ValueError: bad input shape () 求问这个报错该怎么解决

对着《python机器学习经典实例》打代码,发现会报错bad input shape ()。感觉问题出在最后一行,菜鸟想问下该怎么解决?非常感谢
数据如下:
med,low,5more,more,med,med,good
med,low,5more,more,med,high,vgood
med,low,5more,more,big,low,unacc
med,low,5more,more,big,med,good
med,low,5more,more,big,high,vgood
low,vhigh,2,2,small,low,unacc
low,vhigh,2,2,small,med,unacc
low,vhigh,2,2,small,high,unacc
...


import numpy as np
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
from sklearn import preprocessing
from sklearn.ensemble import RandomForestClassifier

#读取数据
input_path=u'/Users/zhangbei//Desktop/数据挖掘/机器学习/Python-Machine-Learning-Cookbook-master/Chapter02/car.data.txt'
fo=open(input_path)
lines=fo.readlines()
x=[]
for line in lines:
    line=line.strip()
    x.append(line.split(','))
x=np.array(x)

#把字符串特征转换为数值
encoder=[]
x_encoded=np.empty(x.shape)
for i,item in enumerate(x[0]):
    encoder.append(preprocessing.LabelEncoder())
    x_encoded[:,i]=encoder[-1].fit_transform(x[:,i])

x_encoded.astype(int)
x=x_encoded[:,:-1]
y=x_encoded[:,-1]


#转换测试数据
input_data=np.array(['vhigh','vhight','2','2','small','low'])
data_encoded=[-1]*len(input_data)
print data_encoded
for i,item in enumerate(input_data):
    data_encoded[i]=int(encoder[i].transform((input_data[i])))

4个回答

我已经解决了,博主,代码错在transform后必须输入列表参数,而非字符串。

整个这一节的代码修改如下:

修正《python机器学习经典实例》p38-p45页2.9节《根据汽车特征评估质量》

把那一段转换测试数据去掉就好了,这段是一条数据测试用的

这个问题困扰我5天时间了,为什么会这样?我追溯函数库源码的时候,发现是这一句有问题:

 label_encoder[i].transform(input_data[i])

不知道是( label_encoder[i])还是(input_data[i])出了问题,如果博主解决了,请告知我一声。

图片说明

图片说明

图片说明

据我推测,input_data[i] 测试部分 的数据重塑后有点问题,具体怎么解决我实在搞不懂

用numpy.array(y), 转换一下。保证shape值为(123,) 形式,确保一维的

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
bad input shape (60000, 2)

本小白在看机器学习实战时,绘制精度、召回率相对阈值的函数图时报了错。 代码如下: ``` from sklearn.datasets import fetch_mldata import matplotlib import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import SGDClassifier from sklearn.model_selection import StratifiedKFold from sklearn.base import clone from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_val_predict from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score,recall_score from sklearn.metrics import f1_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score #导入部分 mnist = fetch_mldata('MNIST original') X,y = mnist["data"],mnist["target"] #显现部分 some_digit = X[36000] some_digit_image = some_digit.reshape(28,28) plt.imshow(some_digit_image,cmap=matplotlib.cm.binary,interpolation="nearest") plt.axis("off") #plt.show() #训练集和测试集 X_train,X_test,y_train,y_test=X[:60000],X[60000:],y[:60000],y[60000:] shuffle_index = np.random.permutation(60000) X_train,y_train = X_train[shuffle_index],y_train[shuffle_index] #二分分类器 y_train_5 = (y_train == 5) y_test_5 = (y_test == 5) sgd_clf = SGDClassifier(random_state=42) sgd_clf.fit(X_train,y_train_5) predict1 = sgd_clf.predict([some_digit]) print(predict1) #实施交叉验证 skfolds = StratifiedKFold(n_splits=3,random_state=42) for train_index,test_index in skfolds.split(X_train,y_train_5): clone_clf = clone(sgd_clf) X_train_folds = X_train[train_index] y_train_folds = (y_train_5[train_index]) X_test_fold = X_train[test_index] y_test_fold = (y_train_5[test_index]) clone_clf.fit(X_train_folds,y_train_folds) y_pred = clone_clf.predict(X_test_fold) n_correct = sum(y_pred == y_test_fold) print(n_correct/len(y_pred)) #kfold方法 print(cross_val_score(sgd_clf,X_train,y_train_5,cv=3,scoring="accuracy")) y_train_pred = cross_val_predict(sgd_clf,X_train,y_train_5,cv=3) #print(confusion_matrix(y_train_5,y_train_pred)) #print(precision_score(y_train_5,y_pred)) #精度 #print(recall_score(y_train_5,y_train_pred)) #召回率 #print(f1_score(y_train_5,y_pred)) #fi分数 y_scores = sgd_clf.decision_function([some_digit]) print(y_scores) #threshold = 0 #y_some_digit_pred = (y_scores>threshold) #print(y_some_digit_pred) #提高阈值 threshold = 200000 y_some_digit_pred = (y_scores>threshold) print(y_some_digit_pred) #绘制阈值函数图 y_scores = cross_val_predict(sgd_clf,X_train,y_train_5,cv=3,method="decision_function") precisions, recalls, thresholds = precision_recall_curve(y_train_5,y_scores) def plot_precison_recall_vs_threshold(precisions,recalls,thresholds): plt.plot(thresholds,precisions[:-1],"b--",label="Precision") plt.plot(thresholds, recalls[:-1], "g-", label="Recall") plt.xlabel("Threshold") plt.legend(loc="upper left") plt.ylim([0,1]) plot_precison_recall_vs_threshold(precisions,recalls,thresholds) plt.show() ``` 报错信息如下: Traceback (most recent call last): File "F:/python项目/mnist.py", line 77, in <module> precisions, recalls, thresholds = precision_recall_curve(y_train_5,y_scores) File "C:\Users\15701\Anaconda3\lib\site-packages\sklearn\metrics\ranking.py", line 417, in precision_recall_curve sample_weight=sample_weight) File "C:\Users\15701\Anaconda3\lib\site-packages\sklearn\metrics\ranking.py", line 304, in _binary_clf_curve y_score = column_or_1d(y_score) File "C:\Users\15701\Anaconda3\lib\site-packages\sklearn\utils\validation.py", line 583, in column_or_1d raise ValueError("bad input shape {0}".format(shape)) ValueError: bad input shape (60000, 2) 不胜感激

