Spark读取错误PrematureEOFfrominputStream

:主要问题java.io.EOFException: Premature EOF from inputStream
使用textFile或者newAPIHadoopFile都出现这个错误
写spark读取数据的时候一直报这个错误。
连count,repartition都过不去。数据读的比平常慢的多。
看数据文件,应该是很均匀的,应该不是数据倾斜的问题了吧。
下面是报错信息:

 16/09/15 23:27:57 ERROR yarn.ApplicationMaster: User class threw exception: org.apache.spark.SparkException: Job aborted due to stage failure: Task 41 in stage 0.0 failed 4 times, most recent failure: Lost task 41.3 in stage 0.0 (TID 5736, dn076179.heracles.sohuno.com): java.io.EOFException: Premature EOF from inputStream
    at com.hadoop.compression.lzo.LzopInputStream.readFully(LzopInputStream.java:75)
    at com.hadoop.compression.lzo.LzopInputStream.readHeader(LzopInputStream.java:114)
    at com.hadoop.compression.lzo.LzopInputStream.<init>(LzopInputStream.java:54)
    at com.hadoop.compression.lzo.LzopCodec.createInputStream(LzopCodec.java:83)
    at org.apache.hadoop.mapreduce.lib.input.LineRecordReader.initialize(LineRecordReader.java:102)
    at org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:133)
    at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:104)
    at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:66)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
    at org.apache.spark.scheduler.Task.run(Task.scala:70)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:744)
    Driver stacktrace:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 41 in stage 0.0 failed 4 times, most recent failure: Lost task 41.3 in stage 0.0 (TID 5736, dn076179.heracles.sohuno.com): java.io.EOFException: Premature EOF from inputStream
    at com.hadoop.compression.lzo.LzopInputStream.readFully(LzopInputStream.java:75)
    at com.hadoop.compression.lzo.LzopInputStream.readHeader(LzopInputStream.java:114)
    at com.hadoop.compression.lzo.LzopInputStream.<init>(LzopInputStream.java:54)
    at com.hadoop.compression.lzo.LzopCodec.createInputStream(LzopCodec.java:83)
    at org.apache.hadoop.mapreduce.lib.input.LineRecordReader.initialize(LineRecordReader.java:102)
    at org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:133)
    at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:104)
    at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:66)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
    at org.apache.spark.scheduler.Task.run(Task.scala:70)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:744)

1个回答

timruning
timruning 不太可能是这个问题,我看了文件,没有为0的情况
接近 4 年之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
scala spark 读取mongodb数据,并将数据写入hdfs示例

scala spark 读取mongodb数据(查询时会使用spark sql进行查询),并将数据写入hdfs示例

spark读取kafka数据, 缓存当天数据

spark stream从kafka读取数据,10秒间隔;需要缓存当天数据用于业务分析。 思路1:定义static rdd用于union每次接收到的rdd;用window窗口(窗口长1小时,滑动步长20分钟);union之后checkpoint。 但是发现在利用static rdd做业务分析的时候,应该是因为磁盘io,所以执行时间太长。 思路2:一样定义static rdd, context调用remember(24小时)保留数据24小时(数据缓存在哪里了,暂时不清楚,汗);但是在业务分析时,发现static rdd的count结果为0 求教怎么缓存一段时间的rdd 数据放executor内存或分布放个worker都可以,一天的数据量大概在100g,过滤后再5g,机器内存256g

spark读取hdfs中lzo文件时hadoop版本冲突

各位大神跪求lzo-hadoop.jar支持hadoop-2.6版本的,或者是解决方法,本人想要用spark读取hdfs中*.lzo格式的压缩文件, 但是当前lzo-hadoop.jar包只支持hadoop-1.2.1,跪求解决办法!很急在线等!!!! 邮箱island_lonely@163.com

SparkStreaming读取本地文件并获取文件名称

SparkStreaming读取本地文件并获取文件名称 根据文件名区分文件分别进行流式处理

spark读取parquet的分区数量问题,blockSize?分割?

是这样的,hdfs某个parquet目录下共有64个part。采用gz压缩。 然后我用spark.read.parquet去读取。发现有1900+的partition。也就是1900+的task任务启动。 看起来还是读取的parquet.block.size参数。然后一个part下有很多个block。 但是gz压缩不是不可分割么?不应该是64个paritition吗? 块和分割的概念到底是什么呢?

spark读取本地文件报错

在scala编写spark程序使用了sc.textFile("file:///home/hadoop/2.txt"), 竟然报错java.io.FileNotFoundException: File file:/home/hadoop/2.txt does not exist,之后又用spark-shell测试,依旧报这样错误 ``` scala> val rdd = sc.textFile("file:///home/hadoop/2.txt") rdd: org.apache.spark.rdd.RDD[String] = file:///home/hadoop/2.txt MapPartitionsRDD[5] at textFile at <console>:24 scala> rdd.take(1) 17/08/29 20:27:28 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 1.0 (TID 4, slaves3, executor 2): java.io.FileNotFoundException: File file:/home/hadoop/2.txt does not exist ``` 我cat文件是有输出的 ``` [hadoop@master ~]$ cat /home/hadoop/2.txt chen 001 {"phone":"187***","sex":"m","card":"123"} zhou 002 {"phone":"187***","sex":"f","educetion":"1"} qian 003 {"phone":"187***","sex":"f","book":"2"} li 004 {"phone":"187***","sex":"f"} wu 005 {"phone":"187***","sex":"f"} zhang 006 {"phone":"187***","sex":"f"} xia 007 {"phone":"187***","sex":"f"} wang 008 {"phone":"187***","sex":"f"} lv 009 {"phone":"187***","sex":"m"} ``` 之后我将文件放在hdfs上面,就能读取的到,这是怎么回事

