2 u011439839 u011439839 于 2016.09.18 22:17 提问

java后台实现图像识别(数字+一维码)

java后台用图像识别,识别一维码和数字,有同时识别这两种的开源jar包吗?

1个回答

caozhy
caozhy   Ds   Rxr 2016.09.18 23:52

一维码?就是条码吧。
http://otom31.iteye.com/blog/1039746

Csdn user default icon
上传中...
上传图片
插入图片
准确详细的回答,更有利于被提问者采纳,从而获得C币。复制、灌水、广告等回答会被删除,是时候展现真正的技术了!
其他相关推荐
vc++数字图像识别技术经典案例 光盘源码
第1章 数字图像与图像处理 1 1.1 数字图像相关概念 1 1.1.1 数字图像 1 1.1.2 图像处理 2 1.1.3  图像识别 2 1.1.4 图像理解 3 1.2 图像的获取、显示与表示 3 1.2.1 图像的获取 3 1.2.2 图像显示 4 1.2.3 图像表示 4 1.3 数字图像处理系统的基本组成结构 9 第2章 相关的图像处理技术 10 2.1  图像分割技术 10 2.1.1 阈值与图像分割 10 2.1.2 梯度与图像分割 11 2.1.3 边界提取与轮廓跟踪 11 2.1.4  Hough变换 12 2.1.5 区域增长 12 2.2 图像复原 12 2.2.1 数学模型 12 2.2.2 维纳滤波(Wiener Filtering) 13 2.3 图像的纹理分析技术 13 2.3.1 空间灰度层共现矩阵 14 2.3.2  纹理能量测量 16 2.3.3 纹理的结构分析方法和纹理梯度 18 2.3.4 纹理识别示例——云类自动识别 19 2.4 图像的形态学处理技术 20 2.4.1 基本概念 21 2.4.2 开运算和闭运算 22 2.4.3 击中、击不中、变换 (HMT-Hit Miss Transform) 23 2.4.4 边界和骨架(Boundary and Skeleton) 23 第 3章 指纹识别系统(上) 24 3.1 指纹识别的历史 24 3.2 指纹识别研究的现状 24 3.3 指纹识别系统的构成  25 3.3.1 指纹的录入 26 3.3.2 指纹图像增强 28 3.3.3 指纹识别的基本原理 29 3.3.4  系统问题 30 3.3.5 系统性能评估 31 3.3.6 一套指纹识别算法库的构成 32 3.4 指纹的粗分类与匹配 89 3.5  基于Matlab的指纹识别系统 92 3.5.1 主界面程序 93 3.5.2 指纹中心计算程序 115 3.5.3 计算有效区域 117 3.5.4 二维Gabor变换 118 3.5.5 归一化扇区 119 3.5.6 读取图像 120 3.5.7  旋转角度计算 121 第4章 指纹识别系统(下) 123 4.1 指纹图像的预处理 123 4.1.1 预处理概述  123 4.1.2 指纹质量评估 124 4.1.3 指纹图像分割 129 4.1.4 指纹图像增强 134 4.1.5  指纹图像二值化 135 4.1.6 指纹图像细化 136 4.1.7 相关预处理算法代码 139 4.2 指纹特征提取  177 4.2.1 指纹特征的表述 177 4.2.2 局部细节特征提取 180 4.2.3 特征提取算法代码 186 4.3  基于点模式的细节匹配 194 4.4 指纹识别的实际应用案例 204 4.4.1 指纹门禁系统 204 4.4.2 指纹考勤系统 205 4.5 指纹处理算法库测试程序 206 4.6 本章小结 218 第5章 数字水印技术 219 5.1  基本概念 219 5.1.1 水印技术的基本要求 219 5.1.2 数字水印算法基本思路 219 5.1.3 一些关键问题 220 5.2 水印应用现状分析 220 5.2.1 现有水印算法不适应版权保护 220 5.2.2 盲检测算法 222 5.2.3  盲检测算法的公证 222 5.2.4 数字水印系统的一般组成 223 5.3 基于DCT域的数字水印方案 223 5.3.1  离散余弦变换 223 5.3.2 Torus自同构映射 224 5.3.3 人眼视觉频率响应及DCT变换系数的选取 224 