ValueError: shape mismatch: objects cannot be broadcast to a single shape

在使用matplotlib进行动态绘图时发生如题错误 源码: ``` import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager import numpy as np import csv f=open("C:/Users/jyz_1/Desktop/datamodi.csv","r") y_list=[] t0=eval(input("时间间隔:")) POINTS = 10*t0+1 y_list = [0] * POINTS indx = 0 fig, ax = plt.subplots() ax.set_ylim([0,40]) ax.set_xlim([0, POINTS]) ax.set_autoscale_on(False) ax.set_xticks(range(0, 10*t0, t0)) ax.set_yticks(range(0,40,5)) ax.grid(True) line_y, = ax.plot(range(POINTS), y_list, label='y output', color='cornflowerblue') ax.legend(loc='upper center', ncol=4, prop=font_manager.FontProperties(size=10)) def y_output(ax): global indx, y_list, line_y if indx == 20: indx = 0 indx += 1 f=open("C:/Users/jyz_1/Desktop/datamodi.csv","r") y_list=[] reader=csv.reader(f) for low in reader: for y in low: y_list=np.append(y_list,eval(y)) line_y.set_ydata(y_list) ax.draw_artist(line_y) ax.figure.canvas.draw() timer = fig.canvas.new_timer(interval=100) timer.add_callback(y_output, ax) timer.start() plt.show() ``` 报错: > Exception in Tkinter callback Traceback (most recent call last): File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python38-32\lib\tkinter\__init__.py", line 1883, in __call__ return self.func(*args) File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python38-32\lib\tkinter\__init__.py", line 804, in callit func(*args) File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python38-32\lib\site-packages\matplotlib\backends\_backend_tk.py", line 114, in _on_timer TimerBase._on_timer(self) File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python38-32\lib\site-packages\matplotlib\backend_bases.py", line 1187, in _on_timer ret = func(*args, **kwargs) File "C:\Users\jyz_1\Desktop\sensor_ver1.py", line 32, in y_output ax.draw_artist(line_y) File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python38-32\lib\site-packages\matplotlib\axes\_base.py", line 2644, in draw_artist a.draw(self.figure._cachedRenderer) File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python38-32\lib\site-packages\matplotlib\artist.py", line 38, in draw_wrapper return draw(artist, renderer, *args, **kwargs) File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python38-32\lib\site-packages\matplotlib\lines.py", line 759, in draw self.recache() File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python38-32\lib\site-packages\matplotlib\lines.py", line 679, in recache self._xy = np.column_stack(np.broadcast_arrays(x, y)).astype(float) File "<__array_function__ internals>", line 5, in broadcast_arrays File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python38-32\lib\site-packages\numpy\lib\stride_tricks.py", line 264, in broadcast_arrays shape = _broadcast_shape(*args) File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python38-32\lib\site-packages\numpy\lib\stride_tricks.py", line 191, in _broadcast_shape b = np.broadcast(*args[:32]) ValueError: shape mismatch: objects cannot be broadcast to a single shape

在使用机器学习算法过程中报错:ValueError: Incompatible dimension for X and Y matrices: X.shape[1] == 224 while Y.shape[1] == 334

使用KNN算法过程中遇到了ValueError: Incompatible dimension for X and Y matrices: X.shape[1] == 224 while Y.shape[1] == 334 的问题 代码截图:![图片说明](https://img-ask.csdn.net/upload/202005/26/1590474323_300759.png) 报错截图:![图片说明](https://img-ask.csdn.net/upload/202005/26/1590474354_165863.png) 求大佬救救孩子吧