spark读取不了本地文件是怎么回事

``` textFile=sc.textFile("file:///home/hduser/pythonwork/ipynotebook/data/test.txt") stringRDD=textFile.flatMap(lambda line:line.split(' ')) stringRDD.collect() ``` 我此路径下是有test文件的: ![图片说明](https://img-ask.csdn.net/upload/201805/18/1526634813_44673.png) 错误是: ``` Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 8.0 failed 4 times, most recent failure: Lost task 1.3 in stage 8.0 (TID 58, 192.168.56.103, executor 1): java.io.FileNotFoundException: File file:/home/hduser/pythonwork/ipynotebook/data/test.txt does not exist 。 。 。 Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1599) 。 。 。 Caused by: java.io.FileNotFoundException: File file:/home/hduser/pythonwork/ipynotebook/data/test.txt does not exist ``` 而且发现若我把代码中test.txt随便改一个名字,比如ttest.txt(肯定是没有的文件) 错误竟然发生了变化: ``` Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: file:/home/hduser/pythonwork/ipynotebook/data/tesst.txt at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:287) at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229) at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315) at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:200) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.rdd.RDD.partitions(RDD.scala:251) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.rdd.RDD.partitions(RDD.scala:251) at org.apache.spark.api.python.PythonRDD.getPartitions(PythonRDD.scala:53) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.rdd.RDD.partitions(RDD.scala:251) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2092) at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:939) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:363) at org.apache.spark.rdd.RDD.collect(RDD.scala:938) at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:153) at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:483) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:745) ``` 注意: 此时我是以spark集群跑的:'spark://emaster:7077' 若是以本地跑就可以找到本地的那个test.txt文件 找hdfs文件系统的文件可以找到(在spark集群跑情况下) 。。。处由于字数显示省略了些不重要的错误提示,若想知道的话可以回复我 跪求大神帮助~感激不尽!!!

求助!spark读取文件问题

求助各位大神, 由于为了性能,需求需要每15分钟获取15个分钟文件 用spark获取15个文件该用什么方法,查了很多资料都是只能分区 JavaRDD<String> expFile = jsc.textFile("/tmp"); expFile这个RDD可以用什么方法拿到文件个数,然后让我遍历

求教SparkStreaming 读取数据库表如mysql、cassandra等,每个batch是整张表吗?

需要做一个实时监控统计的系统,准备使用cassandra作为数据库,因为数据提交不带有最终统计的部分信息,需要将kafka dstream和已经存在cassandra内的部分表在spark中做关联。 打算采用sparkstreaming实时消费信息,同时读取cassandra表(增量变动)做关联。如果streaming读取cassandra的没个batch不是整张表会导致join失败吧

关于spark离线程序读写本地文件的问题

我目前在学着写spark离线程序,用Java写的 目前我要做的是:在java代码里读取服务器上的/root/config.properties配置文件, 然后我处理完之后会生成一个文件file.txt,我希望将这个file.txt也放到该服务器的特定目录下。 目前我读取配置文件的做法是:先将config.properties上传到hdfs, 然后java代码中写prop.load("hdfs:///root/config.properties"); 这样是可以达到效果的,但事实上我不可能每次都手动将配置文件放一下hdfs。 生成的文件在哪目前我还没测试。。。 请大佬指点下这个需要怎么做。包括java代码里和sh脚本里。谢谢。 大佬给代码的时候请详细点,因为不会,能顺带加点注释就最好了。 我测试能用的话保证立马采纳。 环境是jdk1.8和spark2.2,linux系统

spark 读取不到hive metastore 获取不到数据库

直接上异常 ``` Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/data01/hadoop/yarn/local/filecache/355/spark2-hdp-yarn-archive.tar.gz/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/usr/hdp/2.6.5.0-292/hadoop/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 19/08/13 19:53:17 INFO SignalUtils: Registered signal handler for TERM 19/08/13 19:53:17 INFO SignalUtils: Registered signal handler for HUP 19/08/13 19:53:17 INFO SignalUtils: Registered signal handler for INT 19/08/13 19:53:17 INFO SecurityManager: Changing view acls to: yarn,hdfs 19/08/13 19:53:17 INFO SecurityManager: Changing modify acls to: yarn,hdfs 19/08/13 19:53:17 INFO SecurityManager: Changing view acls groups to: 19/08/13 19:53:17 INFO SecurityManager: Changing modify acls groups to: 19/08/13 19:53:17 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(yarn, hdfs); groups with view permissions: Set(); users with modify permissions: Set(yarn, hdfs); groups with modify permissions: Set() 19/08/13 19:53:18 INFO ApplicationMaster: Preparing Local resources 19/08/13 19:53:19 INFO ApplicationMaster: ApplicationAttemptId: appattempt_1565610088533_0087_000001 19/08/13 19:53:19 INFO ApplicationMaster: Starting the user application in a separate Thread 19/08/13 19:53:19 INFO ApplicationMaster: Waiting for spark context initialization... 19/08/13 19:53:19 INFO SparkContext: Running Spark version 2.3.0.2.6.5.0-292 19/08/13 19:53:19 INFO SparkContext: Submitted application: voice_stream 19/08/13 19:53:19 INFO SecurityManager: Changing view acls to: yarn,hdfs 19/08/13 19:53:19 INFO SecurityManager: Changing modify acls to: yarn,hdfs 19/08/13 19:53:19 INFO SecurityManager: Changing view acls groups to: 19/08/13 19:53:19 INFO SecurityManager: Changing modify acls groups to: 19/08/13 19:53:19 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(yarn, hdfs); groups with view permissions: Set(); users with modify permissions: Set(yarn, hdfs); groups with modify permissions: Set() 19/08/13 19:53:19 INFO Utils: Successfully started service 'sparkDriver' on port 20410. 19/08/13 19:53:19 INFO SparkEnv: Registering MapOutputTracker 19/08/13 19:53:19 INFO SparkEnv: Registering BlockManagerMaster 19/08/13 19:53:19 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information 19/08/13 19:53:19 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up 19/08/13 19:53:19 INFO DiskBlockManager: Created local directory at /data01/hadoop/yarn/local/usercache/hdfs/appcache/application_1565610088533_0087/blockmgr-94d35b97-43b2-496e-a4cb-73ecd3ed186c 19/08/13 19:53:19 INFO MemoryStore: MemoryStore started with capacity 366.3 MB 19/08/13 19:53:19 INFO SparkEnv: Registering OutputCommitCoordinator 19/08/13 19:53:19 INFO JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter 19/08/13 19:53:19 INFO Utils: Successfully started service 'SparkUI' on port 28852. 19/08/13 19:53:19 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://datanode02:28852 19/08/13 19:53:19 INFO YarnClusterScheduler: Created YarnClusterScheduler 19/08/13 19:53:20 INFO SchedulerExtensionServices: Starting Yarn extension services with app application_1565610088533_0087 and attemptId Some(appattempt_1565610088533_0087_000001) 19/08/13 19:53:20 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 31984. 19/08/13 19:53:20 INFO NettyBlockTransferService: Server created on datanode02:31984 19/08/13 19:53:20 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy 19/08/13 19:53:20 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO BlockManagerMasterEndpoint: Registering block manager datanode02:31984 with 366.3 MB RAM, BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO EventLoggingListener: Logging events to hdfs:/spark2-history/application_1565610088533_0087_1 19/08/13 19:53:20 INFO ApplicationMaster: =============================================================================== YARN executor launch context: env: CLASSPATH -> {{PWD}}<CPS>{{PWD}}/__spark_conf__<CPS>{{PWD}}/__spark_libs__/*<CPS>/usr/hdp/2.6.5.0-292/hadoop/conf<CPS>/usr/hdp/2.6.5.0-292/hadoop/*<CPS>/usr/hdp/2.6.5.0-292/hadoop/lib/*<CPS>/usr/hdp/current/hadoop-hdfs-client/*<CPS>/usr/hdp/current/hadoop-hdfs-client/lib/*<CPS>/usr/hdp/current/hadoop-yarn-client/*<CPS>/usr/hdp/current/hadoop-yarn-client/lib/*<CPS>/usr/hdp/current/ext/hadoop/*<CPS>$PWD/mr-framework/hadoop/share/hadoop/mapreduce/*:$PWD/mr-framework/hadoop/share/hadoop/mapreduce/lib/*:$PWD/mr-framework/hadoop/share/hadoop/common/*:$PWD/mr-framework/hadoop/share/hadoop/common/lib/*:$PWD/mr-framework/hadoop/share/hadoop/yarn/*:$PWD/mr-framework/hadoop/share/hadoop/yarn/lib/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/lib/*:$PWD/mr-framework/hadoop/share/hadoop/tools/lib/*:/usr/hdp/2.6.5.0-292/hadoop/lib/hadoop-lzo-0.6.0.2.6.5.0-292.jar:/etc/hadoop/conf/secure:/usr/hdp/current/ext/hadoop/*<CPS>{{PWD}}/__spark_conf__/__hadoop_conf__ SPARK_YARN_STAGING_DIR -> *********(redacted) SPARK_USER -> *********(redacted) command: