30149280.0.10.1576143949; __utmc=30149280; __utmz=30149280.1576143949.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utma=223695111.1844590374.1576143949.1576143949.1576143949.1; __utmc=223695111; __utmz=223695111.1576143949.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __yadk_uid=iooXpNnGnHUza2r4ru7uRCpa3BXeHG0l; dbcl2="207917948:BFXaC6risAw"; ck=uFvj; _pk_id.100001.4cf6=4c11da64dc6451d3.1576143947.1.1576143971.1576143947.; __utmb=223695111.2.10.1576143949'} proxies = { "http":'http://121.69.46.177:9000',"https": 'https://122.136.212.132:53281'}#121.69.46.177:9000218.27.136.169:8085 122.136.212.132:53281 while urlnumber < n: url = root + 'comments?start=' + str(urlnumber) + '&limit=20&sort=new_score&status=P' print('要收集的电影评论网页为:' + url) # try: html = requests.get(url, headers = headers, proxies = proxies,timeout = 15) # # except Exception as e: # break soup = BeautifulSoup(html.text.encode("utf-8"),'html.parser') #通过正则表达式匹配评论和评分 for item in soup.find_all(name='span',attrs={'class':re.compile(r'^allstar')}): sentiment.append(StartoSentiment(item['class'][0])) #for item in soup.find_all(name='p',attrs={'class':''}): # if str(item).find('class="pl"') < 0: # r = str(item.string).strip() # reviews.append(r) comments = soup.find_all('span','short') for comment in comments: # print(comment.getText()+'\n') reviews.append(comment.getText()+'\n') urlnumber = urlnumber + 20 time.sleep(5) with codecs.open(outfile, 'w', 'utf-8') as output: for i in range(len(sentiment)): output.write(reviews[i] + '\t' + str(sentiment[i]) + '\n') return (reviews, sentiment) ``` ![图片说明](https://img-ask.csdn.net/upload/201912/12/1576149313_611712.jpg) 不设置参数proxies时错误如下:![图片说明](https://img-ask.csdn.net/upload/201912/12/1576149408_985833.jpg) 求教解决方法,感谢!!!!
matplotlib绘制k线图如何跳过周末等数据空白日期,让图形连贯起来?
#!/usr/bin/python # -*- coding: UTF-8 -*- from pylab import * import talib from pylab import * import mpl_finance as mpf from matplotlib.pylab import date2num import pandas as pd import datetime mpl.rcParams['font.sans-serif'] = ['SimHei'] quotes = [] stock = pd.read_csv('99999.csv', index_col=None) for row in range(260): sdate_plt = row print(sdate_plt) sopen = stock.loc[row, 'open'] shigh = stock.loc[row, 'high'] slow = stock.loc[row, 'low'] sclose = stock.loc[row, 'close'] datas = (sdate_plt, sopen, shigh, slow, sclose) # 按照 candlestick_ohlc 要求的数据结构准备数据 quotes.append(datas) fig, ax = plt.subplots(facecolor=(0, 0.3, 0.5), figsize=(12, 8)) fig.subplots_adjust(bottom=0.1) ax.xaxis_date() plt.xticks(rotation=45) # 日期显示的旋转角度 plt.title('2018年7月1日至今k线图',fontsize=18) plt.ylabel('价格(元)',fontsize=15) mpf.candlestick_ohlc(ax, quotes, width=0.7, colorup='r', colordown='green') # 上涨为红色K线,下跌为绿色,K线宽度为0.7 plt.annotate(s='brown x = buying; green x = selling',xy=('2016-7-11',4400), xytext=('2016-7-11',4400),bbox=dict(boxstyle='round,pad=0.5', fc='yellow', ec='k', lw=2, alpha=0.5)) plt.grid(axis='y',linestyle='-.') plt.show() 1. ``` ![图片说明](https://img-ask.csdn.net/upload/201908/22/1566463928_276488.png)
Python抓取程序无法运行