ValueError: could not broadcast input array from shape (100,100,3) into shape (100,100)

path是图片的路径 w,h是图片的设定长宽 ```def read_img(path): cate=[path+x for x in os.listdir(path) if os.path.isdir(path+x)] imgs=[] labels=[] for idx,folder in enumerate(cate): for im in glob.glob(folder+'/*.jpg'): print('reading the images:%s'%(im)) img=io.imread(im) img=transform.resize(img,(w,h)) imgs.append(img) labels.append(idx) return np.asarray(imgs,np.float32),np.asarray(labels,np.int32) data,label=read_img(path) ``` 我运行花卉图片加载的时候无错误,但换个路径运行猫狗识别的时候就报错 File "C:/Users/spirit/Desktop/实验练习/tensorflow/猫狗识别/训练模型/猫狗识别.py", line 34, in <module>data,label=read_img(path) File "C:/Users/spirit/Desktop/实验练习/tensorflow/猫狗识别/训练模型/猫狗识别.py", line 31, in read_img return np.asarray(imgs,np.float32),np.asarray(labels,np.int32) File "D:\Anaconda\envs\tensorflow\lib\site-packages\numpy\core\numeric.py", line 501, in asarray return array(a, dtype, copy=False, order=order) ValueError: could not broadcast input array from shape (100,100,3) into shape (100,100) 我真心不懂,只是换了其他图片加载,为什么就报错,真心求教! 我在想是不是我的猫狗图片出了问题,但看了也感觉没什么问题啊,头痛

keras input shape怎么写

大家好! 我在尝试使用Keras下面的LSTM做深度学习,我的数据是这样的:X-Train:30000个数据,每个数据6个数值,所以我的X_train是(30000*6) 根据keras的说明文档,input shape应该是(samples,timesteps,input_dim) 所以我觉得我的input shape应该是:input_shape=(30000,1,6),但是运行后报错: Input 0 is incompatible with layer lstm_6: expected ndim=3, found ndim=4 我觉得是input shape错了,改成(1,6)错误又变成了: ValueError: Error when checking input: expected lstm_7_input to have 3 dimensions, but got array with shape (30000, 6) 改成(30000,6)错误提示一样 我该怎么设置input shape呢,多谢!

ValueError: multilabel-indicator format is not supported的报错原因?

报错ValueError: multilabel-indicator format is not supported? 这个报错意思比较明确,不支持多分类,但我模型里y的label定义就是0和1,binary,为啥会有这个报错? 一个图像2分类的keras模型,总样本量=120,其中label"0"=110,label"1"=10,非平衡, 代码如下: data = np.load('D:/a.npz') image_data, label_data= data['image'], data['label'] skf = StratifiedKFold(n_splits=3, shuffle=True) for train, test in skf.split(image_data, label_data): train_x=image_data[train] test_x=image_data[test] train_y=label_data[train] test_y=label_data[test] train_x = train_x.reshape(81,50176) test_x = test_x.reshape(39,50176) train_y = keras.utils.to_categorical(train_y,2) test_y = keras.utils.to_categorical(test_y,2) model = Sequential() model.add(Dense(units=128,activation="relu",input_shape=(50176,))) model.add(Dense(units=128,activation="relu")) model.add(Dense(units=128,activation="relu")) model.add(Dense(units=2,activation="sigmoid")) model.compile(optimizer=SGD(0.001),loss="binary_crossentropy",metrics=["accuracy"]) model.fit(train_x, train_y,batch_size=32,epochs=5,verbose=1) y_pred_model = model.predict_proba(test_x)[:,1] fpr_model, tpr_model, _ = roc_curve(test_y, y_pred_model) 报错提示如下: ---> 63 fpr_model, tpr_model, _ = roc_curve(test_y, y_pred_model) ValueError: multilabel-indicator format is not supported

Keras报错 ‘ValueError: 'pool5' is not in list’

很长的一个project,在keras下实现VGG16。 这是报错的整个代码段: ``` for roi, roi_context in zip(rois, rois_context): ins = [im_in, dmap_in, np.array([roi]), np.array([roi_context])] print("Testing ROI {c}") subtimer.tic() blobs_out = model.predict(ins) subtimer.toc() print("Storing Results") print(layer_names) post_roi_layers = set(layer_names[layer_names.index("pool5"):]) for name, val in zip(layer_names, blobs_out): if name not in outs: outs[name] = val else: if name in post_roi_layers: outs[name] = np.concatenate([outs[name], val]) c += 1 ``` 报错信息: ``` Loading Test Data data is loaded from roidb_test_19_smol.pkl Number of Images to test: 10 Testing ROI {c} Storing Results ['cls_score', 'bbox_pred_3d'] Traceback (most recent call last): File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/main.py", line 6, in <module> results = test_main.test_tf_implementation(cache_file="roidb_test_19_smol.pkl", weights_path="rgbd_det_iter_40000.h5") File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/test_main.py", line 36, in test_tf_implementation results = test.test_net(tf_model, roidb) File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/test.py", line 324, in test_net im_detect_3d(net, im, dmap, test['boxes'], test['boxes_3d'], test['rois_context']) File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/test.py", line 200, in im_detect_3d post_roi_layers = set(layer_names[layer_names.index("pool5"):]) ValueError: 'pool5' is not in list ```