LD_LIBRARY_PATH="/usr/hdp/current/hadoop-client/lib/native:/usr/hdp/current/hadoop-client/lib/native/Linux-amd64-64:$LD_LIBRARY_PATH" \ {{JAVA_HOME}}/bin/java \ -server \ -Xmx5120m \ -Djava.io.tmpdir={{PWD}}/tmp \ '-Dspark.history.ui.port=18081' \ '-Dspark.rpc.message.maxSize=100' \ -Dspark.yarn.app.container.log.dir=<LOG_DIR> \ -XX:OnOutOfMemoryError='kill %p' \ org.apache.spark.executor.CoarseGrainedExecutorBackend \ --driver-url \ spark://CoarseGrainedScheduler@datanode02:20410 \ --executor-id \ <executorId> \ --hostname \ <hostname> \ --cores \ 2 \ --app-id \ application_1565610088533_0087 \ --user-class-path \ file:$PWD/__app__.jar \ --user-class-path \ file:$PWD/hadoop-common-2.7.3.jar \ --user-class-path \ file:$PWD/guava-12.0.1.jar \ --user-class-path \ file:$PWD/hbase-server-1.2.8.jar \ --user-class-path \ file:$PWD/hbase-protocol-1.2.8.jar \ --user-class-path \ file:$PWD/hbase-client-1.2.8.jar \ --user-class-path \ file:$PWD/hbase-common-1.2.8.jar \ --user-class-path \ file:$PWD/mysql-connector-java-5.1.44-bin.jar \ --user-class-path \ file:$PWD/spark-streaming-kafka-0-8-assembly_2.11-2.3.2.jar \ --user-class-path \ file:$PWD/spark-examples_2.11-1.6.0-typesafe-001.jar \ --user-class-path \ file:$PWD/fastjson-1.2.7.jar \ 1><LOG_DIR>/stdout \ 2><LOG_DIR>/stderr resources: spark-streaming-kafka-0-8-assembly_2.11-2.3.2.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/spark-streaming-kafka-0-8-assembly_2.11-2.3.2.jar" } size: 12271027 timestamp: 1565697198603 type: FILE visibility: PRIVATE spark-examples_2.11-1.6.0-typesafe-001.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/spark-examples_2.11-1.6.0-typesafe-001.jar" } size: 1867746 timestamp: 1565697198751 type: FILE visibility: PRIVATE hbase-server-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-server-1.2.8.jar" } size: 4197896 timestamp: 1565697197770 type: FILE visibility: PRIVATE hbase-common-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-common-1.2.8.jar" } size: 570163 timestamp: 1565697198318 type: FILE visibility: PRIVATE __app__.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/spark_history_data2.jar" } size: 44924 timestamp: 1565697197260 type: FILE visibility: PRIVATE guava-12.0.1.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/guava-12.0.1.jar" } size: 1795932 timestamp: 1565697197614 type: FILE visibility: PRIVATE hbase-client-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-client-1.2.8.jar" } size: 1306401 timestamp: 1565697198180 type: FILE visibility: PRIVATE __spark_conf__ -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/__spark_conf__.zip" } size: 273513 timestamp: 1565697199131 type: ARCHIVE visibility: PRIVATE fastjson-1.2.7.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/fastjson-1.2.7.jar" } size: 417221 timestamp: 1565697198865 type: FILE visibility: PRIVATE hbase-protocol-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-protocol-1.2.8.jar" } size: 4366252 timestamp: 1565697198023 type: FILE visibility: PRIVATE __spark_libs__ -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/hdp/apps/2.6.5.0-292/spark2/spark2-hdp-yarn-archive.tar.gz" } size: 227600110 timestamp: 1549953820247 type: ARCHIVE visibility: PUBLIC mysql-connector-java-5.1.44-bin.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/mysql-connector-java-5.1.44-bin.jar" } size: 999635 timestamp: 1565697198445 type: FILE visibility: PRIVATE hadoop-common-2.7.3.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hadoop-common-2.7.3.jar" } size: 3479293 timestamp: 1565697197476 type: FILE visibility: PRIVATE =============================================================================== 19/08/13 19:53:20 INFO RMProxy: Connecting to ResourceManager at namenode02/10.1.38.38:8030 19/08/13 19:53:20 INFO YarnRMClient: Registering the ApplicationMaster 19/08/13 19:53:20 INFO YarnAllocator: Will request 3 executor container(s), each with 2 core(s) and 5632 MB memory (including 512 MB of overhead) 19/08/13 19:53:20 INFO YarnSchedulerBackend$YarnSchedulerEndpoint: ApplicationMaster registered as NettyRpcEndpointRef(spark://YarnAM@datanode02:20410) 19/08/13 19:53:20 INFO YarnAllocator: Submitted 3 unlocalized container requests. 19/08/13 19:53:20 INFO ApplicationMaster: Started progress reporter thread with (heartbeat : 3000, initial allocation : 200) intervals 19/08/13 19:53:20 INFO AMRMClientImpl: Received new token for : datanode03:45454 19/08/13 19:53:21 INFO YarnAllocator: Launching container container_e20_1565610088533_0087_01_000002 on host datanode03 for executor with ID 1 19/08/13 19:53:21 INFO YarnAllocator: Received 1 containers from YARN, launching executors on 1 of them. 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: yarn.client.max-cached-nodemanagers-proxies : 0 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: Opening proxy : datanode03:45454 19/08/13 19:53:21 INFO AMRMClientImpl: Received new token for : datanode01:45454 19/08/13 19:53:21 INFO YarnAllocator: Launching container container_e20_1565610088533_0087_01_000003 on host datanode01 for executor with ID 2 19/08/13 19:53:21 INFO YarnAllocator: Received 1 containers from YARN, launching executors on 1 of them. 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: yarn.client.max-cached-nodemanagers-proxies : 0 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: Opening proxy : datanode01:45454 19/08/13 19:53:22 INFO AMRMClientImpl: Received new token for : datanode02:45454 19/08/13 19:53:22 INFO YarnAllocator: Launching container container_e20_1565610088533_0087_01_000004 on host datanode02 for executor with ID 3 19/08/13 19:53:22 INFO YarnAllocator: Received 1 containers from YARN, launching executors on 1 of them. 19/08/13 19:53:22 INFO ContainerManagementProtocolProxy: yarn.client.max-cached-nodemanagers-proxies : 0 19/08/13 19:53:22 INFO ContainerManagementProtocolProxy: Opening proxy : datanode02:45454 19/08/13 19:53:24 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.1.198.144:41122) with ID 1 19/08/13 19:53:25 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.1.229.163:24656) with ID 3 19/08/13 19:53:25 INFO BlockManagerMasterEndpoint: Registering block manager datanode03:3328 with 2.5 GB RAM, BlockManagerId(1, datanode03, 3328, None) 19/08/13 19:53:25 INFO BlockManagerMasterEndpoint: Registering block manager datanode02:28863 with 2.5 GB RAM, BlockManagerId(3, datanode02, 28863, None) 19/08/13 19:53:25 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.1.229.158:64276) with ID 2 19/08/13 19:53:25 INFO YarnClusterSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.8 19/08/13 19:53:25 INFO YarnClusterScheduler: YarnClusterScheduler.postStartHook done 19/08/13 19:53:25 INFO BlockManagerMasterEndpoint: Registering block manager datanode01:20487 with 2.5 GB RAM, BlockManagerId(2, datanode01, 20487, None) 19/08/13 19:53:25 WARN SparkContext: Using an existing SparkContext; some configuration may not take effect. 