stm32串口通信问题,从电脑传汉字并存储到32中的一个数组

我下载了原子哥的串口通信历程,但是没太看懂。
就是现在我想要一个能够通过串口atkxcom从电脑把多个汉字发送到位于stm32,然后在32里能够用一个数组接受这些字存起来,并且能多次输入,依次顺序存在这个数组里,求大神指导

2个回答

原子哥的例程有配置好的,你可以参考一下,usart.c可以直接拿来用。串口1有两个口PA9和PA10,如果串口2就引入usart2.c。
流程大概是这样:先调用init()初始化串口,要传入波特率作为参数。初始化完就可以进行接收和发送了,配置的在usart.c里面已经写好了。
初始化后有两种方式接收:一种是在主循环里判断标志位,如果检测到接收标志,就从串口的数据寄存器中取出数据。因为有一组数据传过来,所以你要判断一下数据的长度,然后把数据依次写到数组中。之后就可以把接收标志清除,开始下一帧数据的接收了。
还有一种方式是用中断,在stm32fxx_it.c中写接收中断的处理函数,接收到数据自动会执行中断,建议用这种方式。
最后总结一下,引入usart.c,mian()中init(115200)初始化串口,之后在stm32fxx_it.c中写接收中断函数。源码原子哥那里都有,好好研究一下。

STM32的接受可以采用DMA的中断管理进行处理,PC的串口用SERIALPORT,MSCOM组件都可以,另外中文要用UNICODE码转ASCII码。

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
为什么STM32和zigbee不能串口通信?

最近在做一个项目,需要用到zigbee与STM32串口通信,我用的是STM32的开发板和zigbee的底板。如果是一个zigbee单独的串口通信工程,32就能和zigbee进行通信,但是如果是z-stack里的串口通信就不能和32进行通信。

STM32L011K4 uart串口多机通信 的问题

本人在使用stm32L0114K做多机通信,一个主机给多个从机通过串口发消息,因此从机的串口需要被配置成不同的地址,并且使用静默模式。然后问题来了。 手册上说设置为静默模式,需要把RQR寄存器中的MMRQ位置1,但是无论怎么写,这位都没有被写成1,一直是0,所以现在很困惑。 不知道是自己配置有误,还是寄存器那位禁止这样的写操作(但是我并没有在手册上看到)?

嵌入式linux与stm32 usb通信

linux为主机,stm32为从机,实现以下:stm32为一个无线传输设备,最大256字节,将接收到的数据通过usb发送给linux,linux将需要发送的信息通过usb发送给stm32。 (linux的usb-skeleton.c已经看过)有以下疑惑: 1.应用程序,发送可以直接使用write,那么我要接收怎么实现?一直read么?还是驱动中一直读取,然后告诉应用程序,具体实现方法? 2.使用那种方式比较好?HID、CDC什么的? 3.usb通信只能有主机发起,如何保证及时接收到数据? 4.usb一包数据是64字节,大于64字节需要分包发送,要如何判断接收到了完整的一包。

stm32获取串口扫描枪数据

初学stm32,实现功能:串口2连接扫描枪,获取一维码信息后通过串口1打印;目前已实现串口2通过串口调试助手发送数据,串口1能够在串口调试助手上打印接收到的数据,stm32通过pc串口调试助手模拟发送接收数据正常,扫描枪与pc串口助手发送接收数据正常,存在问题:stm32与扫描枪无法通信,串口2连接扫描枪后发送数据,串口1无法打印,debug发现串口2中断无数据接收。![图片说明](https://img-ask.csdn.net/upload/201809/17/1537175779_974945.jpg)

stm32L0同时使用两个串口问题

项目需要同时使用两个串口和外界通信。用的是20脚的stm32L0,因为引脚太少,每个引脚的复用功能就很多。 突然发现LPUART1和USART2两个外设的TX引脚竟然共用一个引脚(如下方数据手册截图所示),想求问各位大神这个芯片还能两个串口同时用么,需要怎样配置呀? 另:一个引脚上这么多Alternate functions是不是只能通过外设时钟来控制具体是哪个外设在工作? ![图片说明](https://img-ask.csdn.net/upload/201910/22/1571744755_267880.png)

STM32串口通信,串口调试助手中可以实现收发,自己编的串口助手就只能收不能发,有大神知道怎么办吗?