报错ValueError: None values not supported.如何解决

在跑代码的时候出现了ValueError: None values not supported. 停在了这里,这是我定义的class 应该是调用fit函数时候出现的问题 ``` class NetworkBase(object): def train(self, x_train, y_train, x_test, y_test, epochs, batch_size, log_dir='/tmp/fullyconnected', stop_early=False): callbacks = [] if backend._BACKEND == 'tensorflow': callbacks.append(TensorBoard(log_dir=log_dir)) if stop_early: callbacks.append(EarlyStopping(monitor='val_loss', patience=2, verbose=1, mode='auto')) self.fcnet.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, shuffle=True, validation_data=(x_test, y_test), callbacks=callbacks) ``` 报错信息如下 ``` File "D:\R\实验室\代码\DL-hybrid-precoder-master\main_train\Model\network_base.py", line 20, in train callbacks=callbacks) File "C:\Users\admin\Anaconda3\lib\site-packages\keras\engine\training.py", line 1213, in fit self._make_train_function() File "C:\Users\admin\Anaconda3\lib\site-packages\keras\engine\training.py", line 316, in _make_train_function loss=self.total_loss) File "C:\Users\admin\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper return func(*args, **kwargs) File "C:\Users\admin\Anaconda3\lib\site-packages\keras\optimizers.py", line 543, in get_updates p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py", line 815, in binary_op_wrapper y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1039, in convert_to_tensor return convert_to_tensor_v2(value, dtype, preferred_dtype, name) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1097, in convert_to_tensor_v2 as_ref=False) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1175, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 304, in _constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 245, in constant allow_broadcast=True) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 283, in _constant_impl allow_broadcast=allow_broadcast)) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 454, in make_tensor_proto raise ValueError("None values not supported.") ValueError: None values not supported. ``` 希望有大神可以帮我解答问题出在哪里

反归一化时报错ValueError: operands could not be broadcast together with shapes

在使用scaler.inverse_transform(y_test)进行反归一化时,报错ValueError: operands could not be broadcast together with shapes (984,2) (4,)(984,2),我断调试了一下,在这个位置报错:![图片说明](https://img-ask.csdn.net/upload/202005/14/1589426709_978169.png)

错误提示ValueError: unsupported format character

应该是这一段 '''将方法体中的host字段进行替换''' def get_raw_body(self, req, ip): ip = self.get_host_from_url(ip) host_reg = re.compile(r'Host:\s([a-z\.A-Z0-9]+)') host = host_reg.findall(req) if not host or host[0] == '': print ('[-]ERROR MESSAGE!Wrong format for request body') sys.exit() req, num = re.subn(host_reg, "Host: %s", req) return req % ip 错误提示: return req % (ip) ValueError: unsupported format character '{' (0x7b) at index 31 源程序是2.7,我的是3.6,不想卸载去下2.7,为了这一个程序不值得...

爬虫过程中遇到报错:ValueError: can only parse strings

源代码如下: import requests import json from requests.exceptions import RequestException import time from lxml import etree def get_one_page(url): try: headers = { 'User-Agent': 'Mozilla/5.0(Macintosh;Intel Mac OS X 10_13_3) AppleWebKit/537.36(KHTML,like Gecko) Chorme/65.0.3325.162 Safari/537.36' } response = requests.get(url,headers = headers) if response.status_code == 200: return response.text return None except RequestException: return None def parse_one_page(html): html_coner = etree.HTML(html) pattern = html_coner.xpath('//div[@id="container"]/div[@id="main"/div[@class = "ywnr_box"]//a/text()') return pattern def write_to_file(content): with open('results.txt','a',encoding='utf-8') as f: f.write(json.dumps(content,ensure_ascii=False)+'\n') def main(offset): url = 'http://www.cdpf.org.cn/yw/index_'+str(offset)+'.shtml' html = get_one_page(url) for item in parse_one_page(html): print(item) write_to_file(item) if __name__ == '__main__': for i in range(6): main(offset=i*10) time.sleep(1) 请问各位大佬到底是哪里出了错??

python操作word报错ValueError: can only parse strings。

1、问题描述: 学习Python操作word文件,使用render()方法时报错ValueError: can only parse strings。 2、相关代码 ``` # _*_ encoding:utf-8 _*_ from docxtpl import DocxTemplate data_dic = { 't1':'燕子', 't2':'杨柳', 't3':'桃花', 't4':'针尖', 't5':'头涔涔', 't6':'泪潸潸', 't7':'茫茫然', 't8':'伶伶俐俐', } doc = DocxTemplate("/test/test.doc") #加载模板文件 doc.render(data_dic) #填充数据 doc.save("/test/target.doc") ``` 3、模板信息: ``` {{r t1}}去了,有再来的时候;{{r t2}}枯了,有再青的时候;{{r t3}}谢了,有再开的时候。但是,聪明的,你告诉我,我们的日子为什么一去不复返呢?——是有人偷了他们罢:那是谁?又藏在何处呢?是他们自己逃走了罢:现在又到了哪里呢? 我不知道他们给了我多少日子;但我的手确乎是渐渐空虚了。在默默里算着,八千多日子已经从我手中溜去;像{{r t4}}上一滴水滴在大海里,我的日子滴在时间的流里,没有声音,也没有影子。我不禁{{r t5}}而{{r t6}}了。 去的尽管去了,来的尽管来着;去来的中间,又怎样地匆匆呢?早上我起来的时候,小屋里射进两三方斜斜的太阳。太阳他有脚啊,轻轻悄悄地挪移了;我也{{r t7}}跟着旋转。于是——洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去;默默时,便从凝然的双眼前过去。我觉察他去的匆匆了,伸出手遮挽时,他又从遮挽着的手边过去,天黑时,我躺在床上,他便{{r t8}}地从我身上跨过,从我脚边飞去了。等我睁开眼和太阳再见,这算又溜走了一日。我掩着面叹息。但是新来的日子的影儿又开始在叹息里闪过了。 ``` 4、报错信息: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579068250_471502.png) 5、相关依赖包版本 ``` doc 0.1.0 docx 0.2.4 docxtpl 0.6.3 lxml 3.2.1 Jinja2 2.10.3 ``` 6、我尝试更换了lxml的版本发现报错信息一样。我又尝试跟踪错误,在这个文件里: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579068951_317573.png) 打印了一下text: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579068974_898727.png) 发现有一步text为None: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579069045_944104.png) 7、所以想问一下有没有大佬遇到并解决过这个问题,怎么解决这个问题。救救一下小萌新吧,还有就是val._target._blob这个变量里存的是什么数据,为什么会出现None的情况?谢谢大佬的指点! 8、追加: 问题暂时得到了解决,我在get_headers_footers_xml这个函数里添加了不为空的判断if val._target._blob != None:yield relKey, self.xml_to_string(parse_xml(val._target._blob)) 就不再报错并且成功写入到目标文件里,但是我仍然不清楚这是不是依赖包本身的BUG。如果有大佬知道的话请指点我一下。如果也有遇到这个问题的朋友,可以试一试我这个方法暂时解决一下。下面是我修改的图片: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579074850_454765.png)