19/08/13 19:53:25 INFO SparkContext: Starting job: start at VoiceApplication2.java:128 19/08/13 19:53:25 INFO DAGScheduler: Registering RDD 1 (start at VoiceApplication2.java:128) 19/08/13 19:53:25 INFO DAGScheduler: Got job 0 (start at VoiceApplication2.java:128) with 20 output partitions 19/08/13 19:53:25 INFO DAGScheduler: Final stage: ResultStage 1 (start at VoiceApplication2.java:128) 19/08/13 19:53:25 INFO DAGScheduler: Parents of final stage: List(ShuffleMapStage 0) 19/08/13 19:53:25 INFO DAGScheduler: Missing parents: List(ShuffleMapStage 0) 19/08/13 19:53:26 INFO DAGScheduler: Submitting ShuffleMapStage 0 (MapPartitionsRDD[1] at start at VoiceApplication2.java:128), which has no missing parents 19/08/13 19:53:26 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 3.1 KB, free 366.3 MB) 19/08/13 19:53:26 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 2011.0 B, free 366.3 MB) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode02:31984 (size: 2011.0 B, free: 366.3 MB) 19/08/13 19:53:26 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1039 19/08/13 19:53:26 INFO DAGScheduler: Submitting 50 missing tasks from ShuffleMapStage 0 (MapPartitionsRDD[1] at start at VoiceApplication2.java:128) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)) 19/08/13 19:53:26 INFO YarnClusterScheduler: Adding task set 0.0 with 50 tasks 19/08/13 19:53:26 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, datanode02, executor 3, partition 0, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, datanode03, executor 1, partition 1, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 2.0 in stage 0.0 (TID 2, datanode01, executor 2, partition 2, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 3.0 in stage 0.0 (TID 3, datanode02, executor 3, partition 3, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 4.0 in stage 0.0 (TID 4, datanode03, executor 1, partition 4, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 5.0 in stage 0.0 (TID 5, datanode01, executor 2, partition 5, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode02:28863 (size: 2011.0 B, free: 2.5 GB) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode03:3328 (size: 2011.0 B, free: 2.5 GB) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode01:20487 (size: 2011.0 B, free: 2.5 GB) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 6.0 in stage 0.0 (TID 6, datanode02, executor 3, partition 6, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 7.0 in stage 0.0 (TID 7, datanode02, executor 3, partition 7, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 3.0 in stage 0.0 (TID 3) in 693 ms on datanode02 (executor 3) (1/50) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 712 ms on datanode02 (executor 3) (2/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 8.0 in stage 0.0 (TID 8, datanode02, executor 3, partition 8, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 7.0 in stage 0.0 (TID 7) in 21 ms on datanode02 (executor 3) (3/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 9.0 in stage 0.0 (TID 9, datanode02, executor 3, partition 9, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 6.0 in stage 0.0 (TID 6) in 26 ms on datanode02 (executor 3) (4/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 10.0 in stage 0.0 (TID 10, datanode02, executor 3, partition 10, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 8.0 in stage 0.0 (TID 8) in 23 ms on datanode02 (executor 3) (5/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 11.0 in stage 0.0 (TID 11, datanode02, executor 3, partition 11, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 9.0 in stage 0.0 (TID 9) in 25 ms on datanode02 (executor 3) (6/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 12.0 in stage 0.0 (TID 12, datanode02, executor 3, partition 12, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 10.0 in stage 0.0 (TID 10) in 18 ms on datanode02 (executor 3) (7/50) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 11.0 in stage 0.0 (TID 11) in 14 ms on datanode02 (executor 3) (8/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 13.0 in stage 0.0 (TID 13, datanode02, executor 3, partition 13, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 14.0 in stage 0.0 (TID 14, datanode02, executor 3, partition 14, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 12.0 in stage 0.0 (TID 12) in 16 ms on datanode02 (executor 3) (9/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 15.0 in stage 0.0 (TID 15, datanode02, executor 3, partition 15, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 13.0 in stage 0.0 (TID 13) in 22 ms on datanode02 (executor 3) (10/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 16.0 in stage 0.0 (TID 16, datanode02, executor 3, partition 16, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 14.0 in stage 0.0 (TID 14) in 16 ms on datanode02 (executor 3) (11/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 17.0 in stage 0.0 (TID 17, datanode02, executor 3, partition 17, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 15.0 in stage 0.0 (TID 15) in 13 ms on datanode02 (executor 3) (12/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 18.0 in stage 0.0 (TID 18, datanode01, executor 2, partition 18, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 19.0 in stage 0.0 (TID 19, datanode01, executor 2, partition 19, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 5.0 in stage 0.0 (TID 5) in 787 ms on datanode01 (executor 2) (13/50) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 2.0 in stage 0.0 (TID 2) in 789 ms on datanode01 (executor 2) (14/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 20.0 in stage 0.0 (TID 20, datanode03, executor 1, partition 20, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 21.0 in stage 0.0 (TID 21, datanode03, executor 1, partition 21, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 4.0 in stage 0.0 (TID 4) in 905 ms on datanode03 (executor 1) (15/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 907 ms on datanode03 (executor 1) (16/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 22.0 in stage 0.0 (TID 22, datanode02, executor 3, partition 22, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 23.0 in stage 0.0 (TID 23, datanode02, executor 3, partition 23, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 24.0 in stage 0.0 (TID 24, datanode01, executor 2, partition 24, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 18.0 in stage 0.0 (TID 18) in 124 ms on datanode01 (executor 2) (17/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 16.0 in stage 0.0 (TID 16) in 134 ms on datanode02 (executor 3) (18/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 25.0 in stage 0.0 (TID 25, datanode01, executor 2, partition 25, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 26.0 in stage 0.0 (TID 26, datanode03, executor 1, partition 26, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 17.0 in stage 0.0 (TID 17) in 134 ms on datanode02 (executor 3) (19/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 20.0 in stage 0.0 (TID 20) in 122 ms on datanode03 (executor 1) (20/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 27.0 in stage 0.0 (TID 27, datanode03, executor 1, partition 27, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 19.0 in stage 0.0 (TID 19) in 127 ms on datanode01 (executor 2) (21/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 21.0 in stage 0.0 (TID 21) in 123 ms on datanode03 (executor 1) (22/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 28.0 in stage 0.0 (TID 28, datanode02, executor 3, partition 28, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 29.0 in stage 0.0 (TID 29, datanode02, executor 3, partition 29, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 22.0 in stage 0.0 (TID 22) in 19 ms on datanode02 (executor 3) (23/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 23.0 in stage 0.0 (TID 23) in 18 ms on datanode02 (executor 3) (24/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 30.0 in stage 0.0 (TID 30, datanode01, executor 2, partition 30, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 31.0 in stage 0.0 (TID 31, datanode01, executor 2, partition 31, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 25.0 in stage 0.0 (TID 25) in 27 ms on datanode01 (executor 2) (25/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 24.0 in stage 0.0 (TID 24) in 29 ms on datanode01 (executor 2) (26/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 32.0 in stage 0.0 (TID 32, datanode02, executor 3, partition 32, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 29.0 in stage 0.0 (TID 29) in 16 ms on datanode02 (executor 3) (27/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 33.0 in stage 0.0 (TID 33, datanode03, executor 1, partition 33, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 26.0 in stage 0.0 (TID 26) in 30 ms on datanode03 (executor 