5.3.4  水印算法 226 5.4 基于扩频通信的水印算法 228 5.4.1 扩频通信原理 228 5.4.2 扩频通信在数字水印中的利用 229 5.4.3 加载强度的讨论 233 5.4.4 水印加载算法的实现 237 5.5 一个基于DCT域的实例  240 5.5.1 一些算法代码 240 5.5.2 加载水印 271 5.5.3 提取水印 275 5.5.4 水印算法评价 281 5.6 本章小结 294 第6章 条形码技术 295 6.1 常用的条码编码规则 295 6.1.1  条码的一般组成 295 6.1.2 条码的种类 296 6.1.3 EAN-13码的构造 296 6.2 一个简单的条形码打印系统 298 6.3 一维条形码的识别 312 6.3.1 硬件识别系统 312 6.3.2 预处理过程 312 6.3.3  译码过程 314 6.4 一维条形码识别系统实例 315 6.4.1 DIB.H位图存取头文件 316 6.4.2  DIB.CPP位图存取源程序 317 6.4.3 BARRECOG.H条码识别头文件 322 6.4.4 BARRECOG.CPP条码识别源程序 323 6.5 二维条形码介绍 337 6.5.1 PDF417符号的结构 338 6.5.2 簇及符号字符定义 338 6.5.3 层编码 339 6.5.4 模式结构 339 6.5.5 起始符和终止符 340 6.5.6  空白区 340 6.5.7 错误监测与纠正 340 6.6 二维条形码打印程序 340 6.6.1 PDF417LIB.H二维条形码库头文件 340 6.6.2 PDF417LIBIMP.H数据定义 342 6.6.3 PDF417LIB.C函数实现文件  353 6.6.4 PDF417.C主程序 377 6.7 本章小结 378 第7章 手势识别系统 379 7.1  立体测量 379 7.1.1 立体匹配法 379 7.1.2 立体视觉的原理 379 7.1.3 用立体视觉进行距离测量  381 7.2 用一台摄像头进行距离测量 382 7.2.1 摄像头正对前方 382 7.2.2 摄像头倾斜 383 7.2.3  一台摄像头测量距离 385 7.3 假想演奏系统的构成 387 7.3.1 系统概述 387 7.3.2 肤色提取 388 7.3.3  右手位置检测 390 7.3.4 摄像机的距离测量 391 7.3.5 音阶范围与音量范围 391 7.3.6 声音的表现方法 392 7.3.7 系统整体构成 393 7.4 程序代码 393 7.5 本章小结 432 第8章 印鉴鉴定系统 433 8.1 伪印鉴的制作及人工防伪技术 433 8.1.1 常用伪造印鉴的方法及其特征 433 8.1.2 真假印鉴印文的检验 435 8.2 印鉴图像的分离 435 8.2.1 封闭凸多边形图像提取的算法提出 436 8.2.2 封闭凸多边形图像的提取方法——种子扩散浮置实体算法 436 8.3 基于矩不变量的印鉴识别 439 8.4 基于Fourier描述符的印鉴识别方法 441 8.4.1 提取字符包络线 441 8.4.2 字符包络线的Fourier描述 442 8.5 基于边缘和模板匹配的印鉴识别 443 8.6 部分算法代码 446 8.6.1 背景去除(利用颜色) 446 8.6.2 基于矩不变量的代码 450 8.7 本章小结 455 第9章 光学字符识别技术(上) 456 9.1 概述 456 9.1.1 文字识别系统的构成 456 9.1.2 文字识别技术 457 9.1.3 印刷体汉字识别 459 9.1.4 存在的问题 461 9.2  预处理技术 461 9.2.1 二值化 462 9.2.2 版面分析 463 9.2.3 倾斜度校正 464 9.2.4  版面切分 467 9.2.5 行、字分割 467 9.2.6 细化和规范化 469 9.2.7 预处理算法源代码示例 470 9.3  特征提取 537 9.3.1 概述 538 9.3.2 边缘跟踪 538 9.3.3 笔画的分类 540 9.3.4 笔画识别前的噪声处理 541 9.3.5 笔画方向码合并处理及笔画识别 542 9.3.6 笔画间特征量的定义及识别 543 9.3.7  整字匹配的距离准则 544 9.3.8 一些统计特征 545 第10章 光学字符识别技术(下) 549 10.1 分类与识别 549 10.1.1 判别器的选择 549 10.1.2 决策树的基本概念 550 10.1.3 决策树设计 552 10.1.4  节点分类器设计 555 10.1.5 多方案组合识别器 558 10.1.6 代码示例 560 10.2 后处理 623 10.3  OCR程序示例 639 10.4 本章小结 640
