训练dnn网络,添加全连接层,keras报错 5C

图片说明

更改了keras的版本号,依然报错

4个回答

添加全连接层 ? 对么

图片说明
就是这个代码

可能是FC的参数的原因吧,

搞定了,是keras版本的原因

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
keras model.fit函数报错,输入参数shape维度不正确,如何修正

使用函数 ``` model.fit(x=images, y=labels, validation_split=0.1, batch_size=batch_size, epochs=n_epochs, callbacks=callbacks, shuffle=True) ``` 由于我的训练集中image是灰色图片,所以images的shape为(2, 28, 28),导致报错Error when checking input: expected input_1 to have 4 dimensions, but got array with shape (2, 28, 28) ,请问该如何处理

利用keras搭建神经网络,怎么固定初始化参数?

model.add(LSTM(input_dim=1, output_dim=8,return_sequences=False)),代码如下,就采用这样的网络不训练直接测试,每次结果都有很大偏差,说明每次网络初始化权重都不一样,怎样把它设定为固定值呢?

android studio调用opencv的Dnn.readNet出错 ReadProtoFromBinaryFile

import org.opencv.dnn.*; …… Net net = Dnn.readNet("F://text_detect//models//east//frozen_east_text_detection.pb"); 我在android studio中调用opencv的dnn功能,在读取网络的时候出错,提示: FAILED: fs.is_open(). Can't open "F://android//AndroidStudioProjects//TestSo//app//frozen_east_text_detection.pb" in function 'ReadProtoFromBinaryFile' 代码如上所示。 我查看了很多资料,说是路径问题,我可以确定我在这个路径下的pb文件是存在的;另外看到了有人用java调用dnn的readNetFromDarknet函数,我使用的时候也是会提示类似的读取失败的问题,但是这个人是使用成功的(他用了相对路径: Net net = Dnn.readNetFromDarknet("text.cfg", "text.weights");),怀疑是需要放置到固定路径下,但是我没找到放置的位置。 有人知道应该怎么放pb文件的位置吗? 我在c++下调用是可以正常调用的 net = cv::dnn::readNet("F://text_detect//models//east//frozen_east_text_detection.pb"); 不晓得c++下调用dnn的读取网络功能和安卓下有什么不同

如何用keras对两组数据用相同的网络进行训练并且画在一个acc-loss图?

假如我有A,B两组数据,我想用两个的loss-acc图来对比得出哪组数据更好,所以如何将这两组数据同时进行训练并将结果画在一个acc-loss图?

神经网络隐层和隐层节点数与输入层节点数

一篇论文,输入节点3个,但是有四个隐藏,节点数分别为1000,700,300,150。训练集和测试集分别为3万条。隐层数和隐层节点数是论文里明确提出的,但是这样合理吗?,是不是我理解错了输入节点数?论文是IEEE的。

opencv3.4 加载tensorflow模型 net.forward()总是报错?

OpenCV Error: Assertion failed (!_aspectRatios.empty(), _minSize > 0) in cv::dnn::PriorBoxLayerImpl::PriorBoxLayerImpl, file C:\build\master_winpack-build-win64-vc14\opencv\modules\dnn\src\layers\prior_box_layer.cpp, line 207 C:\build\master_winpack-build-win64-vc14\opencv\modules\dnn\src\layers\prior_box_layer.cpp:207: error: (-215) !_aspectRatios.empty(), _minSize > 0 in function cv::dnn::PriorBoxLayerImpl::PriorBoxLayerImpl

深度学习框架 keras 如何实现 AutoEncoder ?

希望给出一个能运行的详细的自动编码器的示例代码(有注释), 只写核心部分真的不会用。 我想实现这样的: 演示样本随意,比如:{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)} 1.从文本文档中导入样本(可选) 2.利用自动编码器取出特征(必须) 3.把编码得出的特征保存到一个文本文档中(说明怎么取编码得到的特征也行) 另外我想知道一个: 训练自动编码器是样本越多越好吗?比如我有30万个样本,全部用来训练自动编码器吗,还是说只取其中一部分来训练呢? 我的开发环境是: ![图片说明](https://img-ask.csdn.net/upload/201608/14/1471190300_146268.png)

opencv net.setPreferableTarget(DNN_TARGET_OPENCL)问题

opencv4.0 dnn加载yolov3模型,当使用opencl时,报错,错误信息如下,有没有大佬知道怎么回事?无法识别的命令是什么意思? [ INFO:0] Initialize OpenCL runtime... OpenCV(ocl4dnn): consider to specify kernel configuration cache directory via OPENCV_OCL4DNN_CONFIG_PATH parameter. [ INFO:0] Successfully initialized OpenCL cache directory: C:\Users\xx\AppData\Local\Temp\opencv\4.0\opencl_cache\ [ INFO:0] Preparing OpenCL cache configuration for context: NVIDIA_Corporation--GeForce_GTX_1050_Ti--419_67 OpenCL program build log: dnn/dummy Status -11: CL_BUILD_PROGRAM_FAILURE -cl-no-subgroup-ifp Error in processing command line: Don't understand command line argument "-cl-no-subgroup-ifp"!

tensorflow 中怎么查看训练好的模型的参数呢?