1) (28/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 34.0 in stage 0.0 (TID 34, datanode02, executor 3, partition 34, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 28.0 in stage 0.0 (TID 28) in 21 ms on datanode02 (executor 3) (29/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 35.0 in stage 0.0 (TID 35, datanode03, executor 1, partition 35, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 27.0 in stage 0.0 (TID 27) in 32 ms on datanode03 (executor 1) (30/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 36.0 in stage 0.0 (TID 36, datanode02, executor 3, partition 36, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 32.0 in stage 0.0 (TID 32) in 11 ms on datanode02 (executor 3) (31/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 37.0 in stage 0.0 (TID 37, datanode01, executor 2, partition 37, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 30.0 in stage 0.0 (TID 30) in 18 ms on datanode01 (executor 2) (32/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 38.0 in stage 0.0 (TID 38, datanode01, executor 2, partition 38, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 31.0 in stage 0.0 (TID 31) in 20 ms on datanode01 (executor 2) (33/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 39.0 in stage 0.0 (TID 39, datanode03, executor 1, partition 39, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 33.0 in stage 0.0 (TID 33) in 17 ms on datanode03 (executor 1) (34/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 34.0 in stage 0.0 (TID 34) in 17 ms on datanode02 (executor 3) (35/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 40.0 in stage 0.0 (TID 40, datanode02, executor 3, partition 40, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 41.0 in stage 0.0 (TID 41, datanode03, executor 1, partition 41, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 35.0 in stage 0.0 (TID 35) in 17 ms on datanode03 (executor 1) (36/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 42.0 in stage 0.0 (TID 42, datanode02, executor 3, partition 42, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 36.0 in stage 0.0 (TID 36) in 16 ms on datanode02 (executor 3) (37/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 43.0 in stage 0.0 (TID 43, datanode01, executor 2, partition 43, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 37.0 in stage 0.0 (TID 37) in 16 ms on datanode01 (executor 2) (38/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 44.0 in stage 0.0 (TID 44, datanode02, executor 3, partition 44, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 45.0 in stage 0.0 (TID 45, datanode02, executor 3, partition 45, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 40.0 in stage 0.0 (TID 40) in 14 ms on datanode02 (executor 3) (39/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 42.0 in stage 0.0 (TID 42) in 11 ms on datanode02 (executor 3) (40/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 46.0 in stage 0.0 (TID 46, datanode03, executor 1, partition 46, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 39.0 in stage 0.0 (TID 39) in 20 ms on datanode03 (executor 1) (41/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 47.0 in stage 0.0 (TID 47, datanode03, executor 1, partition 47, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 41.0 in stage 0.0 (TID 41) in 20 ms on datanode03 (executor 1) (42/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 48.0 in stage 0.0 (TID 48, datanode01, executor 2, partition 48, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 49.0 in stage 0.0 (TID 49, datanode01, executor 2, partition 49, PROCESS_LOCAL, 7888 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 43.0 in stage 0.0 (TID 43) in 18 ms on datanode01 (executor 2) (43/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 38.0 in stage 0.0 (TID 38) in 31 ms on datanode01 (executor 2) (44/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 45.0 in stage 0.0 (TID 45) in 11 ms on datanode02 (executor 3) (45/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 44.0 in stage 0.0 (TID 44) in 16 ms on datanode02 (executor 3) (46/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 46.0 in stage 0.0 (TID 46) in 18 ms on datanode03 (executor 1) (47/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 48.0 in stage 0.0 (TID 48) in 15 ms on datanode01 (executor 2) (48/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 47.0 in stage 0.0 (TID 47) in 15 ms on datanode03 (executor 1) (49/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 49.0 in stage 0.0 (TID 49) in 25 ms on datanode01 (executor 2) (50/50) 19/08/13 19:53:27 INFO YarnClusterScheduler: Removed TaskSet 0.0, whose tasks have all completed, from pool 19/08/13 19:53:27 INFO DAGScheduler: ShuffleMapStage 0 (start at VoiceApplication2.java:128) finished in 1.174 s 19/08/13 19:53:27 INFO DAGScheduler: looking for newly runnable stages 19/08/13 19:53:27 INFO DAGScheduler: running: Set() 19/08/13 19:53:27 INFO DAGScheduler: waiting: Set(ResultStage 1) 19/08/13 19:53:27 INFO DAGScheduler: failed: Set() 19/08/13 19:53:27 INFO DAGScheduler: Submitting ResultStage 1 (ShuffledRDD[2] at start at VoiceApplication2.java:128), which has no missing parents 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 3.2 KB, free 366.3 MB) 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 1979.0 B, free 366.3 MB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode02:31984 (size: 1979.0 B, free: 366.3 MB) 19/08/13 19:53:27 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1039 19/08/13 19:53:27 INFO DAGScheduler: Submitting 20 missing tasks from ResultStage 1 (ShuffledRDD[2] at start at VoiceApplication2.java:128) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)) 19/08/13 19:53:27 INFO YarnClusterScheduler: Adding task set 1.0 with 20 tasks 19/08/13 19:53:27 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 50, datanode03, executor 1, partition 0, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 1.0 in stage 1.0 (TID 51, datanode02, executor 3, partition 1, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 3.0 in stage 1.0 (TID 52, datanode01, executor 2, partition 3, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 2.0 in stage 1.0 (TID 53, datanode03, executor 1, partition 2, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 4.0 in stage 1.0 (TID 54, datanode02, executor 3, partition 4, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 5.0 in stage 1.0 (TID 55, datanode01, executor 2, partition 5, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode02:28863 (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode01:20487 (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode03:3328 (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:53:27 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to 10.1.229.163:24656 19/08/13 19:53:27 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to 10.1.198.144:41122 19/08/13 19:53:27 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to 10.1.229.158:64276 19/08/13 19:53:27 INFO TaskSetManager: Starting task 7.0 in stage 1.0 (TID 56, datanode03, executor 1, partition 7, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 2.0 in stage 1.0 (TID 53) in 192 ms on datanode03 (executor 1) (1/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 8.0 in stage 1.0 (TID 57, datanode03, executor 1, partition 8, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 7.0 in stage 1.0 (TID 56) in 25 ms on datanode03 (executor 1) (2/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 6.0 in stage 1.0 (TID 58, datanode02, executor 3, partition 6, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 1.0 in stage 1.0 (TID 51) in 220 ms on datanode02 (executor 3) (3/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 14.0 in stage 1.0 (TID 59, datanode03, executor 1, partition 14, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 8.0 in stage 1.0 (TID 57) in 17 ms