在使用Spark Streaming向HDFS中保存数据时,文件内容会被覆盖掉,怎么解决? 5C

我的Spark Streaming代码如下所示:

 val lines=FlumeUtils.createStream(ssc,"hdp2.domain",22222,StorageLevel.MEMORY_AND_DISK_SER_2)

val words = lines.filter(examtep(_))
words.foreachRDD(exam(_))

//some other code

 def exam(rdd:RDD[SparkFlumeEvent]):Unit={
    if(rdd.count()>0) {
      println("****Something*****")
      val newrdd=rdd.map(sfe=>{
      val tmp=new String(sfe.event.getBody.array())
      tmp
      })
    newrdd.saveAsTextFile("/user/spark/appoutput/Temperaturetest")
    }
}

当words.foreachRDD(exam(_))中每次执行exam()方法的时候,都会执行newrdd.saveAsTextFile("/user/''''''"),但是HDFS上Temperaturetest文件夹里的内容每次都会被覆盖掉,只保存着最后一次saveAsTextFIle的内容,怎样才能让所有数据都存储到Temperaturetest中呢??

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
spark streaming监控hdfs的文件变化

spark streaming中有对hdfs中新增文件的监控,但是如何对具体的某个文件进行监控呢,比如文件a后面增加了一行,如何才能get到这个信息呢 ![图片说明](https://img-ask.csdn.net/upload/201610/08/1475916517_4375.jpg)

从hdfs中读取数据并用spark操作时出现问题

我从集群环境的hdfs中读取数据,然后处理数据时出现问题,在循环里面添加的对象在循环外就没有了,初学spark和scala,请大佬指点. object Test { case class Passenger(name: String, txn_date: String, txn_time: String, txn_station: String, ticket_type: String, trans_code: String, sub: String, txn_station_id: String) def main(args: Array[String]): Unit = { val inputFile = "hdfs://Master:9000/user/hadoop/input/tmp.txt" val conf = new SparkConf().setAppName("WordCount") val sc = new SparkContext(conf) val text = sc.textFile(inputFile) //25 lines like "000025643 " "20141201" "060912" "0328" "88" "22" "" from hdfs val Passengers = new ArrayBuffer[Passenger]() for (line <- text) { val points = for (i <- 0 until (line.length) if (line.charAt(i) == '"')) yield { i } val items = for (i <- 0 until (points.length) if (i % 2 == 0)) yield { if (!line.slice(points(i).toString.toInt + 1, points(i + 1).toString.toInt).equals("")) { line.slice(points(i).toString.toInt + 1, points(i + 1).toString.toInt).trim } else "null" } val tmp:Passenger=new Passenger(items(0).trim, items(1), items(2), items(3), items(4), items(5), "null", items(6)) println(tmp) //it is Passenger(000026853,20141201,060921,0325,88,21,null,null) [no problem] Passengers.append(tmp) println(Passengers.length) //1,2,3.....25 [no problem] } println("----------------------------" + Passengers.length) //it is 0!!!! why? val passengersArray = Passengers.toArray val customersRDD = sc.parallelize(passengersArray) val customersDF = customersRDD.toDF() } } ``` ```

spark RDD中的元组如何按照指定格式保存到HDFS上?

请教一个问题:spark数据清洗的结果为RDD[(String, String)]类型的rdd,在这个RDD中,每一个元素都是一个元组。元组的key值是文件名,value值是文件内容,我现在想把整个RDD保存在HDFS上,让RDD中的每一个元素保存为一个文件,其中key值作为文件名,而value值作为文件内容。 应该如何实现呢? RDD好像不支持遍历,只能通过collect()方法保存为一个数组,再进行遍历,但是这样可能会把内存撑爆,目前的做法是先把RDD通过saveAsTextFile方法保存在HDFS上,然后再使用FSDataInputStream输入流对保存后的part文件进行遍历读取,使用输出流写到HDFS上,这样很耗时。 请问有没有好一点的方法,可以直接把RDD的内容写到HDFS上呢?

spark streaming 优雅的停止方法失效,无法停止程序运行

问题是: 按照如下触发式停止方法,在运行一段时间,比如一天后,程序不能停止。但是在IDEA测试时可以实现停止,在运行时间不长比如一两个小时后也可以停止。这是为什么。 def stopByMarkFile(streamContext: StreamingContext, log: Logger) = { val intervalMills = 10 * 1000 // 每隔10秒扫描一次消息是否存在 var isStop = false val hdfs_file_path = "hdfs://0.0.01:9000/lserver/stop" //判断消息文件是否存在,如果存在就停止 while (!isStop) { isStop = streamContext.awaitTerminationOrTimeout(intervalMills) if (!isStop && isExistsMarkFile(hdfs_file_path)) { log.warn("2秒后开始关闭sparstreaming程序.....") Thread.sleep(2000) streamContext.stop(true, true) } } } // 指定目录是否存在文件 def isExistsMarkFile(hdfs_file_path:String):Boolean={ val conf = new Configuration() val path = new Path(hdfs_file_path) val fs = path.getFileSystem(conf) return fs.exists(path) }

能否用spark streaming和flume或kafka对实时网络数据进行检测

目前已经有一个训练好的机器学习分类模型,存在于HDFS上,可以对LibSVMFile格式的数据进行检测。它是对很多的一段时间内的流量数据(比如1s,很多个1s)提取特征训练之后得到的。 我们知道streaming是将输入流分成微切片,微切片能否可以是从pcap文件读取呢?因为提取特征包括训练模型的时候是需要对pcap文件操作的。 flume和kafka都是可以传输txt的,能不能传输pcap文件呢?要将输入的网络数据流像tcpdump一样可以存为pcap文件,又有像kafka一样的缓存功能可以用哪些技术呢? 最后就是能否用spark streaming利用分类模型对网络数据流进行提特征并预测,而且与防火墙联动,这在技术上是否可行?