-*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import requests as req import pandas as pd import matplotlib.pyplot as plt import time import re url='http://wenshu.court.gov.cn/List/ListContent' Index=1 SleepNum= 3 dates=[] titles=[] nums=[] while (Index < 123): my_headers={'User-Agent':'User-Agent:Mozilla/5.0(Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.95Safari/537.36 Core/1.50.1280.400',} data={'Param':'全文检索:执行', 'Index': Index,'Page':'20','Order':'裁判日期', 'Direction':'asc'} r=req.post(url,headers=my_headers, data = data) raw=r.json() pattern1= re.compile('"裁判日期":"(.*?)"',re.S) date= re.findall(pattern1,raw) pattern2= re.compile('"案号":"(.*?)"',re.S) num= re.findall(pattern2,raw) pattern3= re.compile('"案件名称":"(.*?)"',re.S) title= re.findall(pattern3,raw) dates+=date titles+=title nums+=num time.sleep(SleepNum) Index+= 1 df=pd.DataFrame({'时间':dates,'案号':nums, '案件名称':titles}) df.to_excel('E:\result.xlsx')  console内容: Python 2.7.11 |Anaconda 4.1.0 (64-bit)| (default, Jun 15 2016, 15:21:11) [MSC v.1500 64 bit (AMD64)] Type "copyright", "credits" or "license" for more information. IPython 4.2.0 -- An enhanced Interactive Python. ? -> Introduction and overview of IPython's features. %quickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. %guiref -> A brief reference about the graphical user interface. runfile('C:/Users/xx/.spyder2/temp.py', wdir='C:/Users/xx/.spyder2') Traceback (most recent call last): File "", line 1, in runfile('C:/Users/xx/.spyder2/temp.py', wdir='C:/Users/xx/.spyder2') File "D:\Anaconda2\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 714, in runfile execfile(filename, namespace) File "D:\Anaconda2\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 74, in execfile exec(compile(scripttext, filename, 'exec'), glob, loc) File "C:/Users/xx/.spyder2/temp.py", line 50, in df.to_excel('E:\result.xlsx') File "D:\Anaconda2\lib\site-packages\pandas\core\frame.py", line 1427, in to_excel excel_writer.save() File "D:\Anaconda2\lib\site-packages\pandas\io\excel.py", line 1444, in save return self.book.close() File "D:\Anaconda2\lib\site-packages\xlsxwriter\workbook.py", line 297, in close self._store_workbook() File "D:\Anaconda2\lib\site-packages\xlsxwriter\workbook.py", line 605, in _store_workbook xml_files = packager._create_package() File "D:\Anaconda2\lib\site-packages\xlsxwriter\packager.py", line 139, in _create_package self._write_shared_strings_file() File "D:\Anaconda2\lib\site-packages\xlsxwriter\packager.py", line 286, in _write_shared_strings_file sst._assemble_xml_file() File "D:\Anaconda2\lib\site-packages\xlsxwriter\sharedstrings.py", line 53, in _assemble_xml_file self._write_sst_strings() File "D:\Anaconda2\lib\site-packages\xlsxwriter\sharedstrings.py", line 83, in _write_sst_strings self._write_si(string) File "D:\Anaconda2\lib\site-packages\xlsxwriter\sharedstrings.py", line 110, in _write_si self._xml_si_element(string, attributes) File "D:\Anaconda2\lib\site-packages\xlsxwriter\xmlwriter.py", line 122, in _xml_si_element self.fh.write("""%s""" % (attr, string)) File "D:\Anaconda2\lib\codecs.py", line 706, in write return self.writer.write(data) File "D:\Anaconda2\lib\codecs.py", line 369, in write data, consumed = self.encode(object, self.errors) UnicodeDecodeError: 'ascii' codec can't decode byte 0xe6 in position 7: ordinal not in range(128) runfile('C:/Users/xx/.spyder2/temp.py', wdir='C:/Users/xx/.spyder2')ERROR: execution aborted
在python进行方差分析时,残差的自由度总是为0????