on datanode03 (executor 1) (4/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 16.0 in stage 1.0 (TID 60, datanode03, executor 1, partition 16, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 14.0 in stage 1.0 (TID 59) in 15 ms on datanode03 (executor 1) (5/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 16.0 in stage 1.0 (TID 60) in 21 ms on datanode03 (executor 1) (6/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 9.0 in stage 1.0 (TID 61, datanode02, executor 3, partition 9, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 4.0 in stage 1.0 (TID 54) in 269 ms on datanode02 (executor 3) (7/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 50) in 339 ms on datanode03 (executor 1) (8/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 10.0 in stage 1.0 (TID 62, datanode02, executor 3, partition 10, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 6.0 in stage 1.0 (TID 58) in 56 ms on datanode02 (executor 3) (9/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 11.0 in stage 1.0 (TID 63, datanode01, executor 2, partition 11, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 5.0 in stage 1.0 (TID 55) in 284 ms on datanode01 (executor 2) (10/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 12.0 in stage 1.0 (TID 64, datanode01, executor 2, partition 12, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 3.0 in stage 1.0 (TID 52) in 287 ms on datanode01 (executor 2) (11/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 13.0 in stage 1.0 (TID 65, datanode02, executor 3, partition 13, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 15.0 in stage 1.0 (TID 66, datanode02, executor 3, partition 15, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 10.0 in stage 1.0 (TID 62) in 25 ms on datanode02 (executor 3) (12/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 9.0 in stage 1.0 (TID 61) in 29 ms on datanode02 (executor 3) (13/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 17.0 in stage 1.0 (TID 67, datanode02, executor 3, partition 17, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 15.0 in stage 1.0 (TID 66) in 13 ms on datanode02 (executor 3) (14/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 13.0 in stage 1.0 (TID 65) in 16 ms on datanode02 (executor 3) (15/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 18.0 in stage 1.0 (TID 68, datanode02, executor 3, partition 18, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 19.0 in stage 1.0 (TID 69, datanode01, executor 2, partition 19, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 11.0 in stage 1.0 (TID 63) in 30 ms on datanode01 (executor 2) (16/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 12.0 in stage 1.0 (TID 64) in 30 ms on datanode01 (executor 2) (17/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 17.0 in stage 1.0 (TID 67) in 17 ms on datanode02 (executor 3) (18/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 19.0 in stage 1.0 (TID 69) in 13 ms on datanode01 (executor 2) (19/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 18.0 in stage 1.0 (TID 68) in 20 ms on datanode02 (executor 3) (20/20) 19/08/13 19:53:27 INFO YarnClusterScheduler: Removed TaskSet 1.0, whose tasks have all completed, from pool 19/08/13 19:53:27 INFO DAGScheduler: ResultStage 1 (start at VoiceApplication2.java:128) finished in 0.406 s 19/08/13 19:53:27 INFO DAGScheduler: Job 0 finished: start at VoiceApplication2.java:128, took 1.850883 s 19/08/13 19:53:27 INFO ReceiverTracker: Starting 1 receivers 19/08/13 19:53:27 INFO ReceiverTracker: ReceiverTracker started 19/08/13 19:53:27 INFO KafkaInputDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO KafkaInputDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO KafkaInputDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Initialized and validated org.apache.spark.streaming.kafka.KafkaInputDStream@5fd3dc81 19/08/13 19:53:27 INFO ForEachDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO ForEachDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO ForEachDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Initialized and validated org.apache.spark.streaming.dstream.ForEachDStream@4044ec97 19/08/13 19:53:27 INFO KafkaInputDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO KafkaInputDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO KafkaInputDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Initialized and validated org.apache.spark.streaming.kafka.KafkaInputDStream@5fd3dc81 19/08/13 19:53:27 INFO MappedDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO MappedDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO MappedDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Initialized and validated org.apache.spark.streaming.dstream.MappedDStream@5dd4b960 19/08/13 19:53:27 INFO ForEachDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO ForEachDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO ForEachDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Initialized and validated org.apache.spark.streaming.dstream.ForEachDStream@132d0c3c 19/08/13 19:53:27 INFO KafkaInputDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO KafkaInputDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO KafkaInputDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Initialized and validated org.apache.spark.streaming.kafka.KafkaInputDStream@5fd3dc81 19/08/13 19:53:27 INFO MappedDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO MappedDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO MappedDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Initialized and validated org.apache.spark.streaming.dstream.MappedDStream@5dd4b960 19/08/13 19:53:27 INFO ForEachDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO ForEachDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO ForEachDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Initialized and validated org.apache.spark.streaming.dstream.ForEachDStream@525bed0c 19/08/13 19:53:27 INFO DAGScheduler: Got job 1 (start at VoiceApplication2.java:128) with 1 output partitions 19/08/13 19:53:27 INFO DAGScheduler: Final stage: ResultStage 2 (start at VoiceApplication2.java:128) 19/08/13 19:53:27 INFO DAGScheduler: Parents of final stage: List() 19/08/13 19:53:27 INFO DAGScheduler: Missing parents: List() 19/08/13 19:53:27 INFO DAGScheduler: Submitting ResultStage 2 (Receiver 0 ParallelCollectionRDD[3] at makeRDD at ReceiverTracker.scala:613), which has no missing parents 19/08/13 19:53:27 INFO ReceiverTracker: Receiver 0 started 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 133.5 KB, free 366.2 MB) 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 36.3 KB, free 366.1 MB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on datanode02:31984 (size: 36.3 KB, free: 366.3 MB) 19/08/13 19:53:27 INFO SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:1039 19/08/13 19:53:27 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 2 (Receiver 0 ParallelCollectionRDD[3] at makeRDD at ReceiverTracker.scala:613) (first 15 tasks are for partitions Vector(0)) 19/08/13 19:53:27 INFO YarnClusterScheduler: Adding task set 2.0 with 1 tasks 19/08/13 19:53:27 INFO TaskSetManager: Starting task 0.0 in stage 2.0 (TID 70, datanode01, executor 2, partition 0, PROCESS_LOCAL, 8757 bytes) 19/08/13 19:53:27 INFO RecurringTimer: Started timer for JobGenerator at time 1565697240000 19/08/13 19:53:27 INFO JobGenerator: Started JobGenerator at 1565697240000 ms 19/08/13 19:53:27 INFO JobScheduler: Started JobScheduler 19/08/13 19:53:27 INFO StreamingContext: StreamingContext started 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on datanode01:20487 (size: 36.3 KB, free: 2.5 GB) 19/08/13 19:53:27 INFO ReceiverTracker: Registered receiver for stream 0 from 10.1.229.158:64276 19/08/13 19:54:00 INFO JobScheduler: Added jobs for time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Starting job streaming job 1565697240000 ms.0 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Starting job streaming job 1565697240000 ms.1 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Finished job streaming job 1565697240000 ms.1 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Finished job streaming job 1565697240000 ms.0 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Starting job streaming job 1565697240000 ms.2 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO SharedState: loading hive config file: file:/data01/hadoop/yarn/local/usercache/hdfs/filecache/85431/__spark_conf__.zip/__hadoop_conf__/hive-site.xml 19/08/13 19:54:00 INFO SharedState: Setting hive.metastore.warehouse.dir ('null') to the value of spark.sql.warehouse.dir ('hdfs://CID-042fb939-95b4-4b74-91b8-9f94b999bdf7/apps/hive/warehouse'). 