structured streaming 时运行一段时间报临时文件不存在,想知道该临时文件是什么,有什么作用

``` Job aborted due to stage failure: Task 1 in stage 9.0 failed 4 times, most recent failure: Lost task 1.3 in stage 9.0 (TID 1018, 34.55.0.164, executor 0): java.lang.IllegalStateException: Error reading delta file /tmp/temporary-01933c45-4657-47d1-a0ab-651476698d08/state/0/1/1.delta of HDFSStateStoreProvider[id = (op=0, part=1), dir = /tmp/temporary-01933c45-4657-47d1-a0ab-651476698d08/state/0/1]: /tmp/temporary-01933c45-4657-47d1-a0ab-651476698d08/state/0/1/1.delta does not exist at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider.org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$updateFromDeltaFile(HDFSBackedStateStoreProvider.scala:410) at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider$$anonfun$org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$loadMap$1$$anonfun$6.apply(HDFSBackedStateStoreProvider.scala:362) at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider$$anonfun$org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$loadMap$1$$anonfun$6.apply(HDFSBackedStateStoreProvider.scala:359) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider$$anonfun$org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$loadMap$1.apply(HDFSBackedStateStoreProvider.scala:359) at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider$$anonfun$org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$loadMap$1.apply(HDFSBackedStateStoreProvider.scala:358) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider.org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$loadMap(HDFSBackedStateStoreProvider.scala:358) at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider.getStore(HDFSBackedStateStoreProvider.scala:265) at org.apache.spark.sql.execution.streaming.state.StateStore$.get(StateStore.scala:200) at org.apache.spark.sql.execution.streaming.state.StateStoreRDD.compute(StateStoreRDD.scala:61) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Caused by: java.io.FileNotFoundException: File /tmp/temporary-01933c45-4657-47d1-a0ab-651476698d08/state/0/1/1.delta does not exist at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:611) at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824) at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601) at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:421) at org.apache.hadoop.fs.ChecksumFileSystem$ChecksumFSInputChecker.<init>(ChecksumFileSystem.java:142) at org.apache.hadoop.fs.ChecksumFileSystem.open(ChecksumFileSystem.java:346) at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:769) at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider.org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$updateFromDeltaFile(HDFSBackedStateStoreProvider.scala:407) ... 21 more ``` structured streaming 时运行一段时间报临时文件不存在,想知道该临时文件是什么,有什么作用,spark 2.2.0版本,standalone模式,代码中未设置checkpointLocation,初次写spark 任务,请大佬支点

spark streaming运行一段时间报以下异常,怎么解决

Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 1568735.0 failed 4 times, most recent failure: Lost task 2.3 in stage 1568735.0 (TID 11808399, iZ94pshi327Z): java.lang.Exception: Could not compute split, block input-0-1438413230200 not found at org.apache.spark.rdd.BlockRDD.compute(BlockRDD.scala:51) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:64) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:744) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1204) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1193) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1192) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1192) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:693) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:693) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:693) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1393) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1354) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) 15/08/01 08:53:09 WARN AkkaUtils: Error sending message [message = Heartbeat(0,[Lscala.Tuple2;@544fc1ff,BlockManagerId(0, iZ94w2tczvjZ, 41595))] in 2 attempts java.util.concurrent.TimeoutException: Futures timed out after [30 seconds] at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219) at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223) at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107) at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53) at scala.concurrent.Await$.result(package.scala:107) at org.apache.spark.util.AkkaUtils$.askWithReply(AkkaUtils.scala:195) at org.apache.spark.executor.Executor$$anon$1.run(Executor.scala:427) 15/08/01 08:53:28 WARN AkkaUtils: Error sending message [message = UpdateBlockInfo(BlockManagerId(0, iZ94w2tczvjZ, 41595),input-0-1438385673800,StorageLevel(false, false, false, false, 1),0,0,0)] in 1 attempts java.util.concurrent.TimeoutException: Futures timed out after [30 seconds] at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219) at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223) at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107) at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53) at scala.concurrent.Await$.result(package.scala:107) at org.apache.spark.util.AkkaUtils$.askWithReply(AkkaUtils.scala:195) at org.apache.spark.storage.BlockManagerMaster.askDriverWithReply(BlockManagerMaster.scala:221) at org.apache.spark.storage.BlockManagerMaster.updateBlockInfo(BlockManagerMaster.scala:62) at org.apache.spark.storage.BlockManager.org$apache$spark$storage$BlockManager$$tryToReportBlockStatus(BlockManager.scala:384) at org.apache.spark.storage.BlockManager.reportBlockStatus(BlockManager.scala:360) at org.apache.spark.storage.BlockManager.dropOldBlocks(BlockManager.scala:1138) at org.apache.spark.storage.BlockManager.org$apache$spark$storage$BlockManager$$dropOldNonBroadcastBlocks(BlockManager.scala:1115) at org.apache.spark.storage.BlockManager$$anonfun$1.apply$mcVJ$sp(BlockManager.scala:149) at org.apache.spark.util.MetadataCleaner$$anon$1.run(MetadataCleaner.scala:43) at java.util.TimerThread.mainLoop(Timer.java:555) at java.util.TimerThread.run(Timer.java:505) 15/08/01 08:53:42 WARN AkkaUtils: Error sending message [message = Heartbeat(0,[Lscala.Tuple2;@544fc1ff,BlockManagerId(0, iZ94w2tczvjZ, 41595))] in 3 attempts java.util.concurrent.TimeoutException: Futures timed out after [30 seconds] at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219) at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223) at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107) at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53) at scala.concurrent.Await$.result(package.scala:107) at org.apache.spark.util.AkkaUtils$.askWithReply(AkkaUtils.scala:195) at org.apache.spark.executor.Executor$$anon$1.run(Executor.scala:427) 15/08/01 08:53:45 WARN Executor: Issue communicating with driver in heartbeater org.apache.spark.SparkException: Error sending message [message = Heartbeat(0,[Lscala.Tuple2;@544fc1ff,BlockManagerId(0, iZ94w2tczvjZ, 41595))] at org.apache.spark.util.AkkaUtils$.askWithReply(AkkaUtils.scala:209) at org.apache.spark.executor.Executor$$anon$1.run(Executor.scala:427) Caused by: java.util.concurrent.TimeoutException: Futures timed out after [30 seconds] at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219) at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223) at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107) at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53) at scala.concurrent.Await$.result(package.scala:107) at org.apache.spark.util.AkkaUtils$.askWithReply(AkkaUtils.scala:195) ... 1 more

hue使用streaming上传文件失败

使用hue编写hadoop streaming 任务,可是配置了文件路径却没有上传,有人知道是什么原因吗? ![图片说明](https://img-ask.csdn.net/upload/201510/12/1444622462_617989.png) 这个路径上明明有的: ![图片说明](https://img-ask.csdn.net/upload/201510/12/1444622481_760429.png) 可是,结果: ![图片说明](https://img-ask.csdn.net/upload/201510/12/1444622475_56255.png)

spark submit 提交集群任务后,spark Web UI界面不显示,但是有4040界面,显示local模式

遇到如下问题,求教大神: 集群有三个节点,111为master。剩余两个为slave。每个节点 4核,6.6G。 提交命令如下 nohup bin/spark-submit --master spark://sousou:7077 --executor-memory 1g --total-executor-cores 2 --class AnalyzeInfo /spark/jar/v2_AnalyzeInfo.jar & nohup bin/spark-submit --master spark://sousou111:7077 --executor-memory 1g --total-executor-cores 2 --class SaveInfoMain /spark/jar/saveAnn.jar & 问题如下: 1. spark submit 提交集群任务后,spark Web UI界面不显示SaveInfoMain,但是有4040界面,且查看界面Environment显示local模式。这是为什么啊?这样造成的问题是程序没有办法在界面停止。且这个程序有时候会造成处理数据异常缓慢,偶尔处理三四个小时之前的数据,AnalyzeInfo这个任务就不会产生这个问题。 2. 而且这两个任务出现的共同点是:我设置的触发HDFS上的目录下文件就优雅停止程序,刚运行时还可以,但是这两个程序运行时间长了,比如说一天后我上传到HDFS上文件,这两程序就不能成功停止了。 Environment图片如下: ![图片说明](https://img-ask.csdn.net/upload/201810/23/1540264892_86550.png) ![图片说明](https://img-ask.csdn.net/upload/201810/23/1540264909_714074.png)

spark 读取不到hive metastore 获取不到数据库