如题,最近做一个这样的调试,用32的开发板向电脑发送数据,用普通的串口调试助手就可以正常收发。 实际如下:32设备收到发来的信号,然后再将另外一组数据发送到调试助手 ![图片说明](https://img-ask.csdn.net/upload/201810/23/1540282792_7501.png) 然后在普通的串口调试助手上就是这样的; 我自己根据博客上的代码写了个差不多的串口工具,用的是Communications control ,version6.0这个控件写的。 但是结果上来说,如果32定时自己向这个工具发数据的话是可以发的,工具也能收到并且显示出来,但是用这个工具向32发数据32却收不到。 因此我又用了虚拟串口,用电脑上的串口调试助手和我写的工具互相收发,双方也都是能收到数据,也能互相发送数据,请大神帮我看看到底是那里出了问题! 串口工具收到32的数据: ![图片说明](https://img-ask.csdn.net/upload/201810/23/1540283320_110440.png) 但是这个串口工具向32发送时32却收不到数据。 为了验证串口可以发送,我用了虚拟串口,如下: ![图片说明](https://img-ask.csdn.net/upload/201810/23/1540283543_713052.png) STM32的程序如下: void UART1_Send_Array() // { unsigned char i=0; // unsigned char t=0; // num=8; for(i=0;i<num;i++) { USART_SendData(USART1,send_array[t]); // while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);// t++; } } if(USART_RX_STA&0x8000) { UART1_Send_Array(); USART_RX_STA=0; LED0=!LED0; } 以及初始化等 #if EN_USART1_RX //Èç¹ûʹÄÜÁ˽ÓÊÕ //´®¿Ú1ÖжϷþÎñ³ÌÐò //×¢Òâ,¶ÁÈ¡USARTx->SRÄܱÜÃâĪÃûÆäÃîµÄ´íÎó u8 USART_RX_BUF[USART_REC_LEN]; //½ÓÊÕ»º³å,×î´óUSART_REC_LEN¸ö×Ö½Ú. //½ÓÊÕ״̬ //bit15£¬ ½ÓÊÕÍê³É±êÖ¾ //bit14£¬ ½ÓÊÕµ½0x0d //bit13~0£¬ ½ÓÊÕµ½µÄÓÐЧ×Ö½ÚÊýÄ¿ u16 USART_RX_STA=0; //½ÓÊÕ״̬±ê¼Ç void uart_init(u32 bound){ //GPIO¶Ë¿ÚÉèÖà GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //ʹÄÜUSART1£¬GPIOAʱÖÓ //USART1_TX GPIOA.9 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //¸´ÓÃÍÆÍìÊä³ö GPIO_Init(GPIOA, &GPIO_InitStructure);//³õʼ»¯GPIOA.9 //USART1_RX GPIOA.10³õʼ»¯ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//¸¡¿ÕÊäÈë GPIO_Init(GPIOA, &GPIO_InitStructure);//³õʼ»¯GPIOA.10 //Usart1 NVIC ÅäÖà NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//ÇÀÕ¼ÓÅÏȼ¶3 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //×ÓÓÅÏȼ¶3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQͨµÀʹÄÜ NVIC_Init(&NVIC_InitStructure); //¸ù¾ÝÖ¸¶¨µÄ²ÎÊý³õʼ»¯VIC¼Ä´æÆ÷ //USART ³õʼ»¯ÉèÖà USART_InitStructure.USART_BaudRate = bound;//´®¿Ú²¨ÌØÂÊ USART_InitStructure.USART_WordLength = USART_WordLength_8b;//×Ö³¤Îª8λÊý¾Ý¸ñʽ USART_InitStructure.USART_StopBits = USART_StopBits_1;//Ò»¸öֹͣλ USART_InitStructure.USART_Parity = USART_Parity_No;//ÎÞÆæżУÑéλ USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//ÎÞÓ²¼þÊý¾ÝÁ÷¿ØÖÆ USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //ÊÕ·¢Ä£Ê½ USART_Init(USART1, &USART_InitStructure); //³õʼ»¯´®¿Ú1 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//¿ªÆô´®¿Ú½ÓÊÜÖÐ¶Ï USART_Cmd(USART1, ENABLE); //ʹÄÜ´®¿Ú1 } void USART1_IRQHandler(void) //´®¿Ú1ÖжϷþÎñ³ÌÐò { u8 Res; #if SYSTEM_SUPPORT_OS //Èç¹ûSYSTEM_SUPPORT_OSΪÕ棬ÔòÐèÒªÖ§³ÖOS. OSIntEnter(); #endif if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //½ÓÊÕÖжÏ(½ÓÊÕµ½µÄÊý¾Ý±ØÐëÊÇ0x0d 0x0a½áβ) { Res =USART_ReceiveData(USART1); //¶ÁÈ¡½ÓÊÕµ½µÄÊý¾Ý if((USART_RX_STA&0x8000)==0)//½ÓÊÕδÍê³É { if(USART_RX_STA&0x4000)//½ÓÊÕµ½ÁË0x0d { if(Res!=0x0a)USART_RX_STA=0;//½ÓÊÕ´íÎó,ÖØпªÊ¼ else USART_RX_STA|=0x8000; //½ÓÊÕÍê³ÉÁË } else //»¹Ã»ÊÕµ½0X0D { if(Res==0x0d)USART_RX_STA|=0x4000; else { USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ; USART_RX_STA++; if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//½ÓÊÕÊý¾Ý´íÎó,ÖØпªÊ¼½ÓÊÕ } } } } #if SYSTEM_SUPPORT_OS //Èç¹ûSYSTEM_SUPPORT_OSΪÕ棬ÔòÐèÒªÖ§³ÖOS. OSIntExit(); #endif } #endif 主要就是设置GPIO口,设置波特率等等 VS2010的主要程序如下: void CSerialTestDlg::OnCbnSelchangeComboCom() { // TODO: 在此添加控件通知处理程序代码 int nSel; nSel = m_comboCom.GetCurSel();//获取组合框控件的列表框中选中项的索引 m_ctrlComm.put_CommPort(nSel+1);//选择串口号(这里因为列表框的索引号是从0开始,所以(nSel+1)对应的才是我们所选的串口号) m_ctrlComm.put_PortOpen(TRUE);//打开串口 m_ctrlComm.put_RThreshold(2);//收到两个字节引发OnComm事件 m_ctrlComm.put_InputMode(1);//输入模式选为二进制 m_ctrlComm.put_Settings(_T("9600,n,8,1"));//设置串口参数,波特率,无奇偶校验,位停止位,位数据位 m_ctrlComm.put_InputMode(1); // 以二进制方式检取数据 m_ctrlComm.put_RThreshold(1); //参数1表示每当串口接收缓冲区中有多于或等于1个字符时将引发一个接收数据的OnComm事件 m_ctrlComm.put_InputLen(0); //设置当前接收区数据长度为0 m_ctrlComm.get_Input();//先预读缓冲区以清除残留数据 m_setOk = true; //标记串口设置OK } BEGIN_EVENTSINK_MAP(CSerialTestDlg, CDialogEx) ON_EVENT(CSerialTestDlg, IDC_MSCOMM1, 1, CSerialTestDlg::OnComm, VTS_NONE) END_EVENTSINK_MAP() void CSerialTestDlg::OnComm() { // TODO: 在此处添加消息处理程序代码 VARIANT variant_inp; //Variant 是一种特殊的数据类型,除了定长String数据及用户定义类型外,可以包含任何种类的数据。 COleSafeArray safearray_inp; LONG len,k; BYTE rxdata[2048]; //设置BYTE数组 An 8-bit integer that is not signed. CString strtemp; if(m_ctrlComm.get_CommEvent() == 2) //事件值为2表示接收缓冲区内有字符 { ////////以下你可以根据自己的通信协议加入处理代码 variant_inp=m_ctrlComm.get_Input(); //读缓冲区 safearray_inp=variant_inp; //VARIANT型变量转换为ColeSafeArray型变量 len=safearray_inp.GetOneDimSize(); //得到有效数据长度 for(k=0;k<len;k++) safearray_inp.GetElement(&k,rxdata+k);//转换为BYTE型数组 for(k=0;k<len;k++) //将数组转换为Cstring型变量 { BYTE bt=*(char*)(rxdata+k);//字符型 strtemp.Format(_T("%x"),bt); //8位数组显示,就是现在strtemp中是51 00 00 00 0 m_strRXData+=strtemp; //加入接收编辑框对应字符串 } } UpdateData(FALSE); //更新编辑框内容 } void CSerialTestDlg::OnBnClickedButtonSend() { // TODO: 在此添加控件通知处理程序代码 if (m_setOk == true) //判断是否打开并初始化串口 { UpdateData(TRUE); //读取编辑框内容 m_ctrlComm.put_Output(COleVariant(m_strTXData)); //发送数据 } else { MessageBox(_T("请先选择COM口")); } } void CSerialTestDlg::OnBnClickedButtonCleanup() { // TODO: 在此添加控件通知处理程序代码 m_strRXData=""; UpdateData(FALSE);//更新编辑框内容 } 请求大神帮我看一下大概是哪里出现了问题!