19/08/13 19:54:00 INFO SharedState: Warehouse path is 'hdfs://CID-042fb939-95b4-4b74-91b8-9f94b999bdf7/apps/hive/warehouse'. 19/08/13 19:54:00 INFO StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode02:31984 in memory (size: 1979.0 B, free: 366.3 MB) 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode02:28863 in memory (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode01:20487 in memory (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode03:3328 in memory (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:54:02 INFO CodeGenerator: Code generated in 175.416957 ms 19/08/13 19:54:02 INFO JobScheduler: Finished job streaming job 1565697240000 ms.2 from job set of time 1565697240000 ms 19/08/13 19:54:02 ERROR JobScheduler: Error running job streaming job 1565697240000 ms.2 org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; at org.apache.spark.sql.catalyst.catalog.ExternalCatalog.requireDbExists(ExternalCatalog.scala:40) at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.tableExists(InMemoryCatalog.scala:331) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.tableExists(SessionCatalog.scala:388) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:398) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:393) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:122) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:115) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 19/08/13 19:54:02 ERROR ApplicationMaster: User class threw exception: org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; at org.apache.spark.sql.catalyst.catalog.ExternalCatalog.requireDbExists(ExternalCatalog.scala:40) at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.tableExists(InMemoryCatalog.scala:331) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.tableExists(SessionCatalog.scala:388) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:398) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:393) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:122) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:115) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 19/08/13 19:54:02 INFO ApplicationMaster: Final app status: FAILED, exitCode: 15, (reason: User class threw exception: org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; at org.apache.spark.sql.catalyst.catalog.ExternalCatalog.requireDbExists(ExternalCatalog.scala:40) at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.tableExists(InMemoryCatalog.scala:331) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.tableExists(SessionCatalog.scala:388) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:398) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:393) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:122) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:115) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) ) 19/08/13 19:54:02 INFO StreamingContext: Invoking stop(stopGracefully=true) from shutdown hook 19/08/13 19:54:02 INFO ReceiverTracker: Sent stop signal to all 1 receivers 19/08/13 19:54:02 ERROR ReceiverTracker: Deregistered receiver for stream 0: Stopped by driver 19/08/13 19:54:02 INFO TaskSetManager: Finished task 0.0 in stage 2.0 (TID 70) in 35055 ms on datanode01 (executor 2) (1/1) 19/08/13 19:54:02 INFO YarnClusterScheduler: Removed TaskSet 2.0, whose tasks have all completed, from pool 19/08/13 19:54:02 INFO DAGScheduler: ResultStage 2 (start at VoiceApplication2.java:128) finished in 35.086 s 19/08/13 19:54:02 INFO ReceiverTracker: Waiting for receiver job to terminate gracefully 19/08/13 19:54:02 INFO ReceiverTracker: Waited for receiver job to terminate gracefully 19/08/13 19:54:02 INFO ReceiverTracker: All of the receivers have deregistered successfully 19/08/13 19:54:02 INFO ReceiverTracker: ReceiverTracker stopped 19/08/13 19:54:02 INFO JobGenerator: Stopping JobGenerator gracefully 19/08/13 19:54:02 INFO JobGenerator: Waiting for all received blocks to be consumed for job generation 19/08/13 19:54:02 INFO JobGenerator: Waited for all received blocks to be consumed for job generation 19/08/13 19:54:12 WARN ShutdownHookManager: ShutdownHook '$anon$2' timeout, java.util.concurrent.TimeoutException java.util.concurrent.TimeoutException at java.util.concurrent.FutureTask.get(FutureTask.java:205) at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:67) 19/08/13 19:54:12 ERROR Utils: Uncaught exception in thread pool-1-thread-1 java.lang.InterruptedException at java.lang.Object.wait(Native Method) at java.lang.Thread.join(Thread.java:1252) at java.lang.Thread.join(Thread.java:1326) at org.apache.spark.streaming.util.RecurringTimer.stop(RecurringTimer.scala:86) at org.apache.spark.streaming.scheduler.JobGenerator.stop(JobGenerator.scala:137) at org.apache.spark.streaming.scheduler.JobScheduler.stop(JobScheduler.scala:123) at org.apache.spark.streaming.StreamingContext$$anonfun$stop$1.apply$mcV$sp(StreamingContext.scala:681) at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1357) at org.apache.spark.streaming.StreamingContext.stop(StreamingContext.scala:680) at org.apache.spark.streaming.StreamingContext.org$apache$spark$streaming$StreamingContext$$stopOnShutdown(StreamingContext.scala:714) at org.apache.spark.streaming.StreamingContext$$anonfun$start$1.apply$mcV$sp(StreamingContext.scala:599) at org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:216) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188) at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1988) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply$mcV$sp(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:178) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) ```

Spark Streaming读取kafka数据解析后写入ES,处理效率太低太慢

环境: * Kafka 0.10+(不影响) * Spark 2.4.0 + Yarn * ES 6.5.4 问题: 从Kafka读取获取消息,然后进行简单过滤清晰操作后,将消息写入到ES中,发现处理效率很低, Kafka有三个partition maxRatePerPartition=2000 batchInterval=1s //这种情况下刚刚好,就是处理延迟在1s左右浮动,不会出现任务堆积的情况 //此时处理配置 //num_executor=3 //executor_core=8 然后将读数据的maxRatePerPartition增大到10000乃至20000,发现处理速度始终没有变化 期间将num_executor设置为8,executor_core设置为8,还是没啥用 还增加了设置: ```java conf.set("spark.streaming,concurrentJobs","20") conf.set("spark.local.wait","100ms") ``` 还是没啥变化,大佬们,到底要咋调啊

Spark textFile 不读取文件第一行

![图片说明](https://img-ask.csdn.net/upload/201705/07/1494152949_457053.png) 这样读文件后,第一行存在,如果不读取第一行,该如何写?

spark读取hadoop数据的一些问题

问题一、spark监控hdfs的时候hdfs新增文件在spark程序中能否得到这个新增文件的路径 ? 问题二、spark监控hdfs的目录时能否监控顶级路径,不是确定到某一个文件夹下的文件,而是监控到多个hdfs文件夹下的文件?

spark2.3.3跨集群读取hive2.4.2

问题描述: 旧集群为spark2.1.0,hive2.4.2。新集群为cdh的spark2.3.3+hive3.0.0。hdfs不在一起。我尝试用spark2.3.3去读旧集群的hive2.4.2。在spark-submit的时候--files添加了 hive-site.xml。 里面定义了 ``` spark.sql.warehouse.dir=hdfs://master:9000/apps/hive/warehouse hive.metastore.uris=thrift://master:9083 ``` 这里的master为旧集群的地址。 当我将依赖包打进要执行的jar的时候执行抛出如下异常: ``` class org.apache.hadoop.hdfs.web.HftpFileSystem cannot access its superinterface org.apache.hadoop.hdfs.web.TokenAspect$TokenManagementDelegator ``` 而当我仅执行original的jar包, 依赖包选择spark-submit --jars的方式引入时,则抛出这个异常 ``` org.apache.thrift.TApplicationException: Invalid method name: 'get_all_functions' ```