直接上异常 ``` Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/data01/hadoop/yarn/local/filecache/355/spark2-hdp-yarn-archive.tar.gz/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/usr/hdp/2.6.5.0-292/hadoop/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 19/08/13 19:53:17 INFO SignalUtils: Registered signal handler for TERM 19/08/13 19:53:17 INFO SignalUtils: Registered signal handler for HUP 19/08/13 19:53:17 INFO SignalUtils: Registered signal handler for INT 19/08/13 19:53:17 INFO SecurityManager: Changing view acls to: yarn,hdfs 19/08/13 19:53:17 INFO SecurityManager: Changing modify acls to: yarn,hdfs 19/08/13 19:53:17 INFO SecurityManager: Changing view acls groups to: 19/08/13 19:53:17 INFO SecurityManager: Changing modify acls groups to: 19/08/13 19:53:17 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(yarn, hdfs); groups with view permissions: Set(); users with modify permissions: Set(yarn, hdfs); groups with modify permissions: Set() 19/08/13 19:53:18 INFO ApplicationMaster: Preparing Local resources 19/08/13 19:53:19 INFO ApplicationMaster: ApplicationAttemptId: appattempt_1565610088533_0087_000001 19/08/13 19:53:19 INFO ApplicationMaster: Starting the user application in a separate Thread 19/08/13 19:53:19 INFO ApplicationMaster: Waiting for spark context initialization... 19/08/13 19:53:19 INFO SparkContext: Running Spark version 2.3.0.2.6.5.0-292 19/08/13 19:53:19 INFO SparkContext: Submitted application: voice_stream 19/08/13 19:53:19 INFO SecurityManager: Changing view acls to: yarn,hdfs 19/08/13 19:53:19 INFO SecurityManager: Changing modify acls to: yarn,hdfs 19/08/13 19:53:19 INFO SecurityManager: Changing view acls groups to: 19/08/13 19:53:19 INFO SecurityManager: Changing modify acls groups to: 19/08/13 19:53:19 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(yarn, hdfs); groups with view permissions: Set(); users with modify permissions: Set(yarn, hdfs); groups with modify permissions: Set() 19/08/13 19:53:19 INFO Utils: Successfully started service 'sparkDriver' on port 20410. 19/08/13 19:53:19 INFO SparkEnv: Registering MapOutputTracker 19/08/13 19:53:19 INFO SparkEnv: Registering BlockManagerMaster 19/08/13 19:53:19 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information 19/08/13 19:53:19 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up 19/08/13 19:53:19 INFO DiskBlockManager: Created local directory at /data01/hadoop/yarn/local/usercache/hdfs/appcache/application_1565610088533_0087/blockmgr-94d35b97-43b2-496e-a4cb-73ecd3ed186c 19/08/13 19:53:19 INFO MemoryStore: MemoryStore started with capacity 366.3 MB 19/08/13 19:53:19 INFO SparkEnv: Registering OutputCommitCoordinator 19/08/13 19:53:19 INFO JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter 19/08/13 19:53:19 INFO Utils: Successfully started service 'SparkUI' on port 28852. 19/08/13 19:53:19 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://datanode02:28852 19/08/13 19:53:19 INFO YarnClusterScheduler: Created YarnClusterScheduler 19/08/13 19:53:20 INFO SchedulerExtensionServices: Starting Yarn extension services with app application_1565610088533_0087 and attemptId Some(appattempt_1565610088533_0087_000001) 19/08/13 19:53:20 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 31984. 19/08/13 19:53:20 INFO NettyBlockTransferService: Server created on datanode02:31984 19/08/13 19:53:20 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy 19/08/13 19:53:20 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO BlockManagerMasterEndpoint: Registering block manager datanode02:31984 with 366.3 MB RAM, BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO EventLoggingListener: Logging events to hdfs:/spark2-history/application_1565610088533_0087_1 19/08/13 19:53:20 INFO ApplicationMaster: =============================================================================== YARN executor launch context: env: CLASSPATH -> {{PWD}}<CPS>{{PWD}}/__spark_conf__<CPS>{{PWD}}/__spark_libs__/*<CPS>/usr/hdp/2.6.5.0-292/hadoop/conf<CPS>/usr/hdp/2.6.5.0-292/hadoop/*<CPS>/usr/hdp/2.6.5.0-292/hadoop/lib/*<CPS>/usr/hdp/current/hadoop-hdfs-client/*<CPS>/usr/hdp/current/hadoop-hdfs-client/lib/*<CPS>/usr/hdp/current/hadoop-yarn-client/*<CPS>/usr/hdp/current/hadoop-yarn-client/lib/*<CPS>/usr/hdp/current/ext/hadoop/*<CPS>$PWD/mr-framework/hadoop/share/hadoop/mapreduce/*:$PWD/mr-framework/hadoop/share/hadoop/mapreduce/lib/*:$PWD/mr-framework/hadoop/share/hadoop/common/*:$PWD/mr-framework/hadoop/share/hadoop/common/lib/*:$PWD/mr-framework/hadoop/share/hadoop/yarn/*:$PWD/mr-framework/hadoop/share/hadoop/yarn/lib/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/lib/*:$PWD/mr-framework/hadoop/share/hadoop/tools/lib/*:/usr/hdp/2.6.5.0-292/hadoop/lib/hadoop-lzo-0.6.0.2.6.5.0-292.jar:/etc/hadoop/conf/secure:/usr/hdp/current/ext/hadoop/*<CPS>{{PWD}}/__spark_conf__/__hadoop_conf__ SPARK_YARN_STAGING_DIR -> *********(redacted) SPARK_USER -> *********(redacted) command: LD_LIBRARY_PATH="/usr/hdp/current/hadoop-client/lib/native:/usr/hdp/current/hadoop-client/lib/native/Linux-amd64-64:$LD_LIBRARY_PATH" \ {{JAVA_HOME}}/bin/java \ -server \ -Xmx5120m \ -Djava.io.tmpdir={{PWD}}/tmp \ '-Dspark.history.ui.port=18081' \ '-Dspark.rpc.message.maxSize=100' \ -Dspark.yarn.app.container.log.dir=<LOG_DIR> \ -XX:OnOutOfMemoryError='kill %p' \ org.apache.spark.executor.CoarseGrainedExecutorBackend \ --driver-url \ spark://CoarseGrainedScheduler@datanode02:20410 \ --executor-id \ <executorId> \ --hostname \ <hostname> \ --cores \ 2 \ --app-id \ application_1565610088533_0087 \ --user-class-path \ file:$PWD/__app__.jar \ --user-class-path \ file:$PWD/hadoop-common-2.7.3.jar \ --user-class-path \ file:$PWD/guava-12.0.1.jar \ --user-class-path \ file:$PWD/hbase-server-1.2.8.jar \ --user-class-path \ file:$PWD/hbase-protocol-1.2.8.jar \ --user-class-path \ file:$PWD/hbase-client-1.2.8.jar \ --user-class-path \ file:$PWD/hbase-common-1.2.8.jar \ --user-class-path \ file:$PWD/mysql-connector-java-5.1.44-bin.jar \ --user-class-path \ file:$PWD/spark-streaming-kafka-0-8-assembly_2.11-2.3.2.jar \ --user-class-path \ file:$PWD/spark-examples_2.11-1.6.0-typesafe-001.jar \ --user-class-path \ file:$PWD/fastjson-1.2.7.jar \ 1><LOG_DIR>/stdout \ 2><LOG_DIR>/stderr resources: spark-streaming-kafka-0-8-assembly_2.11-2.3.2.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/spark-streaming-kafka-0-8-assembly_2.11-2.3.2.jar" } size: 12271027 timestamp: 1565697198603 type: FILE visibility: PRIVATE spark-examples_2.11-1.6.0-typesafe-001.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/spark-examples_2.11-1.6.0-typesafe-001.jar" } size: 1867746 timestamp: 1565697198751 type: FILE visibility: PRIVATE hbase-server-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-server-1.2.8.jar" } size: 4197896 timestamp: 1565697197770 type: FILE visibility: PRIVATE hbase-common-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-common-1.2.8.jar" } size: 570163 timestamp: 1565697198318 type: FILE visibility: PRIVATE __app__.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/spark_history_data2.jar" } size: 44924 timestamp: 1565697197260 type: FILE visibility: PRIVATE guava-12.0.1.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/guava-12.0.1.jar" } size: 1795932 timestamp: 1565697197614 type: FILE visibility: PRIVATE hbase-client-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-client-1.2.8.jar" } size: 1306401 timestamp: 1565697198180 type: FILE visibility: PRIVATE __spark_conf__ -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/__spark_conf__.zip" } size: 273513 timestamp: 1565697199131 type: ARCHIVE visibility: PRIVATE fastjson-1.2.7.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/fastjson-1.2.7.jar" } size: 417221 timestamp: 1565697198865 type: FILE visibility: PRIVATE hbase-protocol-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-protocol-1.2.8.jar" } size: 4366252 timestamp: 1565697198023 type: FILE visibility: PRIVATE __spark_libs__ -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/hdp/apps/2.6.5.0-292/spark2/spark2-hdp-yarn-archive.tar.gz" } size: 227600110 timestamp: 1549953820247 type: ARCHIVE visibility: PUBLIC mysql-connector-java-5.1.44-bin.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/mysql-connector-java-5.1.44-bin.jar" } size: 999635 timestamp: 1565697198445 type: FILE visibility: PRIVATE hadoop-common-2.7.3.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hadoop-common-2.7.3.jar" } size: 3479293 timestamp: 1565697197476 type: FILE visibility: PRIVATE =============================================================================== 19/08/13 19:53:20 INFO RMProxy: Connecting to ResourceManager at namenode02/10.1.38.38:8030 19/08/13 19:53:20 INFO YarnRMClient: Registering the ApplicationMaster 19/08/13 19:53:20 INFO YarnAllocator: Will request 3 executor container(s), each with 2 core(s) and 5632 MB memory (including 512 MB of overhead) 19/08/13 19:53:20 INFO YarnSchedulerBackend$YarnSchedulerEndpoint: ApplicationMaster registered as NettyRpcEndpointRef(spark://YarnAM@datanode02:20410) 19/08/13 19:53:20 INFO YarnAllocator: Submitted 3 unlocalized container requests. 19/08/13 19:53:20 INFO ApplicationMaster: Started progress reporter thread with (heartbeat : 3000, initial allocation : 200) intervals 19/08/13 19:53:20 INFO AMRMClientImpl: Received new token for : datanode03:45454 19/08/13 19:53:21 INFO YarnAllocator: Launching container container_e20_1565610088533_0087_01_000002 on host datanode03 for executor with ID 1 19/08/13 19:53:21 INFO YarnAllocator: Received 1 containers from YARN, launching executors on 1 of them. 