stm32F4DISCOVERY串口通信问题

void RCC_Configuration(void) { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE); } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; /* Configure USART Tx and Rx as alternate function push-pull */ GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_Init(GPIOD, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Pin =GPIO_Pin_9; GPIO_Init(GPIOD, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOD,GPIO_PinSource8,GPIO_AF_USART3); GPIO_PinAFConfig(GPIOD,GPIO_PinSource9,GPIO_AF_USART3); } void USART_Configuration(void) { USART_InitTypeDef USART_InitStructure; USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USART_WordLength =USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No ; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART3,&USART_InitStructure); /* Configure USART1 basic and asynchronous paramters */ //USART_ITConfig(USART3,USART_IT_RXNE,ENABLE); USART_ITConfig(USART3,USART_IT_TXE,ENABLE); USART_Cmd(USART3, ENABLE); /* Enable USART1 */ USART_ClearITPendingBit(USART3,USART_IT_TC); } void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure;//????? NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } int main(void) { RCC_Configuration(); GPIO_Configuration(); NVIC_Configuration(); USART_Configuration(); while(1); } volatile char StringLoop[] = "The quick brown fox jumps over the lazy dog"; void USART3_IRQHandler(void) { static int tx_index = 0; // static int rx_index = 0; if (USART_GetITStatus(USART3, USART_IT_TXE) != RESET) // Transmit the string in a loop { USART_ClearITPendingBit(USART3, USART_IT_TXE); USART_SendData(USART3, StringLoop[tx_index++]); if (tx_index >= (sizeof(StringLoop) - 1)) tx_index = 0; } } 就是这个程序为什么会不停的发送数据,PC接收端一直在接收,不是清除了标志位吗,想问问大家啊

stm32的5个串口同时使用问题

stm32的5个串口同时用到,如何处理各个串口的数据,需要注意哪些问题

stm32串口调试助手乱码

用stm32写了个串口程序 上位机发送一个数字 返回一个数字,可是返回的是些不认识的字符,波特率已经同步9608 数据停止位 等都是一样的,tx接rx 还是乱 换了3个串口调试助手都是一样的,有谁知道,谢谢解答

openmv与STM32之间怎样通过IIC通信协议通信

之前用openmv进行颜色识别然后与STM32通过串口通信,但是STM32接收到的图像中心坐标与openmv中的实际坐标有时候会不同。所以想尝试一下openmv与STM32之间到其他通信方式,

STM32 串口接收指令无反应。

C#上位机通过串口给STM32发送指令,结果发现发送指令下位机偶尔有反应,大多数情况下没反应,只有多次点击有时会返回一次数据。代码如下 ``` 上位机发送部分 char[] a = new char[1];//设置标志位 a[0] = 'a'; serialPort1.Write(a, 0, 1); ``` STM32处理部分: ``` while(1) { if(USART_GetITStatus(USART1,USART_IT_RXNE)!=Bit_RESET) { UART_data=USART_ReceiveData(USART1);//接收串口数据 if(UART_data=='a')//进行判断 { USART_SendData(USART1,a);//a为之前定义的一个变量 b也是 } if(UART_data=='b') { USART_SendData(USART1,b); } while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==Bit_RESET); } } ```