``` #coding:utf8 from scipy import stats import pandas as pd import numpy as np from statsmodels.formula.api import ols from statsmodels.stats.anova import anova_lm from statsmodels.stats.multicomp import pairwise_tukeyhsd import matplotlib.pyplot as plt path = r"E:\python code\zuoye\2facter-avaon.csv" #path = r"E:\python code\zuoye\ToothGrowth.csv" df = pd.read_csv(path,header=None,names=['data','month','time'] ) formula = 'data~C(time) + C(month) + C(time):C(month)' anova_results = anova_lm(ols(formula,df).fit()) print(anova_results) ``` ![运行结果](https://img-ask.csdn.net/upload/201704/05/1491357121_965716.png) 数据集为 ``` 1,4574.82,Jan,8 2,32136.71,Jan,9 3,73890.49,Jan,10 4,61498.92,Jan,11 5,38142.71,Jan,12 6,45988.9,Jan,13 7,66276.1,Jan,14 8,82821.365,Jan,15 9,81560.06,Jan,16 10,78350.47,Jan,17 11,80930.74,Jan,18 12,95226.79,Jan,19 13,75982.9,Jan,20 14,14012.17,Jan,21 15,4574.82,Feb,8 16,32136.71,Feb,9 17,73890.49,Feb,10 18,61498.92,Feb,11 19,38142.71,Feb,12 20,45988.9,Feb,13 21,66276.1,Feb,14 22,82821.365,Feb,15 23,81560.06,Feb,16 24,78350.47,Feb,17 25,80930.74,Feb,18 26,95226.79,Feb,19 27,75982.9,Feb,20 28,14012.17,Feb,21 ```
求助,Tensorflow搭建AlexNet模型是训练集验证集的LOSS不收敛
如题,代码如下,请大佬赐教 ``` # coding:utf-8 import tensorflow as tf import numpy as np import time import os import cv2 import matplotlib.pyplot as plt def get_file(file_dir): images = [] labels = [] for root, sub_folders, files in os.walk(file_dir): for name in files: images.append(os.path.join(root, name)) letter = name.split('.')[0] # 对标签进行分类 if letter == 'cat': labels = np.append(labels, [0]) else: labels = np.append(labels, [1]) # shuffle(随机打乱) temp = np.array([images, labels]) temp = temp.transpose() # 建立images 与 labels 之间关系, 以矩阵形式展现 np.random.shuffle(temp) image_list = list(temp[:, 0]) label_list = list(temp[:, 1]) label_list = [int(float(i)) for i in label_list] print(image_list) print(label_list) return image_list, label_list # 返回文件名列表 def _parse_function(image_list, labels_list): image_contents = tf.read_file(image_list) image = tf.image.decode_jpeg(image_contents, channels=3) image = tf.cast(image, tf.float32) image = tf.image.resize_image_with_crop_or_pad(image, 227, 227) # 剪裁或填充处理 image = tf.image.per_image_standardization(image) # 图片标准化 labels = labels_list return image, labels # 将需要读取的数据集地址转换为专用格式 def get_batch(image_list, labels_list, batch_size): image_list = tf.cast(image_list, tf.string) labels_list = tf.cast(labels_list, tf.int32) dataset = tf.data.Dataset.from_tensor_slices((image_list, labels_list)) # 创建dataset dataset = dataset.repeat() # 无限循环 dataset = dataset.map(_parse_function) dataset = dataset.batch(batch_size) dataset = dataset.make_one_shot_iterator() return dataset # 正则化处理数据集 def batch_norm(inputs, is_training, is_conv_out=True, decay=0.999): scale = tf.Variable(tf.ones([inputs.get_shape()[-1]])) beta = tf.Variable(tf.zeros([inputs.get_shape()[-1]])) pop_mean = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), trainable=False) pop_var = tf.Variable(tf.ones([inputs.get_shape()[-1]]), trainable=False) def batch_norm_train(): if is_conv_out: batch_mean, batch_var = tf.nn.moments(inputs, [0, 1, 2]) # 求均值及方差 else: batch_mean, batch_var = tf.nn.moments(inputs, [0]) train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay)) train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay)) with