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: yarn.client.max-cached-nodemanagers-proxies : 0 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: Opening proxy : datanode03:45454 19/08/13 19:53:21 INFO AMRMClientImpl: Received new token for : datanode01:45454 19/08/13 19:53:21 INFO YarnAllocator: Launching container container_e20_1565610088533_0087_01_000003 on host datanode01 for executor with ID 2 19/08/13 19:53:21 INFO YarnAllocator: Received 1 containers from YARN, launching executors on 1 of them. 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: yarn.client.max-cached-nodemanagers-proxies : 0 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: Opening proxy : datanode01:45454 19/08/13 19:53:22 INFO AMRMClientImpl: Received new token for : datanode02:45454 19/08/13 19:53:22 INFO YarnAllocator: Launching container container_e20_1565610088533_0087_01_000004 on host datanode02 for executor with ID 3 19/08/13 19:53:22 INFO YarnAllocator: Received 1 containers from YARN, launching executors on 1 of them. 19/08/13 19:53:22 INFO ContainerManagementProtocolProxy: yarn.client.max-cached-nodemanagers-proxies : 0 19/08/13 19:53:22 INFO ContainerManagementProtocolProxy: Opening proxy : datanode02:45454 19/08/13 19:53:24 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.1.198.144:41122) with ID 1 19/08/13 19:53:25 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.1.229.163:24656) with ID 3 19/08/13 19:53:25 INFO BlockManagerMasterEndpoint: Registering block manager datanode03:3328 with 2.5 GB RAM, BlockManagerId(1, datanode03, 3328, None) 19/08/13 19:53:25 INFO BlockManagerMasterEndpoint: Registering block manager datanode02:28863 with 2.5 GB RAM, BlockManagerId(3, datanode02, 28863, None) 19/08/13 19:53:25 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.1.229.158:64276) with ID 2 19/08/13 19:53:25 INFO YarnClusterSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.8 19/08/13 19:53:25 INFO YarnClusterScheduler: YarnClusterScheduler.postStartHook done 19/08/13 19:53:25 INFO BlockManagerMasterEndpoint: Registering block manager datanode01:20487 with 2.5 GB RAM, BlockManagerId(2, datanode01, 20487, None) 19/08/13 19:53:25 WARN SparkContext: Using an existing SparkContext; some configuration may not take effect. 19/08/13 19:53:25 INFO SparkContext: Starting job: start at VoiceApplication2.java:128 19/08/13 19:53:25 INFO DAGScheduler: Registering RDD 1 (start at VoiceApplication2.java:128) 19/08/13 19:53:25 INFO DAGScheduler: Got job 0 (start at VoiceApplication2.java:128) with 20 output partitions 19/08/13 19:53:25 INFO DAGScheduler: Final stage: ResultStage 1 (start at VoiceApplication2.java:128) 19/08/13 19:53:25 INFO DAGScheduler: Parents of final stage: List(ShuffleMapStage 0) 19/08/13 19:53:25 INFO DAGScheduler: Missing parents: List(ShuffleMapStage 0) 19/08/13 19:53:26 INFO DAGScheduler: Submitting ShuffleMapStage 0 (MapPartitionsRDD[1] at start at VoiceApplication2.java:128), which has no missing parents 19/08/13 19:53:26 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 3.1 KB, free 366.3 MB) 19/08/13 19:53:26 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 2011.0 B, free 366.3 MB) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode02:31984 (size: 2011.0 B, free: 366.3 MB) 19/08/13 19:53:26 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1039 19/08/13 19:53:26 INFO DAGScheduler: Submitting 50 missing tasks from ShuffleMapStage 0 (MapPartitionsRDD[1] at start at VoiceApplication2.java:128) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)) 19/08/13 19:53:26 INFO YarnClusterScheduler: Adding task set 0.0 with 50 tasks 19/08/13 19:53:26 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, datanode02, executor 3, partition 0, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, datanode03, executor 1, partition 1, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 2.0 in stage 0.0 (TID 2, datanode01, executor 2, partition 2, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 3.0 in stage 0.0 (TID 3, datanode02, executor 3, partition 3, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 4.0 in stage 0.0 (TID 4, datanode03, executor 1, partition 4, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 5.0 in stage 0.0 (TID 5, datanode01, executor 2, partition 5, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode02:28863 (size: 2011.0 B, free: 2.5 GB) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode03:3328 (size: 2011.0 B, free: 2.5 GB) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode01:20487 (size: 2011.0 B, free: 2.5 GB) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 6.0 in stage 0.0 (TID 6, datanode02, executor 3, partition 6, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 7.0 in stage 0.0 (TID 7, datanode02, executor 3, partition 7, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 3.0 in stage 0.0 (TID 3) in 693 ms on datanode02 (executor 3) (1/50) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 712 ms on datanode02 (executor 3) (2/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 8.0 in stage 0.0 (TID 8, datanode02, executor 3, partition 8, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 7.0 in stage 0.0 (TID 7) in 21 ms on datanode02 (executor 3) (3/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 9.0 in stage 0.0 (TID 9, datanode02, executor 3, partition 9, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 6.0 in stage 0.0 (TID 6) in 26 ms on datanode02 (executor 3) (4/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 10.0 in stage 0.0 (TID 10, datanode02, executor 3, partition 10, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 8.0 in stage 0.0 (TID 8) in 23 ms on datanode02 (executor 3) (5/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 11.0 in stage 0.0 (TID 11, datanode02, executor 3, partition 11, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 9.0 in stage 0.0 (TID 9) in 25 ms on datanode02 (executor 3) (6/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 12.0 in stage 0.0 (TID 12, datanode02, executor 3, partition 12, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 10.0 in stage 0.0 (TID 10) in 18 ms on datanode02 (executor 3) (7/50) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 11.0 in stage 0.0 (TID 11) in 14 ms on datanode02 (executor 3) (8/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 13.0 in stage 0.0 (TID 13, datanode02, executor 3, partition 13, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 14.0 in stage 0.0 (TID 14, datanode02, executor 3, partition 14, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 12.0 in stage 0.0 (TID 12) in 16 ms on datanode02 (executor 3) (9/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 15.0 in stage 0.0 (TID 15, datanode02, executor 3, partition 15, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 13.0 in stage 0.0 (TID 13) in 22 ms on datanode02 (executor 3) (10/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 16.0 in stage 0.0 (TID 16, datanode02, executor 3, partition 16, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 14.0 in stage 0.0 (TID 14) in 16 ms on datanode02 (executor 3) (11/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 17.0 in stage 0.0 (TID 17, datanode02, executor 3, partition 17, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 15.0 in stage 0.0 (TID 15) in 13 ms on datanode02 (executor 3) (12/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 18.0 in stage 0.0 (TID 18, datanode01, executor 2, partition 18, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 19.0 in stage 0.0 (TID 19, datanode01, executor 2, partition 19, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 5.0 in stage 0.0 (TID 5) in 787 ms on datanode01 (executor 2) (13/50) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 2.0 in stage 0.0 (TID 2) in 789 ms on datanode01 (executor 2) (14/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 20.0 in stage 0.0 (TID 20, datanode03, executor 1, partition 20, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 21.0 in stage 0.0 (TID 21, datanode03, executor 1, partition 21, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 4.0 in stage 0.0 (TID 4) in 905 ms on datanode03 (executor 1) (15/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 907 ms on datanode03 (executor 1) (16/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 22.0 in stage 0.0 (TID 22, datanode02, executor 3, partition 22, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 23.0 in stage 0.0 (TID 23, datanode02, executor 3, partition 23, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 24.0 in stage 0.0 (TID 24, datanode01, executor 2, partition 24, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 18.0 in stage 0.0 (TID 18) in 124 ms on datanode01 (executor 2) (17/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 16.0 in stage 0.0 (TID 16) in 134 ms on datanode02 (executor 3) (18/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 25.0 in stage 0.0 (TID 25, datanode01, executor 2, partition 25, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 26.0 in stage 0.0 (TID 26, datanode03, executor 