在引入qgis.core时报错ValueError: PyCapsule_GetPointer called with incorrect name

Traceback (most recent call last): File "D:/pyCode/first/index.py", line 1, in <module> from qgis.core import * File "E:\QGIS\apps\qgis\python\qgis\__init__.py", line 78, in <module> import qgis.gui File "E:\QGIS\apps\qgis\python\qgis\gui\__init__.py", line 25, in <module> from qgis._gui import * ValueError: PyCapsule_GetPointer called with incorrect name

在Cent OS中复现已发表文章的 神经网络训练过程,报错ValueError: low >= high

``` Traceback (most recent call last): File "trainIEEE39LoadSheddingAgent.py", line 139, in <module> env.reset() File "/root/RLGC/src/py/PowerDynSimEnvDef_v3.py", line 251, in reset fault_bus_idx = np.random.randint(0, total_fault_buses)# an integer, in the range of [0, total_bus_num-1] File "mtrand.pyx", line 630, in numpy.random.mtrand.RandomState.randint File "bounded_integers.pyx", line 1228, in numpy.random.bounded_integers._rand_int64 ValueError: low >= high ``` 报错如上,为什么会这样报错?如何解决?谢谢!

RK3288 make otapackage 报错ValueError: need more than 1 value to unpack

mkbootimg_args = (str) multistage_support = (str) 1 recovery_api_version = (int) 2 selinux_fc = (str) /tmp/targetfiles-WQjmn2/BOOT/RAMDISK/file_contexts system_size = (int) 1610612736 tool_extensions = (str) device/rockchip/rksdk update_rename_support = (str) 1 use_set_metadata = (str) 1 using device-specific extensions in device/rockchip/rksdk building image from target_files RECOVERY... running: mkbootfs -f /tmp/targetfiles-WQjmn2/META/recovery_filesystem_config.txt /tmp/targetfiles-WQjmn2/RECOVERY/RAMDISK running: minigzip running: mkbootimg --kernel /tmp/targetfiles-WQjmn2/RECOVERY/kernel --second /tmp/targetfiles-WQjmn2/RECOVERY/resource.img --ramdisk /tmp/tmpBdTCrB --output /tmp/tmpNnUZoC running: drmsigntool /tmp/tmpNnUZoC build/target/product/security/privateKey.bin src_path: /tmp/tmpNnUZoC, private_key_path: build/target/product/security/privateKey.bin can't open file build/target/product/security/privateKey.bin! no find private key, so not sign boot.img! building image from target_files BOOT... running: mkbootfs -f /tmp/targetfiles-WQjmn2/META/boot_filesystem_config.txt /tmp/targetfiles-WQjmn2/BOOT/RAMDISK running: minigzip running: mkbootimg --kernel /tmp/targetfiles-WQjmn2/BOOT/kernel --second /tmp/targetfiles-WQjmn2/BOOT/resource.img --ramdisk /tmp/tmp6LpDeb --output /tmp/tmppqQcvT running: drmsigntool /tmp/tmppqQcvT build/target/product/security/privateKey.bin src_path: /tmp/tmppqQcvT, private_key_path: build/target/product/security/privateKey.bin can't open file build/target/product/security/privateKey.bin! no find private key, so not sign boot.img! running: imgdiff -b /tmp/targetfiles-WQjmn2/SYSTEM/etc/recovery-resource.dat /tmp/tmpD07dY4 /tmp/tmpXulEpX /tmp/tmp1qudyL Traceback (most recent call last): File "./build/tools/releasetools/ota_from_target_files", line 1059, in <module> main(sys.argv[1:]) File "./build/tools/releasetools/ota_from_target_files", line 1027, in main WriteFullOTAPackage(input_zip, output_zip) File "./build/tools/releasetools/ota_from_target_files", line 502, in WriteFullOTAPackage Item.GetMetadata(input_zip) File "./build/tools/releasetools/ota_from_target_files", line 197, in GetMetadata key, value = element.split("=") ValueError: need more than 1 value to unpack make: *** [out/target/product/rk3288/rk3288-ota-eng.wake.zip] 错误 1