tf.control_dependencies([train_mean, train_var]): # 在train_mean, train_var计算完条件下继续 return tf.nn.batch_normalization(inputs, batch_mean, batch_var, beta, scale, 0.001) def batch_norm_test(): return tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, 0.001) batch_normalization = tf.cond(is_training, batch_norm_train, batch_norm_test) return batch_normalization # 建立模型 learning_rate = 1e-4 training_iters = 200 batch_size = 50 display_step = 5 n_classes = 2 n_fc1 = 4096 n_fc2 = 2048 # 构建模型 x = tf.placeholder(tf.float32, [None, 227, 227, 3]) y = tf.placeholder(tf.int32, [None]) is_training = tf.placeholder(tf.bool) # 字典模式管理权重与偏置参数 W_conv = { 'conv1': tf.Variable(tf.truncated_normal([11, 11, 3, 96], stddev=0.0001)), 'conv2': tf.Variable(tf.truncated_normal([5, 5, 96, 256], stddev=0.01)), 'conv3': tf.Variable(tf.truncated_normal([3, 3, 256, 384], stddev=0.01)), 'conv4': tf.Variable(tf.truncated_normal([3, 3, 384, 384], stddev=0.01)), 'conv5': tf.Variable(tf.truncated_normal([3, 3, 384, 256], stddev=0.01)), 'fc1': tf.Variable(tf.truncated_normal([6 * 6 * 256, n_fc1], stddev=0.1)), 'fc2': tf.Variable(tf.truncated_normal([n_fc1, n_fc2], stddev=0.1)), 'fc3': tf.Variable(tf.truncated_normal([n_fc2, n_classes], stddev=0.1)), } b_conv = { 'conv1': tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[96])), 'conv2': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[256])), 'conv3': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[384])), 'conv4': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[384])), 'conv5': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[256])), 'fc1': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[n_fc1])), 'fc2': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[n_fc2])), 'fc3': tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[n_classes])), } x_image = tf.reshape(x, [-1, 227, 227, 3]) # 卷积层,池化层,LRN层编写 # 第一层卷积层 # 卷积层1 conv1 = tf.nn.conv2d(x_image, W_conv['conv1'], strides=[1, 4, 4, 1], padding='VALID') conv1 = tf.nn.bias_add(conv1, b_conv['conv1']) conv1 = batch_norm(conv1, is_training) #conv1 = tf.layers.batch_normalization(conv1, training=is_training) conv1 = tf.nn.relu(conv1) # 池化层1 pool1 = tf.nn.avg_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID') # LRN层 norm1 = tf.nn.lrn(pool1, 5, bias=1.0, alpha=0.001 / 9.0, beta=0.75) # 第二层卷积 # 卷积层2 conv2 = tf.nn.conv2d(norm1, W_conv['conv2'], strides=[1, 1, 1, 1], padding='SAME') conv2 = tf.nn.bias_add(conv2, b_conv['conv2']) #conv2 = tf.layers.batch_normalization(conv2, training=is_training) conv2 = batch_norm(conv2, is_training) conv2 = tf.nn.relu(conv2) # 池化层2 pool2 = tf.nn.avg_pool(conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID') # LRN层 #norm2 = tf.nn.lrn(pool2, 5, bias=1.0, alpha=0.001 / 9.0, beta=0.75) # 第三层卷积 # 卷积层3 conv3 = tf.nn.conv2d(pool2, W_conv['conv3'], strides=[1, 1, 1, 1], padding='SAME') conv3 = tf.nn.bias_add(conv3, b_conv['conv3']) #conv3 = tf.layers.batch_normalization(conv3, training=is_training) conv3 = batch_norm(conv3, is_training) conv3 = tf.nn.relu(conv3) # 第四层卷积 # 卷积层4 conv4 = tf.nn.conv2d(conv3, W_conv['conv4'], strides=[1, 1, 1, 1], padding='SAME') conv4 = tf.nn.bias_add(conv4, b_conv['conv4']) #conv4 = tf.layers.batch_normalization(conv4, training=is_training) conv4 = batch_norm(conv4, is_training) conv4 = tf.nn.relu(conv4) # 第五层卷积 # 卷积层5 conv5 = tf.nn.conv2d(conv4, W_conv['conv5'], strides=[1, 1, 1, 1], padding='SAME') conv5 = tf.nn.bias_add(conv5, b_conv['conv5']) #conv5 = tf.layers.batch_normalization(conv5, training=is_training) conv5 = batch_norm(conv5, is_training) conv5 = tf.nn.relu(conv5) # 池化层5 pool5 = tf.nn.avg_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID') # 第六层全连接 reshape = tf.reshape(pool5, [-1, 6 * 6 * 256]) #fc1 = tf.matmul(reshape, W_conv['fc1']) fc1 = tf.add(tf.matmul(reshape, W_conv['fc1']), b_conv['fc1']) #fc1 = tf.layers.batch_normalization(fc1, training=is_training) fc1 = batch_norm(fc1, is_training, False) fc1 = tf.nn.relu(fc1) #fc1 = tf.nn.dropout(fc1, 0.5) # 第七层全连接 #fc2 = tf.matmul(fc1, W_conv['fc2']) fc2 = tf.add(tf.matmul(fc1, W_conv['fc2']), b_conv['fc2']) #fc2 = tf.layers.batch_normalization(fc2, training=is_training) fc2 = batch_norm(fc2, is_training, False) fc2 = tf.nn.relu(fc2) #fc2 = tf.nn.dropout(fc2, 0.5) # 第八层全连接(分类层) yop = tf.add(tf.matmul(fc2, W_conv['fc3']), b_conv['fc3']) # 损失函数 #y = tf.stop_gradient(y) loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=yop, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) #update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) #with tf.control_dependencies(update_ops): # 保证train_op在update_ops执行之后再执行。 #train_op = optimizer.minimize(loss) # 评估模型 correct_predict = tf.nn.in_top_k(yop, y, 1) accuracy = tf.reduce_mean(tf.cast(correct_predict, tf.float32)) init = tf.global_variables_initializer() def onehot(labels): # 独热编码表示数据 n_sample = len(labels) n_class = max(labels) + 1 onehot_labels = np.zeros((n_sample, n_class)) onehot_labels[np.arange(n_sample), labels] = 1 # python迭代方法,将每一行对应个置1 return onehot_labels save_model = './/model//my-model.ckpt' # 模型训练 def train(epoch): with tf.Session() as sess: sess.run(init) saver = tf.train.Saver(var_list=tf.global_variables()) c = [] b = [] max_acc = 0 start_time = time.time() step = 0 global dataset dataset = dataset.get_next() for i in range(epoch): step = i image, labels = sess.run(dataset) sess.run(optimizer, feed_dict={x: image, y: labels, is_training: True}) # 训练一次 #if i % 5 == 0: loss_record = sess.run(loss, feed_dict={x: image, y: labels, is_training: True}) # 记录一次 #predict = sess.run(yop, feed_dict={x: image, y: labels, is_training: True}) acc = sess.run(accuracy, feed_dict={x: image, y: labels, is_training: True}) print("step:%d, now the loss is %f" % (step, loss_record)) #print(predict[0]) print("acc : %f" % acc) c.append(loss_record) b.append(acc) end_time = time.time() print('time:', (end_time - start_time)) start_time = end_time print('-----------%d opench is finished ------------' % (i / 5)) #if acc > max_acc: # max_acc = acc # saver.save(sess, save_model, global_step=i + 1) print('Optimization Finished!') #saver.save(sess, save_model) print('Model Save Finished!') plt.plot(c) plt.plot(b) plt.xlabel('iter') plt.ylabel('loss') plt.title('lr=%f, ti=%d, bs=%d' % (learning_rate, training_iters, batch_size)) plt.tight_layout() plt.show() X_train, y_train = get_file("D://cat_and_dog//cat_dog_train//cat_dog") # 返回为文件地址 dataset = get_batch(X_train, y_train, 100) train(100) ``` 数据文件夹为猫狗大战那个25000个图片的文件,不加入正则表达层的时候训练集loss会下降,但是acc维持不变,加入__batch norm__或者__tf.layers.batch__normalization 训练集和验证机的loss都不收敛了
在中国程序员是青春饭吗?