STM32串口如何实现一个发数据,另外一个接收数据

在keil5在编程环境下,想要实现的功能是:利用中断,让串口四接收数据,串口一发送数据 部分代码如下: int main(void) { //初始化USART1和UART4 配置模式为 115200 8-N-1,通过USART1发送数据,通过UART4接收数据 Debug_USART1_Config(); Debug_UART4_Config(); while(1) { } } 、、、、、、、、、中断函数如下、、、、、、、、、 相关宏定义 #define DEBUG_R_USART_IRQHandler UART4_IRQHandler #define DEBUG_R_USART_IRQ UART4_IRQn //串口四的中断程序:用于接收数据 void DEBUG_R_USART_IRQHandler(void) { if(USART_GetITStatus(UART4,USART_IT_RXNE)!=RESET) { USART_ClearFlag(UART4,USART_IT_RXNE); // USART_ClearITPendingBit(UART4,USART_IT_RXNE); //清除中断标志 ucTemp = USART_ReceiveData(UART4); } } //串口一的中断程序:用于发送数据 void DEBUG_T_USART_IRQHandler(void) { if(USART_GetITStatus(USART1,USART_IT_RXNE)!=RESET) { USART_ClearFlag(USART1,USART_IT_RXNE); //清除标志 // USART_ClearITPendingBit(USART1,USART_IT_RXNE); //清除中断预处理位 USART_SendData(USART1,ucTemp); } } 、、、、、、、、中断函数的配置、、、、、、、、、 //接收串口引脚定义 /*******************************************************/ #define DEBUG_USART UART4 #define DEBUG_USART_CLK RCC_APB1Periph_UART4 #define DEBUG_USART_BAUDRATE 115200 //串口波特率 #define DEBUG_USART_RX_GPIO_PORT GPIOA #define DEBUG_USART_RX_GPIO_CLK RCC_AHB1Periph_GPIOA #define DEBUG_USART_RX_PIN GPIO_Pin_1 #define DEBUG_USART_RX_AF GPIO_AF_UART4 #define DEBUG_USART_RX_SOURCE GPIO_PinSource1 #define DEBUG_USART_TX_GPIO_PORT GPIOA #define DEBUG_USART_TX_GPIO_CLK RCC_AHB1Periph_GPIOA #define DEBUG_USART_TX_PIN GPIO_Pin_0 #define DEBUG_USART_TX_AF GPIO_AF_UART4 #define DEBUG_USART_TX_SOURCE GPIO_PinSource0 #define DEBUG_R_USART_IRQHandler UART4_IRQHandler #define DEBUG_R_USART_IRQ UART4_IRQn /************************************************************/ //发送串口引脚定义 /*******************************************************/ #define DEBUG_T_USART USART1 #define DEBUG_T_USART_CLK RCC_APB2Periph_USART1 #define DEBUG_T_USART_BAUDRATE 115200 //串口波特率 #define DEBUG_T_USART_RX_GPIO_PORT GPIOA #define DEBUG_T_USART_RX_GPIO_CLK RCC_AHB1Periph_GPIOA #define DEBUG_T_USART_RX_PIN GPIO_Pin_10 #define DEBUG_T_USART_RX_AF GPIO_AF_USART1 #define DEBUG_T_USART_RX_SOURCE GPIO_PinSource10 #define DEBUG_T_USART_TX_GPIO_PORT GPIOA #define DEBUG_T_USART_TX_GPIO_CLK RCC_AHB1Periph_GPIOA #define DEBUG_T_USART_TX_PIN GPIO_Pin_9 #define DEBUG_T_USART_TX_AF GPIO_AF_USART1 #define DEBUG_T_USART_TX_SOURCE GPIO_PinSource9 #define DEBUG_T_USART_IRQHandler USART1_IRQHandler #define DEBUG_T_USART_IRQ USART1_IRQn /************************************************************/ static void NVIC_Configuration(void) //串口四的中断参数的配置 { NVIC_InitTypeDef NVIC_InitStructure; /* 嵌套向量中断控制器组选择 */ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); /* 配置UART4为中断源 */ NVIC_InitStructure.NVIC_IRQChannel = DEBUG_R_USART_IRQ; /* 抢断优先级为1 */ NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; /* 子优先级为1 */ NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; /* 使能中断 */ NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; /* 初始化配置NVIC */ NVIC_Init(&NVIC_InitStructure); } static void T_NVIC_Configuration(void) //串口一的中断参数的配置 { NVIC_InitTypeDef NVIC_InitStructure; /* 嵌套向量中断控制器组选择 */ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); /* 配置USART1为中断源 */ NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; /* 抢断优先级为1 */ NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; /* 子优先级为1 */ NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; /* 使能中断 */ NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; /* 初始化配置NVIC */ NVIC_Init(&NVIC_InitStructure); } 、、、、、、、、有关串口的配置、、、、、、、、 void Debug_UART4_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; RCC_AHB1PeriphClockCmd(DEBUG_USART_RX_GPIO_CLK|DEBUG_USART_TX_GPIO_CLK,ENABLE); /* 使能 USART 时钟 */ RCC_APB1PeriphClockCmd(DEBUG_USART_CLK, ENABLE); /* GPIO初始化 */ GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; /* 配置Tx引脚为复用功能 */ GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Pin = DEBUG_USART_TX_PIN ; GPIO_Init(DEBUG_USART_TX_GPIO_PORT, &GPIO_InitStructure); /* 配置Rx引脚为复用功能 */ GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Pin = DEBUG_USART_RX_PIN; GPIO_Init(DEBUG_USART_RX_GPIO_PORT, &GPIO_InitStructure); /* 连接 PXx 到 USARTx_Tx*/ GPIO_PinAFConfig(DEBUG_USART_RX_GPIO_PORT,DEBUG_USART_RX_SOURCE,DEBUG_USART_RX_AF); /* 连接 PXx 到 USARTx__Rx*/ GPIO_PinAFConfig(DEBUG_USART_TX_GPIO_PORT,DEBUG_USART_TX_SOURCE,DEBUG_USART_TX_AF); /* 配置串DEBUG_USART 模式 */ /* 波特率设置:DEBUG_USART_BAUDRATE */ USART_InitStructure.USART_BaudRate = DEBUG_USART_BAUDRATE; /* 字长(数据位+校验位):8 */ USART_InitStructure.USART_WordLength = USART_WordLength_8b; /* 停止位:1个停止位 */ USART_InitStructure.USART_StopBits = USART_StopBits_1; /* 校验位选择:不使用校验 */ USART_InitStructure.USART_Parity = USART_Parity_No; /* 硬件流控制:不使用硬件流 */ USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; /* USART模式控制:同时使能接收和发送 */ USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; /* 完成USART初始化配置 */ USART_Init(DEBUG_USART, &USART_InitStructure); /* 嵌套向量中断控制器NVIC配置 */ NVIC_Configuration(); /* 使能串口接收中断 */ USART_ITConfig(DEBUG_USART, USART_IT_RXNE, ENABLE); //使能了接收中断,那么ORE中断也同时被开启了。 /* 使能串口 */ USART_Cmd(DEBUG_USART, ENABLE); } void Debug_USART1_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); /* 使能 USART 时钟 */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); /* GPIO初始化 */ GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; /* 配置Tx引脚为复用功能 */ GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Pin = DEBUG_USART_TX_PIN ; GPIO_Init(DEBUG_T_USART_TX_GPIO_PORT, &GPIO_InitStructure); /* 配置Rx引脚为复用功能 */ GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Pin = DEBUG_T_USART_RX_PIN; GPIO_Init(DEBUG_T_USART_RX_GPIO_PORT, &GPIO_InitStructure); /* 连接 PXx 到 USARTx_Tx*/ GPIO_PinAFConfig(DEBUG_T_USART_RX_GPIO_PORT,DEBUG_T_USART_RX_SOURCE,DEBUG_T_USART_RX_AF); /* 连接 PXx 到 USARTx__Rx*/ GPIO_PinAFConfig(DEBUG_T_USART_TX_GPIO_PORT,DEBUG_T_USART_TX_SOURCE,DEBUG_T_USART_TX_AF); /* 配置串DEBUG_USART 模式 */ /* 波特率设置:DEBUG_USART_BAUDRATE */ USART_InitStructure.USART_BaudRate = DEBUG_T_USART_BAUDRATE; /* 字长(数据位+校验位):8 */ USART_InitStructure.USART_WordLength = USART_WordLength_8b; /* 停止位:1个停止位 */ USART_InitStructure.USART_StopBits = USART_StopBits_1; /* 校验位选择:不使用校验 */ USART_InitStructure.USART_Parity = USART_Parity_No; /* 硬件流控制:不使用硬件流 */ USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; /* USART模式控制:同时使能接收和发送 */ USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; /* 完成USART初始化配置 */ USART_Init(DEBUG_T_USART, &USART_InitStructure); /* 嵌套向量中断控制器NVIC配置 */ T_NVIC_Configuration(); /* 使能串口接收中断 */ USART_ITConfig(DEBUG_T_USART, USART_IT_RXNE, ENABLE); /* 使能串口 */ USART_Cmd(DEBUG_T_USART, ENABLE); } 未解决:串口一和串口四都可以单独收发,但是我想要实现一个串口收,另外一个串口发的功能,,,,,,,,求助啊,,,,,,试了好多可能性了