1, partition 26, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 17.0 in stage 0.0 (TID 17) in 134 ms on datanode02 (executor 3) (19/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 20.0 in stage 0.0 (TID 20) in 122 ms on datanode03 (executor 1) (20/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 27.0 in stage 0.0 (TID 27, datanode03, executor 1, partition 27, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 19.0 in stage 0.0 (TID 19) in 127 ms on datanode01 (executor 2) (21/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 21.0 in stage 0.0 (TID 21) in 123 ms on datanode03 (executor 1) (22/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 28.0 in stage 0.0 (TID 28, datanode02, executor 3, partition 28, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 29.0 in stage 0.0 (TID 29, datanode02, executor 3, partition 29, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 22.0 in stage 0.0 (TID 22) in 19 ms on datanode02 (executor 3) (23/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 23.0 in stage 0.0 (TID 23) in 18 ms on datanode02 (executor 3) (24/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 30.0 in stage 0.0 (TID 30, datanode01, executor 2, partition 30, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 31.0 in stage 0.0 (TID 31, datanode01, executor 2, partition 31, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 25.0 in stage 0.0 (TID 25) in 27 ms on datanode01 (executor 2) (25/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 24.0 in stage 0.0 (TID 24) in 29 ms on datanode01 (executor 2) (26/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 32.0 in stage 0.0 (TID 32, datanode02, executor 3, partition 32, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 29.0 in stage 0.0 (TID 29) in 16 ms on datanode02 (executor 3) (27/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 33.0 in stage 0.0 (TID 33, datanode03, executor 1, partition 33, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 26.0 in stage 0.0 (TID 26) in 30 ms on datanode03 (executor 1) (28/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 34.0 in stage 0.0 (TID 34, datanode02, executor 3, partition 34, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 28.0 in stage 0.0 (TID 28) in 21 ms on datanode02 (executor 3) (29/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 35.0 in stage 0.0 (TID 35, datanode03, executor 1, partition 35, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 27.0 in stage 0.0 (TID 27) in 32 ms on datanode03 (executor 1) (30/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 36.0 in stage 0.0 (TID 36, datanode02, executor 3, partition 36, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 32.0 in stage 0.0 (TID 32) in 11 ms on datanode02 (executor 3) (31/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 37.0 in stage 0.0 (TID 37, datanode01, executor 2, partition 37, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 30.0 in stage 0.0 (TID 30) in 18 ms on datanode01 (executor 2) (32/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 38.0 in stage 0.0 (TID 38, datanode01, executor 2, partition 38, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 31.0 in stage 0.0 (TID 31) in 20 ms on datanode01 (executor 2) (33/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 39.0 in stage 0.0 (TID 39, datanode03, executor 1, partition 39, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 33.0 in stage 0.0 (TID 33) in 17 ms on datanode03 (executor 1) (34/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 34.0 in stage 0.0 (TID 34) in 17 ms on datanode02 (executor 3) (35/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 40.0 in stage 0.0 (TID 40, datanode02, executor 3, partition 40, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 41.0 in stage 0.0 (TID 41, datanode03, executor 1, partition 41, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 35.0 in stage 0.0 (TID 35) in 17 ms on datanode03 (executor 1) (36/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 42.0 in stage 0.0 (TID 42, datanode02, executor 3, partition 42, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 36.0 in stage 0.0 (TID 36) in 16 ms on datanode02 (executor 3) (37/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 43.0 in stage 0.0 (TID 43, datanode01, executor 2, partition 43, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 37.0 in stage 0.0 (TID 37) in 16 ms on datanode01 (executor 2) (38/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 44.0 in stage 0.0 (TID 44, datanode02, executor 3, partition 44, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 45.0 in stage 0.0 (TID 45, datanode02, executor 3, partition 45, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 40.0 in stage 0.0 (TID 40) in 14 ms on datanode02 (executor 3) (39/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 42.0 in stage 0.0 (TID 42) in 11 ms on datanode02 (executor 3) (40/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 46.0 in stage 0.0 (TID 46, datanode03, executor 1, partition 46, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 39.0 in stage 0.0 (TID 39) in 20 ms on datanode03 (executor 1) (41/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 47.0 in stage 0.0 (TID 47, datanode03, executor 1, partition 47, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 41.0 in stage 0.0 (TID 41) in 20 ms on datanode03 (executor 1) (42/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 48.0 in stage 0.0 (TID 48, datanode01, executor 2, partition 48, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 49.0 in stage 0.0 (TID 49, datanode01, executor 2, partition 49, PROCESS_LOCAL, 7888 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 43.0 in stage 0.0 (TID 43) in 18 ms on datanode01 (executor 2) (43/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 38.0 in stage 0.0 (TID 38) in 31 ms on datanode01 (executor 2) (44/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 45.0 in stage 0.0 (TID 45) in 11 ms on datanode02 (executor 3) (45/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 44.0 in stage 0.0 (TID 44) in 16 ms on datanode02 (executor 3) (46/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 46.0 in stage 0.0 (TID 46) in 18 ms on datanode03 (executor 1) (47/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 48.0 in stage 0.0 (TID 48) in 15 ms on datanode01 (executor 2) (48/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 47.0 in stage 0.0 (TID 47) in 15 ms on datanode03 (executor 1) (49/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 49.0 in stage 0.0 (TID 49) in 25 ms on datanode01 (executor 2) (50/50) 19/08/13 19:53:27 INFO YarnClusterScheduler: Removed TaskSet 0.0, whose tasks have all completed, from pool 19/08/13 19:53:27 INFO DAGScheduler: ShuffleMapStage 0 (start at VoiceApplication2.java:128) finished in 1.174 s 19/08/13 19:53:27 INFO DAGScheduler: looking for newly runnable stages 19/08/13 19:53:27 INFO DAGScheduler: running: Set() 19/08/13 19:53:27 INFO DAGScheduler: waiting: Set(ResultStage 1) 19/08/13 19:53:27 INFO DAGScheduler: failed: Set() 19/08/13 19:53:27 INFO DAGScheduler: Submitting ResultStage 1 (ShuffledRDD[2] at start at VoiceApplication2.java:128), which has no missing parents 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 3.2 KB, free 366.3 MB) 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 1979.0 B, free 366.3 MB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode02:31984 (size: 1979.0 B, free: 366.3 MB) 19/08/13 19:53:27 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1039 19/08/13 19:53:27 INFO DAGScheduler: Submitting 20 missing tasks from ResultStage 1 (ShuffledRDD[2] at start at VoiceApplication2.java:128) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)) 19/08/13 19:53:27 INFO YarnClusterScheduler: Adding task set 1.0 with 20 tasks 19/08/13 19:53:27 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 50, datanode03, executor 1, partition 0, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 1.0 in stage 1.0 (TID 51, datanode02, executor 3, partition 1, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 3.0 in stage 1.0 (TID 52, datanode01, executor 2, partition 3, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 2.0 in stage 1.0 (TID 53, datanode03, executor 1, partition 2, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 4.0 in stage 1.0 (TID 54, datanode02, executor 3, partition 4, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 5.0 in stage 1.0 (TID 55, datanode01, executor 2, partition 5, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode02:28863 (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode01:20487 (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode03:3328 (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:53:27 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to 10.1.229.163:24656 19/08/13 19:53:27 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to 10.1.198.144:41122 19/08/13 19:53:27 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to 10.1.229.158:64276 19/08/13 19:53:27 INFO TaskSetManager: Starting task 7.0 in stage 1.0 (TID 56, datanode03, executor 1, partition 7, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 2.0 in stage 1.0 (TID 53) in 192 ms on datanode03 (executor 1) (1/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 8.0 in stage 1.0 (TID 57, datanode03, executor 1, partition 8, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 7.0 in stage 1.0 (TID 56) in 25 ms on datanode03 (executor 1) (2/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 6.0 in stage 1.0 (TID 58, datanode02, executor 3, partition 6, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 1.0 in stage 1.0 (TID 51) in 220 ms on datanode02 (executor 3) (3/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 14.0 in stage 1.0 (TID 59, datanode03, executor 1, partition 14, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 8.0 in stage 1.0 (TID 57) in 17 ms on datanode03 (executor 1) (4/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 16.0 in stage 1.0 (TID 60, datanode03, executor 1, partition 16, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 14.0 in stage 1.0 (TID 59) in 15 ms on datanode03 (executor 1) (5/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 16.0 in stage 1.0 (TID 60) in 21 ms on datanode03 (executor 1) (6/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 9.0 in stage 1.0 (TID 61, datanode02, executor 3, partition 9, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 4.0 in stage 1.0 (TID 54) in 269 ms on datanode02 (executor 3) (7/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 50) in 339 ms on datanode03 (executor 1) (8/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 10.0 in stage 1.0 (TID 62, datanode02, executor 3, partition 10, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 6.0 in stage 1.0 (TID 58) in 56 ms on datanode02 (executor 3) (9/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 11.0 in stage 1.0 (TID 63, datanode01, executor 2, partition 11, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 5.0 in stage 1.0 (TID 55) in 284 ms on datanode01 (executor 2) (10/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 12.0 in stage 1.0 (TID 64, datanode01, executor 2, partition 12, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 3.0 in stage 1.0 (TID 52) in 287 ms on datanode01 (executor 2) (11/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 13.0 in stage 1.0 (TID 65, datanode02, executor 3, partition 13, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 15.0 in stage 1.0 (TID 66, datanode02, executor 3, partition 15, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 10.0 in stage 1.0 (TID 62) in 25 ms on datanode02 (executor 3) (12/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 9.0 in stage 1.0 (TID 61) in 29 ms on datanode02 (executor 3) (13/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 17.0 in stage 1.0 (TID 67, datanode02, executor 3, partition 17, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 15.0 in stage 1.0 (TID 66) in 13 ms on datanode02 (executor 3) (14/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 13.0 in stage 1.0 (TID 65) in 16 ms on datanode02 (executor 3) (15/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 18.0 in stage 1.0 (TID 68, datanode02, executor 3, partition 18, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 19.0 in stage 1.0 (TID 69, datanode01, executor 2, partition 19, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 11.0 in stage 1.0 (TID 63) in 30 ms on datanode01 (executor 2) (16/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 12.0 in stage 1.0 (TID 64) in 30 ms on datanode01 (executor 2) (17/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 17.0 in stage 1.0 (TID 67) in 17 ms on datanode02 (executor 3) (18/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 19.0 in stage 1.0 (TID 69) in 13 ms on datanode01 (executor 2) (19/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 18.0 in stage 1.0 (TID 68) in 20 ms on datanode02 (executor 3) (20/20) 19/08/13 19:53:27 INFO YarnClusterScheduler: Removed TaskSet 1.0, whose tasks have all completed, from pool 19/08/13 19:53:27 INFO DAGScheduler: ResultStage 1 (start at VoiceApplication2.java:128) finished in 0.406 s 19/08/13 19:53:27 INFO DAGScheduler: Job 0 finished: start at VoiceApplication2.java:128, took 1.850883 s 19/08/13 19:53:27 INFO ReceiverTracker: Starting 1 receivers 19/08/13 19:53:27 INFO ReceiverTracker: ReceiverTracker started 19/08/13 19:53:27 INFO KafkaInputDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO KafkaInputDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO KafkaInputDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Initialized and validated org.apache.spark.streaming.kafka.KafkaInputDStream@5fd3dc81 19/08/13 19:53:27 INFO ForEachDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO ForEachDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO ForEachDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Initialized and validated org.apache.spark.streaming.dstream.ForEachDStream@4044ec97 19/08/13 19:53:27 INFO KafkaInputDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO KafkaInputDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO KafkaInputDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Initialized and validated org.apache.spark.streaming.kafka.KafkaInputDStream@5fd3dc81 19/08/13 19:53:27 INFO MappedDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO MappedDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO MappedDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Initialized and validated org.apache.spark.streaming.dstream.MappedDStream@5dd4b960 19/08/13 19:53:27 INFO ForEachDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO ForEachDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO ForEachDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Initialized and validated org.apache.spark.streaming.dstream.ForEachDStream@132d0c3c 19/08/13 19:53:27 INFO KafkaInputDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO KafkaInputDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO KafkaInputDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Initialized and validated org.apache.spark.streaming.kafka.KafkaInputDStream@5fd3dc81 19/08/13 19:53:27 INFO MappedDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO MappedDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO MappedDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Initialized and validated org.apache.spark.streaming.dstream.MappedDStream@5dd4b960 19/08/13 19:53:27 INFO ForEachDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO ForEachDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO ForEachDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Initialized and validated org.apache.spark.streaming.dstream.ForEachDStream@525bed0c 19/08/13 19:53:27 INFO DAGScheduler: Got job 1 (start at VoiceApplication2.java:128) with 1 output partitions 19/08/13 19:53:27 INFO DAGScheduler: Final stage: ResultStage 2 (start at VoiceApplication2.java:128) 19/08/13 19:53:27 INFO DAGScheduler: Parents of final stage: List() 19/08/13 19:53:27 INFO DAGScheduler: Missing parents: List() 19/08/13 19:53:27 INFO DAGScheduler: Submitting ResultStage 2 (Receiver 0 ParallelCollectionRDD[3] at makeRDD at ReceiverTracker.scala:613), which has no missing parents 19/08/13 19:53:27 INFO ReceiverTracker: Receiver 0 started 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 133.5 KB, free 366.2 MB) 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 36.3 KB, free 366.1 MB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on datanode02:31984 (size: 36.3 KB, free: 366.3 MB) 19/08/13 19:53:27 INFO SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:1039 19/08/13 19:53:27 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 2 (Receiver 0 ParallelCollectionRDD[3] at makeRDD at ReceiverTracker.scala:613) (first 15 tasks are for partitions Vector(0)) 19/08/13 19:53:27 INFO YarnClusterScheduler: Adding task set 2.0 with 1 tasks 19/08/13 19:53:27 INFO TaskSetManager: Starting task 0.0 in stage 2.0 (TID 70, datanode01, executor 2, partition 0, PROCESS_LOCAL, 8757 bytes) 19/08/13 19:53:27 INFO RecurringTimer: Started timer for JobGenerator at time 1565697240000 19/08/13 19:53:27 INFO JobGenerator: Started JobGenerator at 1565697240000 ms 19/08/13 19:53:27 INFO JobScheduler: Started JobScheduler 19/08/13 19:53:27 INFO StreamingContext: StreamingContext started 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on datanode01:20487 (size: 36.3 KB, free: 2.5 GB) 19/08/13 19:53:27 INFO ReceiverTracker: Registered receiver for stream 0 from 10.1.229.158:64276 19/08/13 19:54:00 INFO JobScheduler: Added jobs for time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Starting job streaming job 1565697240000 ms.0 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Starting job streaming job 1565697240000 ms.1 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Finished job streaming job 1565697240000 ms.1 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Finished job streaming job 1565697240000 ms.0 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Starting job streaming job 1565697240000 ms.2 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO SharedState: loading hive config file: file:/data01/hadoop/yarn/local/usercache/hdfs/filecache/85431/__spark_conf__.zip/__hadoop_conf__/hive-site.xml 19/08/13 19:54:00 INFO SharedState: Setting hive.metastore.warehouse.dir ('null') to the value of spark.sql.warehouse.dir ('hdfs://CID-042fb939-95b4-4b74-91b8-9f94b999bdf7/apps/hive/warehouse'). 