数字万用表(七段数码管)的图像识别(opencv实现)
最近接触图像处理,要实现数字万用表数据的自动读取。我使用opencv+VC2005环境开发,OpenCV是Intel 开源计算机视觉库,它提供了强大的图像处理函数库。Opencv的介绍在这里太不多说,可以看看百度百科了解一下:http://baike.baidu.com/view/1343775.htm。         万用表的识别过程是先提取摄像头的一帧数据,然后对这幅图像做处理: (
iOS AV Foundation 二维码扫描 02 扫码
AVFoundation支持以下一维和二维码的扫描: QR codeAztecEAN13EAN8UPC-EPDF417Code 93Code 39Code 39 mode 41 QR code就是我们所熟知的二维码。 打开ViewController.m,添加以下实例变量:AVCaptureMetadataOutput *_metadataOutput;当从视频帧中检测到元数据时
Android实现OCR扫描识别数字图片之图片扫描识别
Android可以识别和扫描二维码,但是识别字符串呢? google提供了以下解决方案用的是原来HP的相关资料。 可以吧,这个迁移到Android上。 工程导入成功是可以正常运行的,我是专门换了个电脑重新验证了下。 如果有不能运行的问题,应该是其他方面的问题,不然我的截图如何截 啊? 关于识别汉字,理论上可以识别,但是要是实现,并且很实用要做的东西更多。 兄弟不才啊,这2个简单的工程,
利用Python进行简单的图像识别(验证码)
这是一个最简单的图像识别,将图片加载后直接利用Python的一个识别引擎进行识别 将图片中的数字通过 pytesseract.image_to_string(image)识别后将结果存入到本地的txt文件中 1 #-*-encoding:utf-8-*- 2 import pytesseract 3 from PIL import Image 4 5 class
halcon的车牌识别例子
车牌识别主要是orc字符识别的一个应用。通常思路是先读取图像,然后进行图像预处理之后进行图像分割,也就是把需要识别的区域分割出来,如果该区域没有与水平平行,需要做一个几何矫正(通过仿射变换)最后进行识别与读取显示。下文代码是车牌识别的例子之一,首先对rgb图像做了一个转换,将一个三通道的单幅图像转换成三幅单通道的图像,选择特征比较好的一幅进行图像分割,抠图,最后进行字符排序识别读取以及显示。dev_
图像处理和图像识别中常用的…
原文地址:图像处理和图像识别中常用的OpenCV函数1作者:xiaoli870804 1、cvLoadImage:将图像文件加载至内存; 2、cvNamedWindow:在屏幕上创建一个窗口; 3、cvShowImage:在一个已创建好的窗口中显示图像; 4、cvWaitKey:使程序暂停,等待用户触发一个按键操作; 5、cvReleaseImage:释放图像文件所分配
基于K近邻法的手写数字图像识别
模式识别(PatternRecognition)是一项借助计算机,就人类对外部世界某一特定环境中的客体、过程和现象的识别功能(包括视觉、听觉、触觉、判断等)进行自动模拟的科学技术,也是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。 本文针对手写数字图像识别问题,采用了图像预处理与k近邻算法进行识别。本文的图像训练集约有2000张数字0~9的手写数字图片,测试集共有约1000张数字0
vc++数字图像识别
vc++数字图像识别vc++数字图像识别vc++数字图像识别 很容易找到的资源,:-O
QT 实现的二维码识别
该示例,可以通过摄像头,识别2维码,支持微信等2维码。但是没有实现2维码的跳转