STM32多机通讯,安卓板为上位机,下位机为几个STM32串口接收数据(应该是2~10个)

1:STM32多机通讯,安卓板为上位机,下位机为几个STM32串口接收数据(应该是2~10个),请大神指教, 2:要有程序代码提供(最好是有寄存器配置版本的。如是库函数版的请说清楚)

关于stm32UART串口发送数据的问题

我想用stm32单片机的uart串口发送一个十进制的数据(例如adc转换的电压值)到上位机上面。请问怎么把一个十进制的数字发送出去,这个程序要怎么写。我查了一下资料,好像要发送的数据都要求是二进制的。求大佬

stm32与上位机通过网口通信,网口读不出数据?

使用w5500evb与上位机通信,w5500evb是一个网络芯片,它的MCU是stm32f103系列的,要实现将传感器采集到的数据值通过网口显示在上位机的网络调试助手上,现在我可以通过串口将数据显示在串口调试助手上(说明传感器工作正常),但是通过网口传数据时,在上位机的网络调试助手不显示,请教大神,这是什么原因呢?(网络通信是正常的,我用上位机的网络调试助手给下位机发送数据123,下位机收到之后会自动将123发送给上位机,而且在网络调试助手上也显示了这个数据,说明网络通信是正常的)

STM32简单串口程序,刚入门小白,弄了很久了,实在找不到哪有问题,求教。串口助手没收到任何数据

很基本的一个程序,最开始似乎是硬件问题,换了个接口好了。然后我想写从PC发到32再发回来的程序,没反应,改回之前的程序也没反应了。弄出来打算调ADC的。 小白一只,恳请各位大佬赐教。已经搞了几个小时了。现在都凌晨4点了= = 以下是配置程序: #include<stm32f10x.h> #include<stdio.h> void USART1_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA,&GPIO_InitStructure); USART_InitStructure.USART_BaudRate=115200; USART_InitStructure.USART_WordLength=USART_WordLength_8b; USART_InitStructure.USART_StopBits=USART_StopBits_1; USART_InitStructure.USART_Parity=USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode=USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART1,&USART_InitStructure); USART_Cmd(USART1,ENABLE); } int fputc(int ch,FILE *f) { USART_SendData(USART1,(unsigned char)ch); while(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=SET); return (ch); } main函数: #include<stm32f10x.h> #include<stdio.h> #include<usart1.h> int main(void) { USART1_Config(); printf("\r\n this is a printf demo \r\n"); } 还没怎么发过帖子,可能有些地方弄的不太好,有什么问题的话希望告诉我。