java spark获取多个gz文件时怎样提高速度

每个gz文件大致有1-3G大小,解压后有8G-10G左右。spark读取数据为每个文件平均20-30秒。 但是现在需求是1分钟读取10个gz文件内容合并成一个txt样式的文件怎样完成。或者10分钟读取100个gz文件合并成10个文件怎么完成。 问了一些大神说要调试base值,观看每个文件的瓶颈。但是我查看资料是把RDD转成hbase ,至于这个base值该怎么调试呢

spark问题,怎么从hdfs获取目录下的文件名

如题,我想获取hdfs下的文件名怎么获取。用java Spark

spark通过jdbc读取hive的表报错,我是在zeppelin里运行的

## 代码: import org.apache.spark.sql.hive.HiveContext val pro = new java.util.Properties() pro.setProperty("user", "****") pro.setProperty("password", "*****") val driverName = "org.apache.hadoop.hive.jdbc.HiveDriver"; Class.forName(driverName); val hiveContext = new HiveContext(sc) val hivetable = hiveContext.read.jdbc("jdbc:hive://*****/default", "*****", pro); ## 错误: import org.apache.spark.sql.hive.HiveContext pro: java.util.Properties = {} res15: Object = null res16: Object = null driverName: String = org.apache.hadoop.hive.jdbc.HiveDriver res17: Class[_] = class org.apache.hadoop.hive.jdbc.HiveDriver warning: there was one deprecation warning; re-run with -deprecation for details hiveContext: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.HiveContext@14f9cc13 java.sql.SQLException: Method not supported at org.apache.hadoop.hive.jdbc.HiveResultSetMetaData.isSigned(Unknown Source) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.getSchema(JdbcUtils.scala:232) at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$.resolveTable(JDBCRDD.scala:64) at org.apache.spark.sql.execution.datasources.jdbc.JDBCRelation.<init>(JDBCRelation.scala:113) at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:45) at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:330) at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:152) at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:125) at org.apache.spark.sql.DataFrameReader.jdbc(DataFrameReader.scala:166) ... 46 elided

从hdfs中读取数据并用spark操作时出现问题

我从集群环境的hdfs中读取数据,然后处理数据时出现问题,在循环里面添加的对象在循环外就没有了,初学spark和scala,请大佬指点. object Test { case class Passenger(name: String, txn_date: String, txn_time: String, txn_station: String, ticket_type: String, trans_code: String, sub: String, txn_station_id: String) def main(args: Array[String]): Unit = { val inputFile = "hdfs://Master:9000/user/hadoop/input/tmp.txt" val conf = new SparkConf().setAppName("WordCount") val sc = new SparkContext(conf) val text = sc.textFile(inputFile) //25 lines like "000025643 " "20141201" "060912" "0328" "88" "22" "" from hdfs val Passengers = new ArrayBuffer[Passenger]() for (line <- text) { val points = for (i <- 0 until (line.length) if (line.charAt(i) == '"')) yield { i } val items = for (i <- 0 until (points.length) if (i % 2 == 0)) yield { if (!line.slice(points(i).toString.toInt + 1, points(i + 1).toString.toInt).equals("")) { line.slice(points(i).toString.toInt + 1, points(i + 1).toString.toInt).trim } else "null" } val tmp:Passenger=new Passenger(items(0).trim, items(1), items(2), items(3), items(4), items(5), "null", items(6)) println(tmp) //it is Passenger(000026853,20141201,060921,0325,88,21,null,null) [no problem] Passengers.append(tmp) println(Passengers.length) //1,2,3.....25 [no problem] } println("----------------------------" + Passengers.length) //it is 0!!!! why? val passengersArray = Passengers.toArray val customersRDD = sc.parallelize(passengersArray) val customersDF = customersRDD.toDF() } } ``` ```

软件测试入门、SQL、性能测试、测试管理工具

软件测试2小时入门,让您快速了解软件测试基本知识,有系统的了解; SQL一小时,让您快速理解和掌握SQL基本语法 jmeter性能测试 ,让您快速了解主流来源性能测试工具jmeter 测试管理工具-禅道,让您快速学会禅道的使用,学会测试项目、用例、缺陷的管理、

计算机组成原理实验教程

西北工业大学计算机组成原理实验课唐都仪器实验帮助,同实验指导书。分为运算器,存储器,控制器,模型计算机,输入输出系统5个章节

Java 最常见的 200+ 面试题:面试必备

这份面试清单是从我 2015 年做了 TeamLeader 之后开始收集的,一方面是给公司招聘用,另一方面是想用它来挖掘在 Java 技术栈中,还有那些知识点是我不知道的,我想找到这些技术盲点,然后修复它,以此来提高自己的技术水平。虽然我是从 2009 年就开始参加编程工作了,但我依旧觉得自己现在要学的东西很多,并且学习这些知识,让我很有成就感和满足感,那所以何乐而不为呢? 说回面试的事,这份面试...

winfrom中嵌套html,跟html的交互

winfrom中嵌套html,跟html的交互,源码就在里面一看就懂,很简单

玩转Python-Python3基础入门

总课时80+,提供源码和相关资料 本课程从Python零基础到纯Python项目实战。内容详细,案例丰富,覆盖了Python知识的方方面面,学完后不仅对Python知识有个系统化的了解,让你从Python小白变编程大牛! 课程包含: 1.python安装 2.变量、数据类型和运算符 3.选择结构 4.循环结构 5.函数和模块 6.文件读写 7.了解面向对象 8.异常处理

程序员的兼职技能课

获取讲师答疑方式: 在付费视频第一节(触摸命令_ALL)片头有二维码及加群流程介绍 限时福利 原价99元,今日仅需39元!购课添加小助手(微信号:itxy41)按提示还可领取价值800元的编程大礼包! 讲师介绍: 苏奕嘉&nbsp;前阿里UC项目工程师 脚本开发平台官方认证满级(六级)开发者。 我将如何教会你通过【定制脚本】赚到你人生的第一桶金? 零基础程序定制脚本开发课程,是完全针对零脚本开发经验的小白而设计,课程内容共分为3大阶段: ①前期将带你掌握Q开发语言和界面交互开发能力; ②中期通过实战来制作有具体需求的定制脚本; ③后期将解锁脚本的更高阶玩法,打通任督二脉; ④应用定制脚本合法赚取额外收入的完整经验分享,带你通过程序定制脚本开发这项副业,赚取到你的第一桶金!

HoloLens2开发入门教程

本课程为HoloLens2开发入门教程,讲解部署开发环境,安装VS2019,Unity版本,Windows SDK,创建Unity项目,讲解如何使用MRTK,编辑器模拟手势交互,打包VS工程并编译部署应用到HoloLens上等。

基于VHDL的16位ALU简易设计

基于VHDL的16位ALU简易设计,可完成基本的加减、带进位加减、或、与等运算。

MFC一站式终极全套课程包

该套餐共包含从C小白到C++到MFC的全部课程,整套学下来绝对成为一名C++大牛!!!

利用Verilog实现数字秒表(基本逻辑设计分频器练习)

设置复位开关。当按下复位开关时,秒表清零并做好计时准备。在任何情况下只要按下复位开关,秒表都要无条件地进行复位操作,即使是在计时过程中也要无条件地进行清零操作。 设置启/停开关。当按下启/停开关后,将

董付国老师Python全栈学习优惠套餐

购买套餐的朋友可以关注微信公众号“Python小屋”,上传付款截图,然后领取董老师任意图书1本。

Python可以这样学(第一季:Python内功修炼)

董付国系列教材《Python程序设计基础》、《Python程序设计(第2版)》、《Python可以这样学》配套视频,讲解Python 3.5.x和3.6.x语法、内置对象用法、选择与循环以及函数设计与使用、lambda表达式用法、字符串与正则表达式应用、面向对象编程、文本文件与二进制文件操作、目录操作与系统运维、异常处理结构。

计算机操作系统 第三版.pdf

计算机操作系统 第三版 本书全面介绍了计算机系统中的一个重要软件——操作系统(OS),本书是第三版,对2001年出版的修订版的各章内容均作了较多的修改,基本上能反映当前操作系统发展的现状,但章节名称基

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

Vue.js 2.0之全家桶系列视频课程

基于新的Vue.js 2.3版本, 目前新全的Vue.js教学视频,让你少走弯路,直达技术前沿! 1. 包含Vue.js全家桶(vue.js、vue-router、axios、vuex、vue-cli、webpack、ElementUI等) 2. 采用笔记+代码案例的形式讲解,通俗易懂

微信公众平台开发入门

本套课程的设计完全是为初学者量身打造,课程内容由浅入深,课程讲解通俗易懂,代码实现简洁清晰。通过本课程的学习,学员能够入门微信公众平台开发,能够胜任企业级的订阅号、服务号、企业号的应用开发工作。 通过本课程的学习,学员能够对微信公众平台有一个清晰的、系统性的认识。例如,公众号是什么,它有什么特点,它能做什么,怎么开发公众号。 其次,通过本课程的学习,学员能够掌握微信公众平台开发的方法、技术和应用实现。例如,开发者文档怎么看,开发环境怎么搭建,基本的消息交互如何实现,常用的方法技巧有哪些,真实应用怎么开发。

150讲轻松搞定Python网络爬虫

【为什么学爬虫?】 &nbsp; &nbsp; &nbsp; &nbsp;1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到! &nbsp; &nbsp; &nbsp; &nbsp;2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。 &nbsp; 从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑

SEIR课程设计源码与相关城市数据.rar

SEIR结合学报与之前博客结合所做的一些改进,选择其中三个城市进行拟合仿真SEIR结合学报与之前博客结合所做的一些改进,选择其中三个城市进行拟合仿真SEIR结合学报与之前博客结合所做的一些改进,选择其

Python数据挖掘简易入门

&nbsp; &nbsp; &nbsp; &nbsp; 本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。

2019 AI开发者大会

2019 AI开发者大会(AI ProCon 2019)是由中国IT社区CSDN主办的AI技术与产业年度盛会。多年经验淬炼,如今蓄势待发:2019年9月6-7日,大会将有近百位中美顶尖AI专家、知名企业代表以及千余名AI开发者齐聚北京,进行技术解读和产业论证。我们不空谈口号,只谈技术,诚挚邀请AI业内人士一起共铸人工智能新篇章!

Java面试题大全(2020版)

发现网上很多Java面试题都没有答案,所以花了很长时间搜集整理出来了这套Java面试题大全,希望对大家有帮助哈~ 本套Java面试题大全,全的不能再全,哈哈~ 一、Java 基础 1. JDK 和 JRE 有什么区别? JDK:Java Development Kit 的简称,java 开发工具包,提供了 java 的开发环境和运行环境。 JRE:Java Runtime Environ...

定量遥感中文版 梁顺林著 范闻捷译

这是梁顺林的定量遥感的中文版,由范闻捷等翻译的,是电子版PDF,解决了大家看英文费时费事的问题,希望大家下载看看,一定会有帮助的

GIS程序设计教程 基于ArcGIS Engine的C#开发实例

张丰,杜震洪,刘仁义编著.GIS程序设计教程 基于ArcGIS Engine的C#开发实例.浙江大学出版社,2012.05

人工智能-计算机视觉实战之路(必备算法+深度学习+项目实战)

系列课程主要分为3大阶段:(1)首先掌握计算机视觉必备算法原理,结合Opencv进行学习与练手,通过实际视项目进行案例应用展示。(2)进军当下最火的深度学习进行视觉任务实战,掌握深度学习中必备算法原理与网络模型架构。(3)结合经典深度学习框架与实战项目进行实战,基于真实数据集展开业务分析与建模实战。整体风格通俗易懂,项目驱动学习与就业面试。 建议同学们按照下列顺序来进行学习:1.Python入门视频课程 2.Opencv计算机视觉实战(Python版) 3.深度学习框架-PyTorch实战/人工智能框架实战精讲:Keras项目 4.Python-深度学习-物体检测实战 5.后续实战课程按照自己喜好选择就可以

三个项目玩转深度学习(附1G源码)

从事大数据与人工智能开发与实践约十年,钱老师亲自见证了大数据行业的发展与人工智能的从冷到热。事实证明,计算机技术的发展,算力突破,海量数据,机器人技术等,开启了第四次工业革命的序章。深度学习图像分类一直是人工智能的经典任务,是智慧零售、安防、无人驾驶等机器视觉应用领域的核心技术之一,掌握图像分类技术是机器视觉学习的重中之重。针对现有线上学习的特点与实际需求,我们开发了人工智能案例实战系列课程。打造:以项目案例实践为驱动的课程学习方式,覆盖了智能零售,智慧交通等常见领域,通过基础学习、项目案例实践、社群答疑,三维立体的方式,打造最好的学习效果。

微信小程序开发实战之番茄时钟开发

微信小程序番茄时钟视频教程,本课程将带着各位学员开发一个小程序初级实战类项目,针对只看过官方文档而又无从下手的开发者来说,可以作为一个较好的练手项目,对于有小程序开发经验的开发者而言,可以更好加深对小程序各类组件和API 的理解,为更深层次高难度的项目做铺垫。

面试了一个 31 岁程序员,让我有所触动,30岁以上的程序员该何去何从?

最近面试了一个31岁8年经验的程序猿,让我有点感慨,大龄程序猿该何去何从。

去除异常值matlab程序

数据预处理中去除异常值的程序,matlab写成

用verilog HDL语言编写的秒表

在秒表设计中,分模块书写。用在七段数码管上显示。输入频率是1KHZ.可以显示百分秒,秒,分。如要显示小时,只需修改leds里的代码和主模块代码。改程序以通过硬件电路验证。完全正确。

[透视java——反编译、修补和逆向工程技术]源代码

源代码。

相关热词 c#分级显示数据 c# 不区分大小写替换 c#中调用就java c#正则表达式 验证小数 c# vscode 配置 c#三维数组能存多少数据 c# 新建excel c#多个文本框 c#怎么创建tcp通讯 c# mvc 电子病例
立即提问