编程介的小学生 2017-12-01 09:34 采纳率: 20.5%
浏览 764
已采纳

Gargoyle

Problem Description
Gargoyles can trace their history back many thousands of years to ancient Egypt, Greece, and Rome. Terra cotta waterspouts were formed in the shapes of animals such as lions and birds to serve the physical function of running the
rainwater away from the walls and foundations of buildings, and the spiritual function of protecting from evil forces.
Have you ever dreamed of creating your own castle with a lot of beautiful gargoyles on the walls? To your knowledge,
the speed of water coming out of each gargoyle should be identical, so an elaborately designed water system is required.
The water system consists of a huge reservoir and several interconnecting water pipes. Pipes cannot save water, so the total incoming and outgoing speed of water should be equal at each connection.
All the water from gargoyles flows into the reservoir, which is located at the bottom of the castle. Some pipes are connecting the reservoir, but water can only go from the reservoir to pipes, but never from pipes back to the reservoir. A micro-processor is installed inside each pipe, so the speed of water could easily be controlled. However, the microprocessors consume electricity. The exact cost in each pipe is proportional to the speed of water. If the cost constant in the i-th pipe is ci, the electricity cost in that pipe is civi, where vi is the speed of water in that pipe. Write a program to find the optimal configuration of the water system (i.e. the water speed in each pipe) of your dream castle, so that the total cost is minimized. It is always possible to build a water system.

Input
The input consists of several test cases. The first line of each case contains three integers n, m and k (1 ≤ n ≤ 25, 1 ≤ m ≤ 50, 1 ≤ k ≤ 1000), the number of gargoyles, the number of pipe connections and the number of pipes. The following k lines each contains five integers a, b, l, u, c (0 ≤ a, b ≤ n + m, 0 ≤ l ≤ u ≤ 100, 1 ≤ c ≤ 100), describing each pipe. a and b
are the incoming and outgoing vertex number (reservoir is 0, gargoyles are numbered 1 to n, pipe connections are numbered n + 1 to n + m), lower-bound and upper-bound of water speed, and the cost constant. No pipe connects two identical vertices. For every pipe, the incoming vertex will never be a gargoyle, and the outgoing vertex will never be the reservoir. For every pair of vertices, there could be at most one pipe connecting them (if a pipe is going from a to b, no pipes can go from a to b, or from b to a). The last test case is followed by a single zero, which should not be processed.

Output
For each test case, print the case number and minimal cost to two decimal places.

Sample Input
3 1 4
0 4 8 15 5
4 1 2 5 2
4 2 1 6 1
4 3 3 7 2
0

Sample Output
Case 1: 60.00

  • 写回答

2条回答 默认 最新

  • threenewbee 2017-12-02 15:23
    关注
    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(1条)

报告相同问题?

悬赏问题

  • ¥60 求一个简单的网页(标签-安全|关键词-上传)
  • ¥35 lstm时间序列共享单车预测,loss值优化,参数优化算法
  • ¥15 基于卷积神经网络的声纹识别
  • ¥15 Python中的request,如何使用ssr节点,通过代理requests网页。本人在泰国,需要用大陆ip才能玩网页游戏,合法合规。
  • ¥100 为什么这个恒流源电路不能恒流?
  • ¥15 有偿求跨组件数据流路径图
  • ¥15 写一个方法checkPerson,入参实体类Person,出参布尔值
  • ¥15 我想咨询一下路面纹理三维点云数据处理的一些问题,上传的坐标文件里是怎么对无序点进行编号的,以及xy坐标在处理的时候是进行整体模型分片处理的吗
  • ¥15 CSAPPattacklab
  • ¥15 一直显示正在等待HID—ISP