stm32串口发送可以进入中断但没有数据显示

程序功能是:若接收到数据0x55,则发送接收到的数据(0x55)。 但现在问题是:通过串口助手发送0x55,已经进入接收中断接受到数据,然后通过SendData函数发送数据,能进入发送中断,但是串口助手却没有显示0x55(好像是数据并没有发送出去) /*头文件*/ #ifndef __HEAD_H__ #define __HEAD_H__ #include <misc.h> #include <stm32f10x_usart.h> #include <stm32f10x_gpio.h> #include <STM32F10x_rcc.h> #include <stdint.h> #include "stm32f10x_flash.h" //#include <stm32100e_eval.h> //#include <stm32_eval.h> void NVIC_Configuration(void); void RCC_Configuration(void); void Usart_Initial(void); void gpio_Init(void); void Delayms(uint16_t ms); extern uint16_t rece; #endif /*函数*/ #include "head.h" void NVIC_Configuration(void){ //ÖжÏÓÅÏȼ¶ÉèÖà NVIC_InitTypeDef NVIC_InitStruc; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); NVIC_InitStruc.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStruc.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStruc.NVIC_IRQChannelSubPriority = 0; NVIC_InitStruc.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStruc); } void RCC_Configuration(void){ ErrorStatus HSEStartUpStatus; RCC_DeInit(); RCC_HSEConfig(RCC_HSE_ON); HSEStartUpStatus = RCC_WaitForHSEStartUp(); if(RCC_WaitForHSEStartUp() == SUCCESS) { FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); FLASH_SetLatency(FLASH_Latency_2); RCC_HCLKConfig(RCC_SYSCLK_Div1); RCC_PCLK2Config(RCC_HCLK_Div1); RCC_PCLK1Config(RCC_HCLK_Div2); RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); RCC_PLLCmd(ENABLE); while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY==RESET)) {} RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); while(RCC_GetSYSCLKSource()!=0x08){} } RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_USART1, ENABLE); } void Usart_Initial(void){ USART_InitTypeDef USART_InitStructure; USART_ClockInitTypeDef USART_ClockStructure; USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_WordLength = USART_WordLength_8b; // USART_ClockStructure.USART_Clock = USART_Clock_Disable; // USART_ClockStructure.USART_CPHA = USART_CPHA_2Edge; // USART_ClockStructure.USART_CPOL = USART_CPOL_Low; // USART_ClockStructure.USART_LastBit = USART_LastBit_Disable; USART_ClockStructInit(&USART_ClockStructure); USART_Init(USART1,&USART_InitStructure); USART_ClockInit(USART1,&USART_ClockStructure); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); // USART_ITConfig(USART1,USART_IT_TXE,ENABLE); // USART_ITConfig(USART1, USART_IT_RXNE,ENABLE); // USART_WakeUpConfig(USART1, USART_WakeUp_IdleLine); USART_Cmd(USART1,ENABLE); } void gpio_Init(void){ GPIO_InitTypeDef GPIO_InitSTA; GPIO_InitTypeDef GPIO_InitSTB; /* GPIO_PinLockConfig(GPIOB,GPIO_Pin_12);*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOB,ENABLE); GPIO_InitSTA.GPIO_Mode = GPIO_Mode_Out_PP; //TxD1 GPIO_InitSTA.GPIO_Pin = GPIO_Pin_9; GPIO_InitSTA.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitSTA); GPIO_InitSTA.GPIO_Mode = GPIO_Mode_IN_FLOATING; //RxD1 GPIO_InitSTA.GPIO_Pin = GPIO_Pin_10; // GPIO_InitSTA.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitSTA); GPIO_InitSTB.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitSTB.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13; GPIO_InitSTB.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB,&GPIO_InitSTB); GPIO_SetBits(GPIOA,GPIO_Pin_9 | GPIO_Pin_10); GPIO_SetBits(GPIOB,GPIO_Pin_12 | GPIO_Pin_13); } void Delayms(uint16_t ms){ uint16_t i = 0; uint16_t j = 0; for(j = 0;j < ms;j ++){ for(i = 0;i < 12000;i ++){ } } } /*主程序,串口usart1中断函数*/ #include "head.h" #include "stdio.h" #include "stm32f10x_it.h" uint16_t rece = 0; int main(void){ NVIC_Configuration(); RCC_Configuration(); Usart_Initial(); gpio_Init(); USART_ITConfig(USART1,USART_IT_TXE,ENABLE); USART_ITConfig(USART1,USART_IT_RXNE,ENABLE); GPIO_WriteBit(GPIOB,GPIO_Pin_12 | GPIO_Pin_13,Bit_RESET); while(1){ // GPIO_WriteBit(GPIOB,GPIO_Pin_12 | GPIO_Pin_13,Bit_SET); // Delayms(1000); GPIO_WriteBit(GPIOB,GPIO_Pin_12 | GPIO_Pin_13,Bit_RESET); Delayms(1000); // USART_SendData(USART1,0x55); // Delayms(1000); // while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET){}; } } void USART1_IRQHandler(void) { /* if(USART_GetITStatus(USART1, USART_IT_PE) != RESET) { USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); rece = USART_ReceiveData(USART1); } */ if(USART_GetITStatus(USART1, USART_IT_TXE) != RESET) { GPIO_WriteBit(GPIOB,GPIO_Pin_12,Bit_SET); //若发送0x55,引脚电平会变 // USART_SendData(USART1, 0xff); // while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET){}; USART_ClearFlag(USART1,USART_FLAG_TC); USART_ITConfig(USART1, USART_IT_TXE, DISABLE); } if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { /* Disable USART1 RXNE Interrupt */ rece = USART_ReceiveData(USART1); USART_ClearFlag(USART1,USART_IT_RXNE); // USART_ITConfig(USART1, USART_IT_RXNE, DISABLE); if(rece == 0x55){ // GPIO_WriteBit(GPIOB,GPIO_Pin_12,Bit_SET); USART_ITConfig(USART1,USART_IT_TXE,ENABLE); USART_SendData(USART1,rece); while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET){}; // printf("hello"); } } }