今年,我也32了 ,为了不给大家误导,咨询了猎头、圈内好友,以及年过35岁的几位老程序员……舍了老脸去揭人家伤疤……希望能给大家以帮助,记得帮我点赞哦。 目录: 你以为的人生 一次又一次的伤害 猎头界的真相 如何应对互联网行业的「中年危机」 一、你以为的人生 刚入行时,拿着傲人的工资,想着好好干,以为我们的人生是这样的: 等真到了那一天,你会发现,你的人生很可能是这样的: ...
《MySQL 性能优化》之理解 MySQL 体系结构
本文介绍 MySQL 的体系结构,包括物理结构、逻辑结构以及插件式存储引擎。
程序员请照顾好自己,周末病魔差点一套带走我。
程序员在一个周末的时间,得了重病,差点当场去世,还好及时挽救回来了。
Python+OpenCV实时图像处理
目录 1、导入库文件 2、设计GUI 3、调用摄像头 4、实时图像处理 4.1、阈值二值化 4.2、边缘检测 4.3、轮廓检测 4.4、高斯滤波 4.5、色彩转换 4.6、调节对比度 5、退出系统 初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试...
2020年一线城市程序员工资大调查
人才需求 一线城市共发布岗位38115个,招聘120827人。 其中 beijing 22805 guangzhou 25081 shanghai 39614 shenzhen 33327 工资分布 2020年中国一线城市程序员的平均工资为16285元,工资中位数为14583元,其中95%的人的工资位于5000到20000元之间。 和往年数据比较: yea...
为什么猝死的都是程序员,基本上不见产品经理猝死呢?
相信大家时不时听到程序员猝死的消息,但是基本上听不到产品经理猝死的消息,这是为什么呢? 我们先百度搜一下:程序员猝死,出现将近700多万条搜索结果: 搜索一下:产品经理猝死,只有400万条的搜索结果,从搜索结果数量上来看,程序员猝死的搜索结果就比产品经理猝死的搜索结果高了一倍,而且从下图可以看到,首页里面的五条搜索结果,其实只有两条才是符合条件。 所以程序员猝死的概率真的比产品经理大,并不是错...
害怕面试被问HashMap?这一篇就搞定了!
声明:本文以jdk1.8为主! 搞定HashMap 作为一个Java从业者,面试的时候肯定会被问到过HashMap,因为对于HashMap来说,可以说是Java集合中的精髓了,如果你觉得自己对它掌握的还不够好,我想今天这篇文章会非常适合你,至少,看了今天这篇文章,以后不怕面试被问HashMap了 其实在我学习HashMap的过程中,我个人觉得HashMap还是挺复杂的,如果真的想把它搞得明明白...
毕业5年,我问遍了身边的大佬,总结了他们的学习方法
我问了身边10个大佬,总结了他们的学习方法,原来成功都是有迹可循的。
python爬取百部电影数据,我分析出了一个残酷的真相
2019年就这么匆匆过去了,就在前几天国家电影局发布了2019年中国电影市场数据,数据显示去年总票房为642.66亿元,同比增长5.4%;国产电影总票房411.75亿元,同比增长8.65%,市场占比 64.07%;城市院线观影人次17.27亿,同比增长0.64%。 看上去似乎是一片大好对不对?不过作为一名严谨求实的数据分析师,我从官方数据中看出了一点端倪:国产票房增幅都已经高达8.65%了,为什...
推荐10个堪称神器的学习网站
每天都会收到很多读者的私信,问我:“二哥,有什么推荐的学习网站吗?最近很浮躁,手头的一些网站都看烦了,想看看二哥这里有什么新鲜货。” 今天一早做了个恶梦,梦到被老板辞退了。虽然说在我们公司,只有我辞退老板的份,没有老板辞退我这一说,但是还是被吓得 4 点多都起来了。(主要是因为我掌握着公司所有的核心源码,哈哈哈) 既然 4 点多起来,就得好好利用起来。于是我就挑选了 10 个堪称神器的学习网站,推...
这些软件太强了,Windows必装!尤其程序员!