19/08/13 19:54:00 INFO SharedState: Warehouse path is 'hdfs://CID-042fb939-95b4-4b74-91b8-9f94b999bdf7/apps/hive/warehouse'. 19/08/13 19:54:00 INFO StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode02:31984 in memory (size: 1979.0 B, free: 366.3 MB) 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode02:28863 in memory (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode01:20487 in memory (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode03:3328 in memory (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:54:02 INFO CodeGenerator: Code generated in 175.416957 ms 19/08/13 19:54:02 INFO JobScheduler: Finished job streaming job 1565697240000 ms.2 from job set of time 1565697240000 ms 19/08/13 19:54:02 ERROR JobScheduler: Error running job streaming job 1565697240000 ms.2 org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; at org.apache.spark.sql.catalyst.catalog.ExternalCatalog.requireDbExists(ExternalCatalog.scala:40) at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.tableExists(InMemoryCatalog.scala:331) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.tableExists(SessionCatalog.scala:388) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:398) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:393) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:122) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:115) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 19/08/13 19:54:02 ERROR ApplicationMaster: User class threw exception: org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; at org.apache.spark.sql.catalyst.catalog.ExternalCatalog.requireDbExists(ExternalCatalog.scala:40) at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.tableExists(InMemoryCatalog.scala:331) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.tableExists(SessionCatalog.scala:388) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:398) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:393) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:122) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:115) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 19/08/13 19:54:02 INFO ApplicationMaster: Final app status: FAILED, exitCode: 15, (reason: User class threw exception: org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; at org.apache.spark.sql.catalyst.catalog.ExternalCatalog.requireDbExists(ExternalCatalog.scala:40) at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.tableExists(InMemoryCatalog.scala:331) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.tableExists(SessionCatalog.scala:388) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:398) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:393) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:122) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:115) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) ) 19/08/13 19:54:02 INFO StreamingContext: Invoking stop(stopGracefully=true) from shutdown hook 19/08/13 19:54:02 INFO ReceiverTracker: Sent stop signal to all 1 receivers 19/08/13 19:54:02 ERROR ReceiverTracker: Deregistered receiver for stream 0: Stopped by driver 19/08/13 19:54:02 INFO TaskSetManager: Finished task 0.0 in stage 2.0 (TID 70) in 35055 ms on datanode01 (executor 2) (1/1) 19/08/13 19:54:02 INFO YarnClusterScheduler: Removed TaskSet 2.0, whose tasks have all completed, from pool 19/08/13 19:54:02 INFO DAGScheduler: ResultStage 2 (start at VoiceApplication2.java:128) finished in 35.086 s 19/08/13 19:54:02 INFO ReceiverTracker: Waiting for receiver job to terminate gracefully 19/08/13 19:54:02 INFO ReceiverTracker: Waited for receiver job to terminate gracefully 19/08/13 19:54:02 INFO ReceiverTracker: All of the receivers have deregistered successfully 19/08/13 19:54:02 INFO ReceiverTracker: ReceiverTracker stopped 19/08/13 19:54:02 INFO JobGenerator: Stopping JobGenerator gracefully 19/08/13 19:54:02 INFO JobGenerator: Waiting for all received blocks to be consumed for job generation 19/08/13 19:54:02 INFO JobGenerator: Waited for all received blocks to be consumed for job generation 19/08/13 19:54:12 WARN ShutdownHookManager: ShutdownHook '$anon$2' timeout, java.util.concurrent.TimeoutException java.util.concurrent.TimeoutException at java.util.concurrent.FutureTask.get(FutureTask.java:205) at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:67) 19/08/13 19:54:12 ERROR Utils: Uncaught exception in thread pool-1-thread-1 java.lang.InterruptedException at java.lang.Object.wait(Native Method) at java.lang.Thread.join(Thread.java:1252) at java.lang.Thread.join(Thread.java:1326) at org.apache.spark.streaming.util.RecurringTimer.stop(RecurringTimer.scala:86) at org.apache.spark.streaming.scheduler.JobGenerator.stop(JobGenerator.scala:137) at org.apache.spark.streaming.scheduler.JobScheduler.stop(JobScheduler.scala:123) at org.apache.spark.streaming.StreamingContext$$anonfun$stop$1.apply$mcV$sp(StreamingContext.scala:681) at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1357) at org.apache.spark.streaming.StreamingContext.stop(StreamingContext.scala:680) at org.apache.spark.streaming.StreamingContext.org$apache$spark$streaming$StreamingContext$$stopOnShutdown(StreamingContext.scala:714) at org.apache.spark.streaming.StreamingContext$$anonfun$start$1.apply$mcV$sp(StreamingContext.scala:599) at org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:216) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188) at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1988) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply$mcV$sp(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:178) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) ```

如何用spark将带有union类型的avro消息存入hive

我现在是用spark streaming 读取kafka中的avro消息,反序列化后希望使用spark sql存入hive或者hdfs 但是不管我是将avro转成json还是case class,即使在DStream.print能够正确打印出来,使用spark.foreachRdd进行后续操作时都会报错。 1. 我找了第三方包,将avdl文件转成caseclass,由于avro中存在union(record,record,record)的类型,所以case class是带有shapeless的类型的,在转成spark后会报<none> is not a term的错误 2. 这一次是使用json4s将对象转换成了json,同样,在DStream.print能够正确打印,但是进入spark.foreachRdd后就会报错,no value for 'BAD', 不知道是不是因为不同的json中有一些属性是null,有一些不是null 3. 这一次我直接使用avro的tostring,和不同的是,在DStream中能打印,进入foreachRdd也并没有报错,但是部分json显示是corrupt. 第二和第三的json我把打印出来的字符串放入json文件里,使用spark.read.json读都是完全没问题的,我就有点搞不明白了,各位大神,有办法能够处理吗? 大家如果有这种需求一般是如何做的呢? Code Snippet: ``` def main { val kafkaStream = KafkaUtils.createDirectStream[String, Array[Byte]](ssc, PreferConsistent, Subscribe[String, Array[Byte]](topics, kafkaParams)) println("Schema:" + schema) val stream = deserialize(config, kafkaStream) process(approach, isPrint, stream) ssc.start() ssc.awaitTermination() } def process(approach: Int, isPrint: Boolean, stream: DStream[DeserializedFromKafkaRecord]): Unit = { approach match { /** * Approach 1 avrohugger + avro4s * Convert GenericData into CaseClass */ case 1 => { val mappedStream = stream.map(record => { val format = RecordFormat[A] val ennio = format.from(record.value) ennio }) if (isPrint) { mappedStream.print() }else { mappedStream.foreachRDD(foreachFunc = rdd => { if (!rdd.partitions.isEmpty) { val spark = SparkSession.builder.config(rdd.sparkContext.getConf).getOrCreate() import spark.implicits._ val df = rdd.toDF() df.show() } }) } } /** * Approach 2 avro4s + json4s * Convert CaseClass into Json */ case 2 => { val mappedStream = stream.map(record => { val format = RecordFormat[A] val ennio = format.from(record.value) implicit val formats = DefaultFormats.preservingEmptyValues write(ennio) }) if (isPrint) { mappedStream.print() }else { mappedStream.foreachRDD(foreachFunc = rdd => { if (!rdd.partitions.isEmpty) { val spark = SparkSession.builder.config(rdd.sparkContext.getConf).getOrCreate() import spark.implicits._ val df = spark.read.json(spark.createDataset(rdd)) df.show() } }) } } /** * Approach 3 * Convert GenericData into Json */ case 3 => { val mappedStream = stream.mapPartitions(partition => { partition.map(_.value.toString) }) if (isPrint) { mappedStream.print() }else { mappedStream.foreachRDD(foreachFunc = rdd => { if (!rdd.partitions.isEmpty) { val spark = SparkSession.builder.config(rdd.sparkContext.getConf).getOrCreate() import spark.implicits._ val df = spark.read.json(spark.createDataset(rdd)) df.show() } }) } } ```

spark2.0报错求大神帮忙!!!谢谢!!