STM32f103最小系统板可以直接连电脑吗?连上电脑之后串口没有增加是为什么,板上红灯绿灯都亮

STM32f103最小系统板可以直接连电脑吗?连上电脑之后串口没有增加是为什么,板上红灯一直亮,绿灯闪烁

stm32 串口收发数据异常,然后发现是时钟有问题,求解答

在板子上搞个串口通信,发现串口助手发过去的和收到的不是同一个数据,比如发01, 到芯片一接收就变成了40,网上查了好久,可能是时钟问题,然后用RCC_GetClocksFreq函数一看,发现 初始化都是0啊 ![图片说明](https://img-ask.csdn.net/upload/202004/13/1586769585_878703.jpg) 调试的时候获取RCC_CLOCK的时候还会卡死。。所以是什么问题

2019 AI开发者大会

2019 AI开发者大会(AI ProCon 2019)是由中国IT社区CSDN主办的AI技术与产业年度盛会。多年经验淬炼,如今蓄势待发:2019年9月6-7日,大会将有近百位中美顶尖AI专家、知名企业代表以及千余名AI开发者齐聚北京,进行技术解读和产业论证。我们不空谈口号,只谈技术,诚挚邀请AI业内人士一起共铸人工智能新篇章!

实现简单的文件系统

实验内容: 通过对具体的文件存储空间的管理、文件的物理结构、目录结构和文件操作的实现,加深对文件系统内部功能和实现过程的理解。 要求: 1.在内存中开辟一个虚拟磁盘空间作为文件存储器,在其上实现一个简

MIPS单周期CPU-组成原理实验-华中科技大学

使用logisim布线完成的MIPS单周期CPU,可支持28条指令。跑马灯的代码已经装入了寄存器,可以直接开启时钟运行。

2019数学建模A题高压油管的压力控制 省一论文即代码

2019数学建模A题高压油管的压力控制省一完整论文即详细C++和Matlab代码,希望对同学们有所帮助

基于QT和OpenCV的五子棋实现源码

一个简单的五子棋应用,基于QT和OpenCV的实现源码,通过相邻棋子判断是否获胜,不包含人工智能算法,适合新手入门

Git 实用技巧

这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。

实用主义学Python(小白也容易上手的Python实用案例)

原价169,限时立减100元! 系统掌握Python核心语法16点,轻松应对工作中80%以上的Python使用场景! 69元=72讲+源码+社群答疑+讲师社群分享会&nbsp; 【哪些人适合学习这门课程?】 1)大学生,平时只学习了Python理论,并未接触Python实战问题; 2)对Python实用技能掌握薄弱的人,自动化、爬虫、数据分析能让你快速提高工作效率; 3)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; 4)想修炼更好的编程内功,优秀的工程师肯定不能只会一门语言,Python语言功能强大、使用高效、简单易学。 【超实用技能】 从零开始 自动生成工作周报 职场升级 豆瓣电影数据爬取 实用案例 奥运冠军数据分析 自动化办公:通过Python自动化分析Excel数据并自动操作Word文档,最终获得一份基于Excel表格的数据分析报告。 豆瓣电影爬虫:通过Python自动爬取豆瓣电影信息并将电影图片保存到本地。 奥运会数据分析实战 简介:通过Python分析120年间奥运会的数据,从不同角度入手分析,从而得出一些有趣的结论。 【超人气老师】 二两 中国人工智能协会高级会员 生成对抗神经网络研究者 《深入浅出生成对抗网络:原理剖析与TensorFlow实现》一书作者 阿里云大学云学院导师 前大型游戏公司后端工程师 【超丰富实用案例】 0)图片背景去除案例 1)自动生成工作周报案例 2)豆瓣电影数据爬取案例 3)奥运会数据分析案例 4)自动处理邮件案例 5)github信息爬取/更新提醒案例 6)B站百大UP信息爬取与分析案例 7)构建自己的论文网站案例

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

C/C++跨平台研发从基础到高阶实战系列套餐

一 专题从基础的C语言核心到c++ 和stl完成基础强化; 二 再到数据结构,设计模式完成专业计算机技能强化; 三 通过跨平台网络编程,linux编程,qt界面编程,mfc编程,windows编程,c++与lua联合编程来完成应用强化 四 最后通过基于ffmpeg的音视频播放器,直播推流,屏幕录像,

三个项目玩转深度学习(附1G源码)

从事大数据与人工智能开发与实践约十年,钱老师亲自见证了大数据行业的发展与人工智能的从冷到热。事实证明,计算机技术的发展,算力突破,海量数据,机器人技术等,开启了第四次工业革命的序章。深度学习图像分类一直是人工智能的经典任务,是智慧零售、安防、无人驾驶等机器视觉应用领域的核心技术之一,掌握图像分类技术是机器视觉学习的重中之重。针对现有线上学习的特点与实际需求,我们开发了人工智能案例实战系列课程。打造:以项目案例实践为驱动的课程学习方式,覆盖了智能零售,智慧交通等常见领域,通过基础学习、项目案例实践、社群答疑,三维立体的方式,打造最好的学习效果。

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

Python界面版学生管理系统

前不久上传了一个控制台版本的学生管理系统,这个是Python界面版学生管理系统,这个是使用pycharm开发的一个有界面的学生管理系统,基本的增删改查,里面又演示视频和完整代码,有需要的伙伴可以自行下

Vue.js 2.0之全家桶系列视频课程

基于新的Vue.js 2.3版本, 目前新全的Vue.js教学视频,让你少走弯路,直达技术前沿! 1. 包含Vue.js全家桶(vue.js、vue-router、axios、vuex、vue-cli、webpack、ElementUI等) 2. 采用笔记+代码案例的形式讲解,通俗易懂

linux“开发工具三剑客”速成攻略

工欲善其事,必先利其器。Vim+Git+Makefile是Linux环境下嵌入式开发常用的工具。本专题主要面向初次接触Linux的新手,熟练掌握工作中常用的工具,在以后的学习和工作中提高效率。