Windows可谓是大多数人的生产力工具,集娱乐办公于一体,虽然在程序员这个群体中都说苹果是信仰,但是大部分不都是从Windows过来的,而且现在依然有很多的程序员用Windows。 所以,今天我就把我私藏的Windows必装的软件分享给大家,如果有一个你没有用过甚至没有听过,那你就赚了????,这可都是提升你幸福感的高效率生产力工具哦! 走起!???? NO、1 ScreenToGif 屏幕,摄像头和白板...
阿里面试,面试官没想到一个ArrayList,我都能跟他扯半小时
我是真的没想到,面试官会这样问我ArrayList。
曾经优秀的人,怎么就突然不优秀了。
职场上有很多辛酸事,很多合伙人出局的故事,很多技术骨干被裁员的故事。说来模板都类似,曾经是名校毕业,曾经是优秀员工,曾经被领导表扬,曾经业绩突出,然而突然有一天,因为种种原因,被裁员了,...
C语言荣获2019年度最佳编程语言
关注、星标公众号,不错过精彩内容作者:黄工公众号:strongerHuang近日,TIOBE官方发布了2020年1月编程语言排行榜单。我在前面给过一篇文章《2019年11月C语言接近Ja...
大学四年因为知道了这32个网站,我成了别人眼中的大神!
依稀记得,毕业那天,我们导员发给我毕业证的时候对我说“你可是咱们系的风云人物啊”,哎呀,别提当时多开心啦????,嗯,我们导员是所有导员中最帅的一个,真的???? 不过,导员说的是实话,很多人都叫我大神的,为啥,因为我知道这32个网站啊,你说强不强????,这次是绝对的干货,看好啦,走起来! PS:每个网站都是学计算机混互联网必须知道的,真的牛杯,我就不过多介绍了,大家自行探索,觉得没用的,尽管留言吐槽吧???? 社...
良心推荐,我珍藏的一些Chrome插件
上次搬家的时候,发了一个朋友圈,附带的照片中不小心暴露了自己的 Chrome 浏览器插件之多,于是就有小伙伴评论说分享一下我觉得还不错的浏览器插件。 我下面就把我日常工作和学习中经常用到的一些 Chrome 浏览器插件分享给大家,随便一个都能提高你的“生活品质”和工作效率。 Markdown Here Markdown Here 可以让你更愉快的写邮件,由于支持 Markdown 直接转电子邮...
看完这篇HTTP,跟面试官扯皮就没问题了
我是一名程序员,我的主要编程语言是 Java,我更是一名 Web 开发人员,所以我必须要了解 HTTP,所以本篇文章就来带你从 HTTP 入门到进阶,看完让你有一种恍然大悟、醍醐灌顶的感觉。 最初在有网络之前,我们的电脑都是单机的,单机系统是孤立的,我还记得 05 年前那会儿家里有个电脑,想打电脑游戏还得两个人在一个电脑上玩儿,及其不方便。我就想为什么家里人不让上网,我的同学 xxx 家里有网,每...
史上最全的IDEA快捷键总结
现在Idea成了主流开发工具,这篇博客对其使用的快捷键做了总结,希望对大家的开发工作有所帮助。
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
谁是华为扫地僧?
是的,华为也有扫地僧!2020年2月11-12日,“养在深闺人不知”的华为2012实验室扫地僧们,将在华为开发者大会2020(Cloud)上,和大家见面。到时,你可以和扫地僧们,吃一个洋...
AI 没让人类失业,搞 AI 的人先失业了
最近和几个 AI 领域的大佬闲聊 根据他们讲的消息和段子 改编出下面这个故事 如有雷同 都是巧合 1. 老王创业失败,被限制高消费 “这里写我跑路的消息实在太夸张了。” 王葱葱哼笑一下,把消息分享给群里。 阿杰也看了消息,笑了笑。在座几位也都笑了。 王葱葱是个有名的人物,21岁那年以全额奖学金进入 KMU 攻读人工智能博士,累计发表论文 40 余篇,个人技术博客更是成为深度学习领域内风向标。 ...