ValueError: too many values to unpack (expected 2)

网上说是元素找不到对应的 代码如下: ``` import turtle file=open("C:/Users/jyz_1/Desktop/新建文本文档.txt") file=file.read() lines=file.split("重庆") i=0 lsy=[] for line in lines: #index the temprature inn=line.index('\n')#The first \n inc=line.index("C")#The first C if i==0: tu=int(line[line.find('\n',inn+1)+1:inc])#The second \n if "~" in line: tl=int(line[line.index('~')+1:line.rindex('C')]) else: tl=tu i=i+1 else: fn=line.find('\n',inn+1) tu=int(line[line.find('\n',fn+1)+1:inc])#The third \n if "~" in line: tl=int(line[line.index('~')+1:line.rindex('C')]) else: tl=tu t=(tl+tu)/2#daily average temprature lsy.append(t) #find the date lsx=[] dates=file.split("\n") for date in dates: if "-" in date: if date.replace("-","").isnumeric()==True: p1=date.index('-')#the first - p2=date.find('-',p1+1)#the second - month=date[p1+1:p2] day=date[p2+1:] date_on_x=int(month+day) lsx.append(date_on_x) #draw axis def drawx(): turtle.pu() turtle.goto(-50,-50) turtle.pd() turtle.fd(240) def drawy(): turtle.pu() turtle.goto(-50,-50) turtle.seth(90) turtle.pd() turtle.fd(160) #comment the axis def comx(): turtle.pu() turtle.goto(-50,-65) turtle.seth(0) for i in range(1,13): turtle.write(i) turtle.fd(20) def comy(): turtle.pu() turtle.goto(-75,-50) turtle.seth(90) for i in range(-30,51,10): turtle.write(float(i)) turtle.fd(20) #draw the rainbow def rainbow(): #define the color if t<8: turtle.color("purple") elif 8<=t<12: turtle.color("lightblue") elif 12<=t<22: turtle.color("green") elif 22<=t<28: turtle.color("yellow") elif 28<=t<30: turtle.color("orange") elif t>=30: turtle.color("red") #let's draw! for x,t in lsx,lsy: turtle.pu() turtle.goto(x,t) turtle.pd() turtle.circle(10) drawx() drawy() comx() comy() rainbow() ``` 报错: ``` Traceback (most recent call last): File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python37-32\32rx.py", line 92, in <module> rainbow(t) File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python37-32\32rx.py", line 83, in rainbow for x,t in lsx,lsy: ValueError: too many values to unpack (expected 2) ``` 但是我用len发现lsx,lsy长度相同 也就是说,lsx,lsy中的元素一一对应 那这个报错是怎么回事?

ValueError: Unknown mat file type, version 0, 0

训练模型导入.mat文件时出现如下错误: ``` ValueError: Unknown mat file type, version 0, 0 ``` 读取文件代码为: ``` np.array(sio.loadmat(image[0][i])['section'], dtype=np.float32) ``` 望大神指教!不胜感激!

ValueError: None values not supported.

Traceback (most recent call last): File "document_summarizer_training_testing.py", line 296, in <module> tf.app.run() File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/platform/app.py", line 48, _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File "document_summarizer_training_testing.py", line 291, in main train() File "document_summarizer_training_testing.py", line 102, in train model = MY_Model(sess, len(vocab_dict)-2) File "/home/lyliu/Refresh-master-self-attention/my_model.py", line 70, in __init__ self.train_op_policynet_expreward = model_docsum.train_neg_expectedreward(self.rewardweighted_cross_entropy_loss_multi File "/home/lyliu/Refresh-master-self-attention/model_docsum.py", line 835, in train_neg_expectedreward grads_and_vars_capped_norm = [(tf.clip_by_norm(grad, 5.0), var) for grad, var in grads_and_vars] File "/home/lyliu/Refresh-master-self-attention/model_docsum.py", line 835, in <listcomp> grads_and_vars_capped_norm = [(tf.clip_by_norm(grad, 5.0), var) for grad, var in grads_and_vars] File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/ops/clip_ops.py", line 107,rm t = ops.convert_to_tensor(t, name="t") File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 676o_tensor as_ref=False) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 741convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", onstant tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape)) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py", ake_tensor_proto raise ValueError("None values not supported.") ValueError: None values not supported. 使用tensorflow gpu版本 tensorflow 1.2.0。希望找到解决方法或者出现这个错误的原因

python调用cv2.findContours时报错:ValueError: not enough values to unpack (expected 3, got 2)

完整代码如下: ``` import cv2 import numpy as np img = np.zeros((200, 200), dtype=np.uint8) img[50:150, 50:150] = 255 ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) image, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) color = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.drawContours(color, contours, -1, (0,255,0), 2) cv2.imshow("contours", color) cv2.waitKey() cv2.destroyAllWindows() ``` 但是cv2.findContours报如下错误: ValueError: not enough values to unpack (expected 3, got 2) python版本为3.6,opencv为4.0.0

软件测试入门、SQL、性能测试、测试管理工具

软件测试2小时入门,让您快速了解软件测试基本知识,有系统的了解; SQL一小时,让您快速理解和掌握SQL基本语法 jmeter性能测试 ,让您快速了解主流来源性能测试工具jmeter 测试管理工具-禅道,让您快速学会禅道的使用,学会测试项目、用例、缺陷的管理、

计算机组成原理实验教程

西北工业大学计算机组成原理实验课唐都仪器实验帮助,同实验指导书。分为运算器,存储器,控制器,模型计算机,输入输出系统5个章节

Java 最常见的 200+ 面试题:面试必备

这份面试清单是从我 2015 年做了 TeamLeader 之后开始收集的,一方面是给公司招聘用,另一方面是想用它来挖掘在 Java 技术栈中,还有那些知识点是我不知道的,我想找到这些技术盲点,然后修复它,以此来提高自己的技术水平。虽然我是从 2009 年就开始参加编程工作了,但我依旧觉得自己现在要学的东西很多,并且学习这些知识,让我很有成就感和满足感,那所以何乐而不为呢? 说回面试的事,这份面试...

winfrom中嵌套html,跟html的交互

winfrom中嵌套html,跟html的交互,源码就在里面一看就懂,很简单

玩转Python-Python3基础入门

总课时80+,提供源码和相关资料 本课程从Python零基础到纯Python项目实战。内容详细,案例丰富,覆盖了Python知识的方方面面,学完后不仅对Python知识有个系统化的了解,让你从Python小白变编程大牛! 课程包含: 1.python安装 2.变量、数据类型和运算符 3.选择结构 4.循环结构 5.函数和模块 6.文件读写 7.了解面向对象 8.异常处理

程序员的兼职技能课

获取讲师答疑方式: 在付费视频第一节(触摸命令_ALL)片头有二维码及加群流程介绍 限时福利 原价99元,今日仅需39元!购课添加小助手(微信号:itxy41)按提示还可领取价值800元的编程大礼包! 讲师介绍: 苏奕嘉&nbsp;前阿里UC项目工程师 脚本开发平台官方认证满级(六级)开发者。 我将如何教会你通过【定制脚本】赚到你人生的第一桶金? 零基础程序定制脚本开发课程,是完全针对零脚本开发经验的小白而设计,课程内容共分为3大阶段: ①前期将带你掌握Q开发语言和界面交互开发能力; ②中期通过实战来制作有具体需求的定制脚本; ③后期将解锁脚本的更高阶玩法,打通任督二脉; ④应用定制脚本合法赚取额外收入的完整经验分享,带你通过程序定制脚本开发这项副业,赚取到你的第一桶金!

HoloLens2开发入门教程

本课程为HoloLens2开发入门教程,讲解部署开发环境,安装VS2019,Unity版本,Windows SDK,创建Unity项目,讲解如何使用MRTK,编辑器模拟手势交互,打包VS工程并编译部署应用到HoloLens上等。

基于VHDL的16位ALU简易设计

基于VHDL的16位ALU简易设计,可完成基本的加减、带进位加减、或、与等运算。

MFC一站式终极全套课程包

该套餐共包含从C小白到C++到MFC的全部课程,整套学下来绝对成为一名C++大牛!!!

利用Verilog实现数字秒表(基本逻辑设计分频器练习)

设置复位开关。当按下复位开关时,秒表清零并做好计时准备。在任何情况下只要按下复位开关,秒表都要无条件地进行复位操作,即使是在计时过程中也要无条件地进行清零操作。 设置启/停开关。当按下启/停开关后,将

