编程介的小学生 2019-06-28 16:58 采纳率: 20.5%
浏览 140

圆周上最短的弧的距离的计算的问题,要求使用C语言的程序的设计的代码的编写的技术来实现

Problem Description
A classic ice-breaking exercise is for a group of n people to form a circle and then arbitrarily join hands with one another. This forms a "human knot" since the players' arms are most likely intertwined. The goal is then to unwind the knot to form a circle of players with no arms crossed.

We now adapt this game to a more general and more abstract setting where the physical constraints of the problem are gone. Suppose we represent the initial knot with a 2-regular graph inscribed in a circle (i.e., we have a graph with n vertices with exactly two edges incident on each vertex). Initially, some edges may cross other edges and this is undesirable. This is the "knot" we wish to unwind.

A "move" involves moving any vertex to a new position on the circle, keeping its edges intact. Our goal is to make the fewest possible moves such that we obtain one n-sided polygon with no edge-crossings remaining.

For example, here is a knot on 4 vertices inscribed in a circle, but two edges cross each other. By moving vertex 4 down to the position between 2 and 3, a graph without edge-crossings emerges. This was achieved in a single move, which is clearly optimal in this case.

When n is larger, things may not be quite as clear. Below we see a knot on 6 vertices. We might consider moving vertex 4 between 5 and 6, then vertex 5 between 1 and 2, and finally vertex 6 between 3 and 4; this unwinds the knot in 3 moves.

But clearly we can unwind the same knot in only two moves:

Input
The input consists of a number of cases. Each case starts with a line containing the integer n (3 <= n <= 500), giving the number of vertices of the graph. The vertices are labelled clockwise from 1 to n. Each of the next n lines gives a pair of neighbors, where line i (1 <= i <= n) specifies the two vertices adjacent to vertex i. The input is terminated by n = 0.

Output
For each case, if there is no solution, print "Not solvable." on a line by itself. If there is a solution, print "Knot solvable." on a line by itself, followed by the minimum number of moves required to solve the problem, on a line by itself.

Sample Input
6
4 5
3 5
2 6
1 6
1 2
3 4
6
2 6
1 4
5 6
2 5
3 4
1 3
0

Sample Output
Knot solvable.
2
Knot solvable.
1

  • 写回答

0条回答 默认 最新

    报告相同问题?

    悬赏问题

    • ¥15 shape_predictor_68_face_landmarks.dat
    • ¥15 slam rangenet++配置
    • ¥15 有没有研究水声通信方面的帮我改俩matlab代码
    • ¥15 对于相关问题的求解与代码
    • ¥15 ubuntu子系统密码忘记
    • ¥15 信号傅里叶变换在matlab上遇到的小问题请求帮助
    • ¥15 保护模式-系统加载-段寄存器
    • ¥15 电脑桌面设定一个区域禁止鼠标操作
    • ¥15 求NPF226060磁芯的详细资料
    • ¥15 使用R语言marginaleffects包进行边际效应图绘制