2020年,冯唐49岁:我给20、30岁IT职场年轻人的建议
点击“技术领导力”关注∆每天早上8:30推送 作者|Mr.K 编辑| Emma 来源|技术领导力(ID:jishulingdaoli) 前天的推文《冯唐:职场人35岁以后,方法论比经验重要》,收到了不少读者的反馈,觉得挺受启发。其实,冯唐写了不少关于职场方面的文章,都挺不错的。可惜大家只记住了“春风十里不如你”、“如何避免成为油腻腻的中年人”等不那么正经的文章。 本文整理了冯...
一份王者荣耀的英雄数据报告
咪哥杂谈本篇阅读时间约为 6 分钟。1前言前一阵写了关于王者的一些系列文章,从数据的获取到数据清洗,数据落地,都是为了本篇的铺垫。今天来实现一下,看看不同维度得到的结论。2环境准备本次实...
作为一名大学生,如何在B站上快乐的学习?
B站是个宝,谁用谁知道???? 作为一名大学生,你必须掌握的一项能力就是自学能力,很多看起来很牛X的人,你可以了解下,人家私底下一定是花大量的时间自学的,你可能会说,我也想学习啊,可是嘞,该学习啥嘞,不怕告诉你,互联网时代,最不缺的就是学习资源,最宝贵的是啥? 你可能会说是时间,不,不是时间,而是你的注意力,懂了吧! 那么,你说学习资源多,我咋不知道,那今天我就告诉你一个你必须知道的学习的地方,人称...
那些年,我们信了课本里的那些鬼话
教材永远都是有错误的,从小学到大学,我们不断的学习了很多错误知识。 斑羚飞渡 在我们学习的很多小学课文里,有很多是错误文章,或者说是假课文。像《斑羚飞渡》: 随着镰刀头羊的那声吼叫,整个斑羚群迅速分成两拨,老年斑羚为一拨,年轻斑羚为一拨。 就在这时,我看见,从那拨老斑羚里走出一只公斑羚来。公斑羚朝那拨年轻斑羚示意性地咩了一声,一只半大的斑羚应声走了出来。一老一少走到伤心崖,后退了几步,突...
一个程序在计算机中是如何运行的?超级干货!!!
强烈声明:本文很干,请自备茶水!???? 开门见山,咱不说废话! 你有没有想过,你写的程序,是如何在计算机中运行的吗?比如我们搞Java的,肯定写过这段代码 public class HelloWorld { public static void main(String[] args) { System.out.println("Hello World!"); } ...
【蘑菇街技术部年会】程序员与女神共舞,鼻血再次没止住。(文末内推)
蘑菇街技术部的年会,别开生面,一样全是美女。
那个在阿里养猪的工程师,5年了……
简介: 在阿里,走过1825天,没有趴下,依旧斗志满满,被称为“五年陈”。他们会被授予一枚戒指,过程就叫做“授戒仪式”。今天,咱们听听阿里的那些“五年陈”们的故事。 下一个五年,猪圈见! 我就是那个在养猪场里敲代码的工程师,一年多前我和20位工程师去了四川的猪场,出发前总架构师慷慨激昂的说:同学们,中国的养猪产业将因为我们而改变。但到了猪场,发现根本不是那么回事:要个WIFI,没有;...
为什么程序猿都不愿意去外包?
分享外包的组织架构,盈利模式,亲身经历,以及根据一些外包朋友的反馈,写了这篇文章 ,希望对正在找工作的老铁有所帮助
Java校招入职华为,半年后我跑路了
何来 我,一个双非本科弟弟,有幸在 19 届的秋招中得到前东家华为(以下简称 hw)的赏识,当时秋招签订就业协议,说是入了某 java bg,之后一系列组织架构调整原因等等让人无法理解的神操作,最终毕业前夕,被通知调往其他 bg 做嵌入式开发(纯 C 语言)。 由于已至于校招末尾,之前拿到的其他 offer 又无法再收回,一时感到无力回天,只得默默接受。 毕业后,直接入职开始了嵌入式苦旅,由于从未...
世界上有哪些代码量很少,但很牛逼很经典的算法或项目案例?
点击上方蓝字设为星标下面开始今天的学习~今天分享四个代码量很少,但很牛逼很经典的算法或项目案例。1、no code 项目地址:https://github.com/kelseyhight...
立即提问