董付国老师Python全栈学习优惠套餐

购买套餐的朋友可以关注微信公众号“Python小屋”,上传付款截图,然后领取董老师任意图书1本。

Python可以这样学(第一季:Python内功修炼)

董付国系列教材《Python程序设计基础》、《Python程序设计(第2版)》、《Python可以这样学》配套视频,讲解Python 3.5.x和3.6.x语法、内置对象用法、选择与循环以及函数设计与使用、lambda表达式用法、字符串与正则表达式应用、面向对象编程、文本文件与二进制文件操作、目录操作与系统运维、异常处理结构。

计算机操作系统 第三版.pdf

计算机操作系统 第三版 本书全面介绍了计算机系统中的一个重要软件——操作系统(OS),本书是第三版,对2001年出版的修订版的各章内容均作了较多的修改,基本上能反映当前操作系统发展的现状,但章节名称基

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

Vue.js 2.0之全家桶系列视频课程

基于新的Vue.js 2.3版本, 目前新全的Vue.js教学视频,让你少走弯路,直达技术前沿! 1. 包含Vue.js全家桶(vue.js、vue-router、axios、vuex、vue-cli、webpack、ElementUI等) 2. 采用笔记+代码案例的形式讲解,通俗易懂

微信公众平台开发入门

本套课程的设计完全是为初学者量身打造,课程内容由浅入深,课程讲解通俗易懂,代码实现简洁清晰。通过本课程的学习,学员能够入门微信公众平台开发,能够胜任企业级的订阅号、服务号、企业号的应用开发工作。 通过本课程的学习,学员能够对微信公众平台有一个清晰的、系统性的认识。例如,公众号是什么,它有什么特点,它能做什么,怎么开发公众号。 其次,通过本课程的学习,学员能够掌握微信公众平台开发的方法、技术和应用实现。例如,开发者文档怎么看,开发环境怎么搭建,基本的消息交互如何实现,常用的方法技巧有哪些,真实应用怎么开发。

150讲轻松搞定Python网络爬虫

【为什么学爬虫?】 &nbsp; &nbsp; &nbsp; &nbsp;1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到! &nbsp; &nbsp; &nbsp; &nbsp;2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。 &nbsp; 从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑

SEIR课程设计源码与相关城市数据.rar

SEIR结合学报与之前博客结合所做的一些改进,选择其中三个城市进行拟合仿真SEIR结合学报与之前博客结合所做的一些改进,选择其中三个城市进行拟合仿真SEIR结合学报与之前博客结合所做的一些改进,选择其

Python数据挖掘简易入门

&nbsp; &nbsp; &nbsp; &nbsp; 本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。

2019 AI开发者大会

2019 AI开发者大会(AI ProCon 2019)是由中国IT社区CSDN主办的AI技术与产业年度盛会。多年经验淬炼,如今蓄势待发:2019年9月6-7日,大会将有近百位中美顶尖AI专家、知名企业代表以及千余名AI开发者齐聚北京,进行技术解读和产业论证。我们不空谈口号,只谈技术,诚挚邀请AI业内人士一起共铸人工智能新篇章!

Java面试题大全(2020版)

发现网上很多Java面试题都没有答案,所以花了很长时间搜集整理出来了这套Java面试题大全,希望对大家有帮助哈~ 本套Java面试题大全,全的不能再全,哈哈~ 一、Java 基础 1. JDK 和 JRE 有什么区别? JDK:Java Development Kit 的简称,java 开发工具包,提供了 java 的开发环境和运行环境。 JRE:Java Runtime Environ...

定量遥感中文版 梁顺林著 范闻捷译

这是梁顺林的定量遥感的中文版,由范闻捷等翻译的,是电子版PDF,解决了大家看英文费时费事的问题,希望大家下载看看,一定会有帮助的

GIS程序设计教程 基于ArcGIS Engine的C#开发实例

张丰,杜震洪,刘仁义编著.GIS程序设计教程 基于ArcGIS Engine的C#开发实例.浙江大学出版社,2012.05

人工智能-计算机视觉实战之路(必备算法+深度学习+项目实战)

系列课程主要分为3大阶段:(1)首先掌握计算机视觉必备算法原理,结合Opencv进行学习与练手,通过实际视项目进行案例应用展示。(2)进军当下最火的深度学习进行视觉任务实战,掌握深度学习中必备算法原理与网络模型架构。(3)结合经典深度学习框架与实战项目进行实战,基于真实数据集展开业务分析与建模实战。整体风格通俗易懂,项目驱动学习与就业面试。 建议同学们按照下列顺序来进行学习:1.Python入门视频课程 2.Opencv计算机视觉实战(Python版) 3.深度学习框架-PyTorch实战/人工智能框架实战精讲:Keras项目 4.Python-深度学习-物体检测实战 5.后续实战课程按照自己喜好选择就可以

三个项目玩转深度学习(附1G源码)

从事大数据与人工智能开发与实践约十年,钱老师亲自见证了大数据行业的发展与人工智能的从冷到热。事实证明,计算机技术的发展,算力突破,海量数据,机器人技术等,开启了第四次工业革命的序章。深度学习图像分类一直是人工智能的经典任务,是智慧零售、安防、无人驾驶等机器视觉应用领域的核心技术之一,掌握图像分类技术是机器视觉学习的重中之重。针对现有线上学习的特点与实际需求,我们开发了人工智能案例实战系列课程。打造:以项目案例实践为驱动的课程学习方式,覆盖了智能零售,智慧交通等常见领域,通过基础学习、项目案例实践、社群答疑,三维立体的方式,打造最好的学习效果。

微信小程序开发实战之番茄时钟开发

微信小程序番茄时钟视频教程,本课程将带着各位学员开发一个小程序初级实战类项目,针对只看过官方文档而又无从下手的开发者来说,可以作为一个较好的练手项目,对于有小程序开发经验的开发者而言,可以更好加深对小程序各类组件和API 的理解,为更深层次高难度的项目做铺垫。

面试了一个 31 岁程序员,让我有所触动,30岁以上的程序员该何去何从?

最近面试了一个31岁8年经验的程序猿,让我有点感慨,大龄程序猿该何去何从。

去除异常值matlab程序

数据预处理中去除异常值的程序,matlab写成

用verilog HDL语言编写的秒表

在秒表设计中,分模块书写。用在七段数码管上显示。输入频率是1KHZ.可以显示百分秒,秒,分。如要显示小时,只需修改leds里的代码和主模块代码。改程序以通过硬件电路验证。完全正确。

[透视java——反编译、修补和逆向工程技术]源代码

源代码。

相关热词 c#跨线程停止timer c#批量写入sql数据库 c# 自动安装浏览器 c#语言基础考试题 c# 偏移量打印是什么 c# 绘制曲线图 c#框体中的退出函数 c# 按钮透明背景 c# idl 混编出错 c#在位置0处没有任何行
立即提问