代码如下(网上摘录代码): package com.gree.test; import java.util.Arrays; import java.util.Iterator; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.streaming.Durations; import org.apache.spark.streaming.api.java.JavaDStream; import org.apache.spark.streaming.api.java.JavaPairDStream; import org.apache.spark.streaming.api.java.JavaReceiverInputDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; import com.google.common.base.Optional; import scala.Tuple2; public class OnlineWordCount { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("wordcount").setMaster("local[2]"); JavaStreamingContext jssc = new JavaStreamingContext(conf,Durations.seconds(5)); jssc.checkpoint("hdfs://spark001:9000/wordcount_checkpoint"); JavaReceiverInputDStream<String> lines = jssc.socketTextStream("spark001", 9999); JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>(){ private static final long serialVersionUID = 1L; @Override public Iterator<String> call(String line) throws Exception { return Arrays.asList(line.split(" ")).iterator(); } }); JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>(){ private static final long serialVersionUID = 1L; @Override public Tuple2<String, Integer> call(String word) throws Exception { return new Tuple2<String, Integer>(word, 1); } }); JavaPairDStream<String, Integer> wordcounts = pairs.updateStateByKey( new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>(){ private static final long serialVersionUID = 1L; @Override public Optional<Integer> call(List<Integer> values, Optional<Integer> state) throws Exception { Integer newValue = 0; if(state.isPresent()){ newValue = state.get(); } for(Integer value : values){ newValue += value; } return Optional.of(newValue); } }); wordcounts.print(); jssc.start(); try { jssc.awaitTermination(); } catch (InterruptedException e) { e.printStackTrace(); } jssc.close(); } } 报错位置为updateStateByKey位置: The method updateStateByKey(Function2<List<Integer>,Optional<S>,Optional<S>>) in the type JavaPairDStream<String,Integer> is not applicable for the arguments (new Function2<List<Integer>,Optional<Integer>,Optional<Integer>>(){}) 跪求大神解决。。。谢谢

spark2.1.0运行spark on yarn的client模式一定需要自行编译吗?

如题,我用官网下载的预编译版本,每次运行client模式都会报错 ERROR SparkContext: Error initializing SparkContext. org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master. 但是用cluster模式就能正常运行。网上看了一些~请问有这个说法吗? 采用的是java1.8,hadoop2.7.3,spark2.1.0。 请指导一下,谢谢!

map算子里面使用sparkContext 报 java.io.NotSerializableException: org.apache.spark.SparkContext错?

val receiverStream: ReceiverInputDStream[ String ] = RabbitMQUtils.createStream[ String ](ssc, params) receiverStream.print() receiverStream.map(value => { //@transient val sc = spark.sparkContext val jsonS = JSON.parseFull(value) val mapjson: Map[ String, String ] = regJson(jsonS) val alarmContent = mapjson.get("alarmContent").toString.replace("Some(", "").replace(")", "") val alarmEventId = mapjson.get("alarmEventId").toString.replace("Some(", "").replace(")", "") val alarmLevel = mapjson.get("alarmLevel").toString.replace("Some(", "").replace(")", "") val alarmType = mapjson.get("alarmType").toString.replace("Some(", "").replace(")", "") val buildingId = mapjson.get("buildingId").toString.replace("Some(", "").replace(")", "") val chargesCode = mapjson.get("chargesCode").toString.replace("Some(", "").replace(")", "") val createDate = mapjson.get("createDate").toString.replace("Some(", "").replace(")", "").toDouble val delFlag = mapjson.get("delFlag").toString.replace("Some(", "").replace(")", "") val deviceId = mapjson.get("deviceId").toString.replace("Some(", "").replace(")", "") val happenTime = mapjson.get("happenTime").toString.replace("Some(", "").replace(")", "").toDouble val isNewRecord = mapjson.get("isNewRecord").toString.replace("Some(", "").replace(")", "").toBoolean val page = mapjson.get("page").toString.replace("Some(", "").replace(")", "") val producerCode = mapjson.get("producerCode").toString.replace("Some(", "").replace(")", "") val sqlMap = mapjson.get("sqlMap").toString.replace("Some(", "").replace(")", "") println(alarmEventId) val strings: Apple = Apple(alarmContent, alarmEventId, alarmLevel, alarmType, buildingId, chargesCode, createDate, delFlag, deviceId, happenTime, isNewRecord, page, producerCode, sqlMap) val apples: Seq[ Apple ] = Seq(strings) //println("走到这里了!") println("logs:" + apples) // val appRdd: RDD[ Apple ] = sc.makeRDD(apples) /* value1.foreachPartition(iter =>{ import spark.implicits._ val frameDF: DataFrame = value1.toDF() frameDF.createTempView("t_1") frameDF.show() })*/ val value1: RDD[ Apple ] = sc.parallelize(apples) import spark.implicits._ val frameDF: DataFrame = value1.toDF() frameDF.createTempView("t_1") frameDF.show() }).print()

大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了

大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...

在中国程序员是青春饭吗?

今年,我也32了 ,为了不给大家误导,咨询了猎头、圈内好友,以及年过35岁的几位老程序员……舍了老脸去揭人家伤疤……希望能给大家以帮助,记得帮我点赞哦。 目录: 你以为的人生 一次又一次的伤害 猎头界的真相 如何应对互联网行业的「中年危机」 一、你以为的人生 刚入行时,拿着傲人的工资,想着好好干,以为我们的人生是这样的: 等真到了那一天,你会发现,你的人生很可能是这样的: ...

程序员请照顾好自己,周末病魔差点一套带走我。

程序员在一个周末的时间,得了重病,差点当场去世,还好及时挽救回来了。

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

和黑客斗争的 6 天!

互联网公司工作,很难避免不和黑客们打交道,我呆过的两家互联网公司,几乎每月每天每分钟都有黑客在公司网站上扫描。有的是寻找 Sql 注入的缺口,有的是寻找线上服务器可能存在的漏洞,大部分都...

点沙成金:英特尔芯片制造全过程揭密

“亚马逊丛林里的蝴蝶扇动几下翅膀就可能引起两周后美国德州的一次飓风……” 这句人人皆知的话最初用来描述非线性系统中微小参数的变化所引起的系统极大变化。 而在更长的时间尺度内,我们所生活的这个世界就是这样一个异常复杂的非线性系统…… 水泥、穹顶、透视——关于时间与技艺的蝴蝶效应 公元前3000年,古埃及人将尼罗河中挖出的泥浆与纳特龙盐湖中的矿物盐混合,再掺入煅烧石灰石制成的石灰,由此得来了人...

讲一个程序员如何副业月赚三万的真实故事

loonggg读完需要3分钟速读仅需 1 分钟大家好,我是你们的校长。我之前讲过,这年头,只要肯动脑,肯行动,程序员凭借自己的技术,赚钱的方式还是有很多种的。仅仅靠在公司出卖自己的劳动时...

上班一个月,后悔当初着急入职的选择了

最近有个老铁,告诉我说,上班一个月,后悔当初着急入职现在公司了。他之前在美图做手机研发,今年美图那边今年也有一波组织优化调整,他是其中一个,在协商离职后,当时捉急找工作上班,因为有房贷供着,不能没有收入来源。所以匆忙选了一家公司,实际上是一个大型外包公司,主要派遣给其他手机厂商做外包项目。**当时承诺待遇还不错,所以就立马入职去上班了。但是后面入职后,发现薪酬待遇这块并不是HR所说那样,那个HR自...

女程序员,为什么比男程序员少???

昨天看到一档综艺节目,讨论了两个话题:(1)中国学生的数学成绩,平均下来看,会比国外好?为什么?(2)男生的数学成绩,平均下来看,会比女生好?为什么?同时,我又联想到了一个技术圈经常讨...

副业收入是我做程序媛的3倍,工作外的B面人生是怎样的?

提到“程序员”,多数人脑海里首先想到的大约是:为人木讷、薪水超高、工作枯燥…… 然而,当离开工作岗位,撕去层层标签,脱下“程序员”这身外套,有的人生动又有趣,马上展现出了完全不同的A/B面人生! 不论是简单的爱好,还是正经的副业,他们都干得同样出色。偶尔,还能和程序员的特质结合,产生奇妙的“化学反应”。 @Charlotte:平日素颜示人,周末美妆博主 大家都以为程序媛也个个不修边幅,但我们也许...

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

如果你是老板,你会不会踢了这样的员工?

有个好朋友ZS,是技术总监,昨天问我:“有一个老下属,跟了我很多年,做事勤勤恳恳,主动性也很好。但随着公司的发展,他的进步速度,跟不上团队的步伐了,有点...

我入职阿里后,才知道原来简历这么写

私下里,有不少读者问我:“二哥,如何才能写出一份专业的技术简历呢?我总感觉自己写的简历太烂了,所以投了无数份,都石沉大海了。”说实话,我自己好多年没有写过简历了,但我认识的一个同行,他在阿里,给我说了一些他当年写简历的方法论,我感觉太牛逼了,实在是忍不住,就分享了出来,希望能够帮助到你。 01、简历的本质 作为简历的撰写者,你必须要搞清楚一点,简历的本质是什么,它就是为了来销售你的价值主张的。往深...

我说我不会算法,阿里把我挂了。

不说了,字节跳动也反手把我挂了。

优雅的替换if-else语句

场景 日常开发,if-else语句写的不少吧??当逻辑分支非常多的时候,if-else套了一层又一层,虽然业务功能倒是实现了,但是看起来是真的很不优雅,尤其是对于我这种有强迫症的程序"猿",看到这么多if-else,脑袋瓜子就嗡嗡的,总想着解锁新姿势:干掉过多的if-else!!!本文将介绍三板斧手段: 优先判断条件,条件不满足的,逻辑及时中断返回; 采用策略模式+工厂模式; 结合注解,锦...

离职半年了,老东家又发 offer,回不回?

有小伙伴问松哥这个问题,他在上海某公司,在离职了几个月后,前公司的领导联系到他,希望他能够返聘回去,他很纠结要不要回去? 俗话说好马不吃回头草,但是这个小伙伴既然感到纠结了,我觉得至少说明了两个问题:1.曾经的公司还不错;2.现在的日子也不是很如意。否则应该就不会纠结了。 老实说,松哥之前也有过类似的经历,今天就来和小伙伴们聊聊回头草到底吃不吃。 首先一个基本观点,就是离职了也没必要和老东家弄的苦...

为什么你不想学习?只想玩?人是如何一步一步废掉的

不知道是不是只有我这样子,还是你们也有过类似的经历。 上学的时候总有很多光辉历史,学年名列前茅,或者单科目大佬,但是虽然慢慢地长大了,你开始懈怠了,开始废掉了。。。 什么?你说不知道具体的情况是怎么样的? 我来告诉你: 你常常潜意识里或者心理觉得,自己真正的生活或者奋斗还没有开始。总是幻想着自己还拥有大把时间,还有无限的可能,自己还能逆风翻盘,只不是自己还没开始罢了,自己以后肯定会变得特别厉害...

男生更看重女生的身材脸蛋,还是思想?

往往,我们看不进去大段大段的逻辑。深刻的哲理,往往短而精悍,一阵见血。问:产品经理挺漂亮的,有点心动,但不知道合不合得来。男生更看重女生的身材脸蛋,还是...

为什么程序员做外包会被瞧不起?

二哥,有个事想询问下您的意见,您觉得应届生值得去外包吗?公司虽然挺大的,中xx,但待遇感觉挺低,马上要报到,挺纠结的。

当HR压你价,说你只值7K,你该怎么回答?

当HR压你价,说你只值7K时,你可以流畅地回答,记住,是流畅,不能犹豫。 礼貌地说:“7K是吗?了解了。嗯~其实我对贵司的面试官印象很好。只不过,现在我的手头上已经有一份11K的offer。来面试,主要也是自己对贵司挺有兴趣的,所以过来看看……”(未完) 这段话主要是陪HR互诈的同时,从公司兴趣,公司职员印象上,都给予对方正面的肯定,既能提升HR的好感度,又能让谈判气氛融洽,为后面的发挥留足空间。...

面试:第十六章:Java中级开发(16k)

HashMap底层实现原理,红黑树,B+树,B树的结构原理 Spring的AOP和IOC是什么?它们常见的使用场景有哪些?Spring事务,事务的属性,传播行为,数据库隔离级别 Spring和SpringMVC,MyBatis以及SpringBoot的注解分别有哪些?SpringMVC的工作原理,SpringBoot框架的优点,MyBatis框架的优点 SpringCould组件有哪些,他们...

面试阿里p7,被按在地上摩擦,鬼知道我经历了什么?

面试阿里p7被问到的问题(当时我只知道第一个):@Conditional是做什么的?@Conditional多个条件是什么逻辑关系?条件判断在什么时候执...

你打算用Java 8一辈子都不打算升级到Java 14,真香

我们程序员应该抱着尝鲜、猎奇的心态,否则就容易固步自封,技术停滞不前。

无代码时代来临,程序员如何保住饭碗?

编程语言层出不穷,从最初的机器语言到如今2500种以上的高级语言,程序员们大呼“学到头秃”。程序员一边面临编程语言不断推陈出新,一边面临由于许多代码已存在,程序员编写新应用程序时存在重复“搬砖”的现象。 无代码/低代码编程应运而生。无代码/低代码是一种创建应用的方法,它可以让开发者使用最少的编码知识来快速开发应用程序。开发者通过图形界面中,可视化建模来组装和配置应用程序。这样一来,开发者直...

面试了一个 31 岁程序员,让我有所触动,30岁以上的程序员该何去何从?

最近面试了一个31岁8年经验的程序猿,让我有点感慨,大龄程序猿该何去何从。

大三实习生,字节跳动面经分享,已拿Offer

说实话,自己的算法,我一个不会,太难了吧

程序员垃圾简历长什么样?

已经连续五年参加大厂校招、社招的技术面试工作,简历看的不下于万份 这篇文章会用实例告诉你,什么是差的程序员简历! 疫情快要结束了,各个公司也都开始春招了,作为即将红遍大江南北的新晋UP主,那当然要为小伙伴们做点事(手动狗头)。 就在公众号里公开征简历,义务帮大家看,并一一点评。《启舰:春招在即,义务帮大家看看简历吧》 一石激起千层浪,三天收到两百多封简历。 花光了两个星期的所有空闲时...

《经典算法案例》01-08:如何使用质数设计扫雷(Minesweeper)游戏

我们都玩过Windows操作系统中的经典游戏扫雷(Minesweeper),如果把质数当作一颗雷,那么,表格中红色的数字哪些是雷(质数)?您能找出多少个呢?文中用列表的方式罗列了10000以内的自然数、质数(素数),6的倍数等,方便大家观察质数的分布规律及特性,以便对算法求解有指导意义。另外,判断质数是初学算法,理解算法重要性的一个非常好的案例。

《Oracle Java SE编程自学与面试指南》最佳学习路线图(2020最新版)

正确选择比瞎努力更重要!

一文带你入门Java Stream流,太强了

两个星期以前,就有读者强烈要求我写一篇 Java Stream 流的文章,我说市面上不是已经有很多了吗,结果你猜他怎么说:“就想看你写的啊!”你看你看,多么苍白的喜欢啊。那就“勉为其难”写一篇吧,嘻嘻。 单从“Stream”这个单词上来看,它似乎和 java.io 包下的 InputStream 和 OutputStream 有些关系。实际上呢,没毛关系。Java 8 新增的 Stream 是为...

都前后端分离了,咱就别做页面跳转了!统统 JSON 交互

文章目录1. 无状态登录1.1 什么是有状态1.2 什么是无状态1.3 如何实现无状态1.4 各自优缺点2. 登录交互2.1 前后端分离的数据交互2.2 登录成功2.3 登录失败3. 未认证处理方案4. 注销登录 这是本系列的第四篇,有小伙伴找不到之前文章,松哥给大家列一个索引出来: 挖一个大坑,Spring Security 开搞! 松哥手把手带你入门 Spring Security,别再问密...

面试官:你连SSO都不懂,就别来面试了

大厂竟然要考我SSO,卧槽。

终于,月薪过5万了!

来看几个问题想不想月薪超过5万?想不想进入公司架构组?想不想成为项目组的负责人?想不想成为spring的高手,超越99%的对手?那么本文内容是你必须要掌握的。本文主要详解bean的生命...

我说我懂多线程,面试官立马给我发了offer

不小心拿了几个offer,有点烦

自从喜欢上了B站这12个UP主,我越来越觉得自己是个废柴了!

不怕告诉你,我自从喜欢上了这12个UP主,哔哩哔哩成为了我手机上最耗电的软件,几乎每天都会看,可是吧,看的越多,我就越觉得自己是个废柴,唉,老天不公啊,不信你看看…… 间接性踌躇满志,持续性混吃等死,都是因为你们……但是,自己的学习力在慢慢变强,这是不容忽视的,推荐给你们! 都说B站是个宝,可是有人不会挖啊,没事,今天咱挖好的送你一箩筐,首先啊,我在B站上最喜欢看这个家伙的视频了,为啥 ,咱撇...

立即提问
相关内容推荐