JAVA初级工程师面试36问(完结)

第三十一问: 说一下线程中sleep()和wait()区别? 1 . sleep()是让正在执行的线程主动让出CPU,当时间到了,在回到自己的线程让程序运行。但是它并没有释放同步资源锁只是让出。 2.wait()是让当前线程暂时退让出同步资源锁,让其他线程来获取到这个同步资源在调用notify()方法,才会让其解除wait状态,再次参与抢资源。 3. sleep()方法可以在任何地方使用,而wait()只能在同步方法或同步块使用。 ...

java jdk 8 帮助文档 中文 文档 chm 谷歌翻译

JDK1.8 API 中文谷歌翻译版 java帮助文档 JDK API java 帮助文档 谷歌翻译 JDK1.8 API 中文 谷歌翻译版 java帮助文档 Java最新帮助文档 本帮助文档是使用谷

我以为我对Mysql事务很熟,直到我遇到了阿里面试官

太惨了,面试又被吊打

智鼎(附答案).zip

并不是完整题库,但是有智鼎在线2019年9、10、11三个月的试题,有十七套以上题目,普通的网申行测题足以对付,可以在做题时自己总结一些规律,都不是很难

Visual Assist X 破解补丁

vs a's'sixt插件 支持vs2008-vs2019 亲测可以破解,希望可以帮助到大家

150讲轻松搞定Python网络爬虫

【为什么学爬虫?】 &nbsp; &nbsp; &nbsp; &nbsp;1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到! &nbsp; &nbsp; &nbsp; &nbsp;2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。 &nbsp; 从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑

JavaWEB商城项目(包括数据库)

功能描述:包括用户的登录注册,以及个人资料的修改.商品的分类展示,详情,加入购物车,生成订单,到银行支付等!另外还有收货地址的和我的收藏等常用操作.环境(JDK 1.7 ,mysql 5.5,Ecli

Python数据挖掘简易入门

&nbsp; &nbsp; &nbsp; &nbsp; 本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。

一学即懂的计算机视觉(第一季)

图像处理和计算机视觉的课程大家已经看过很多,但总有“听不透”,“用不了”的感觉。课程致力于创建人人都能听的懂的计算机视觉,通过生动、细腻的讲解配合实战演练,让学生真正学懂、用会。 【超实用课程内容】 课程内容分为三篇,包括视觉系统构成,图像处理基础,特征提取与描述,运动跟踪,位姿估计,三维重构等内容。课程理论与实战结合,注重教学内容的可视化和工程实践,为人工智能视觉研发及算法工程师等相关高薪职位就业打下坚实基础。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/26281 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,但是大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/26281,点击右下方课程资料、代码、课件等打包下载

软件测试2小时入门

本课程内容系统、全面、简洁、通俗易懂,通过2个多小时的介绍,让大家对软件测试有个系统的理解和认识,具备基本的软件测试理论基础。 主要内容分为5个部分: 1 软件测试概述,了解测试是什么、测试的对象、原则、流程、方法、模型;&nbsp; 2.常用的黑盒测试用例设计方法及示例演示;&nbsp; 3 常用白盒测试用例设计方法及示例演示;&nbsp; 4.自动化测试优缺点、使用范围及示例‘;&nbsp; 5.测试经验谈。

初级玩转Linux+Ubuntu(嵌入式开发基础课程)

课程主要面向嵌入式Linux初学者、工程师、学生 主要从一下几方面进行讲解: 1.linux学习路线、基本命令、高级命令 2.shell、vi及vim入门讲解 3.软件安装下载、NFS、Samba、FTP等服务器配置及使用

2019 Python开发者日-培训

本次活动将秉承“只讲技术,拒绝空谈”的理念,邀请十余位身处一线的Python技术专家,重点围绕Web开发、自动化运维、数据分析、人工智能等技术模块,分享真实生产环境中使用Python应对IT挑战的真知灼见。此外,针对不同层次的开发者,大会还安排了深度培训实操环节,为开发者们带来更多深度实战的机会。

快速入门Android开发 视频 教程 android studio

这是一门快速入门Android开发课程,顾名思义是让大家能快速入门Android开发。 学完能让你学会如下知识点: Android的发展历程 搭建Java开发环境 搭建Android开发环境 Android Studio基础使用方法 Android Studio创建项目 项目运行到模拟器 项目运行到真实手机 Android中常用控件 排查开发中的错误 Android中请求网络 常用Android开发命令 快速入门Gradle构建系统 项目实战:看美图 常用Android Studio使用技巧 项目签名打包 如何上架市场

机器学习初学者必会的案例精讲

通过六个实际的编码项目,带领同学入门人工智能。这些项目涉及机器学习(回归,分类,聚类),深度学习(神经网络),底层数学算法,Weka数据挖掘,利用Git开源项目实战等。

4小时玩转微信小程序——基础入门与微信支付实战

这是一个门针对零基础学员学习微信小程序开发的视频教学课程。课程采用腾讯官方文档作为教程的唯一技术资料来源。杜绝网络上质量良莠不齐的资料给学员学习带来的障碍。 视频课程按照开发工具的下载、安装、使用、程序结构、视图层、逻辑层、微信小程序等几个部分组织课程,详细讲解整个小程序的开发过程

相关热词 c#框体中的退出函数 c# 按钮透明背景 c# idl 混编出错 c#在位置0处没有任何行 c# 循环给数组插入数据 c# 多线程死锁的例子 c# 钉钉读取员工排班 c# label 不显示 c#裁剪影像 c#工作进程更新ui
立即提问