采用tensorflow中已有封装好的模块进行训练后(比如tf.contrib.layers.fully_connected),怎么查看训练好的模型的参数呢(比如某一层的权重/偏置都是什么)?求指教

iOS OpenCV3.4.2加载TensorFlow已训练好的pb模型失败

各位大哥大姐好! 小白最近在学习OpenCV,使用的是iOS端3.4.2版本:https://opencv.org/releases.html 使用DNN的cv::dnn::readNetFromTensorflow()方法加载TensorFlow网络模型失败,net为empty TensorFlow模型使用的是别人训练好的http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz 这几天尝试了很多模型,也寻了很多中英文的网站论坛。然,未果。 这可急坏了小白,忘大神们不吝赐教!小白愿以身相...额,还是送分吧!感谢!! ![help](https://img-ask.csdn.net/upload/201809/16/1537107723_393719.png)

关于Tensorflow的DNN分类器

用Tensorflow写了一个简易的DNN网络(输入,一个隐层,输出),用作分类,数据集选用的是UCI 的iris数据集 激活函数使用softmax loss函数使用对数似然 以便最后的结果是一个概率解,选概率最大的分类的结果 目前的问题是预测结果出现问题,用测试数据测试显示结果如下 ![图片说明](https://img-ask.csdn.net/upload/201811/27/1543322274_512329.png) 刚刚入门...希望大家指点一下,谢谢辣! ``` #coding:utf-8 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn import preprocessing from sklearn.model_selection import cross_val_score BATCH_SIZE = 30 iris = pd.read_csv('F:\dataset\iris\dataset.data', sep=',', header=None) ''' # 查看导入的数据 print("Dataset Lenght:: ", len(iris)) print("Dataset Shape:: ", iris.shape) print("Dataset:: ") print(iris.head(150)) ''' #将每条数据划分为样本值和标签值 X = iris.values[:, 0:4] Y = iris.values[:, 4] # 整理一下标签数据 # Iris-setosa ---> 0 # Iris-versicolor ---> 1 # Iris-virginica ---> 2 for i in range(len(Y)): if Y[i] == 'Iris-setosa': Y[i] = 0 elif Y[i] == 'Iris-versicolor': Y[i] = 1 elif Y[i] == 'Iris-virginica': Y[i] = 2 # 划分训练集与测试集 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=10) #对数据集X与Y进行shape整理,让第一个参数为-1表示整理X成n行2列,整理Y成n行1列 X_train = np.vstack(X_train).reshape(-1, 4) Y_train = np.vstack(Y_train).reshape(-1, 1) X_test = np.vstack(X_test).reshape(-1, 4) Y_test = np.vstack(Y_test).reshape(-1, 1) ''' print(X_train) print(Y_train) print(X_test) print(Y_test) ''' #定义神经网络的输入,参数和输出,定义前向传播过程 def get_weight(shape): w = tf.Variable(tf.random_normal(shape), dtype=tf.float32) return w def get_bias(shape): b = tf.Variable(tf.constant(0.01, shape=shape)) return b x = tf.placeholder(tf.float32, shape=(None, 4)) yi = tf.placeholder(tf.float32, shape=(None, 1)) def BP_Model(): w1 = get_weight([4, 10]) # 第一个隐藏层,10个神经元,4个输入 b1 = get_bias([10]) y1 = tf.nn.softmax(tf.matmul(x, w1) + b1) # 注意维度 w2 = get_weight([10, 3]) # 输出层,3个神经元,10个输入 b2 = get_bias([3]) y = tf.nn.softmax(tf.matmul(y1, w2) + b2) return y def train(): # 生成计算图 y = BP_Model() # 定义损失函数 ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.arg_max(yi, 1)) loss_cem = tf.reduce_mean(ce) # 定义反向传播方法,正则化 train_step = tf.train.AdamOptimizer(0.001).minimize(loss_cem) # 定义保存器 saver = tf.train.Saver(tf.global_variables()) #生成会话 with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) Steps = 5000 for i in range(Steps): start = (i * BATCH_SIZE) % 300 end = start + BATCH_SIZE reslut = sess.run(train_step, feed_dict={x: X_train[start:end], yi: Y_train[start:end]}) if i % 100 == 0: loss_val = sess.run(loss_cem, feed_dict={x: X_train, yi: Y_train}) print("step: ", i, "loss: ", loss_val) print("保存模型: ", saver.save(sess, './model_iris/bp_model.model')) tf.summary.FileWriter("logs/", sess.graph) #train() def prediction(): # 生成计算图 y = BP_Model() # 定义损失函数 ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.arg_max(yi, 1)) loss_cem = tf.reduce_mean(ce) # 定义保存器 saver = tf.train.Saver(tf.global_variables()) with tf.Session() as sess: saver.restore(sess, './model_iris/bp_model.model') result = sess.run(y, feed_dict={x: X_test}) loss_val = sess.run(loss_cem, feed_dict={x: X_test, yi: Y_test}) print("result :", result) print("loss :", loss_val) result_set = sess.run(tf.argmax(result, axis=1)) print("predict result: ", result_set) print("real result: ", Y_test.reshape(1, -1)) #prediction() ```

为什么我使用TensorFlow2.0训练的时候loss的变化那么奇怪?

我使用tf2.0搭建了一个deepfm模型用来做一个二分类预测。 训练过程中train loss一直在下降,val loss却一直在上升,并且训练到一半内存就不够用了,这是怎么一回事? ``` Train on 19532 steps, validate on 977 steps Epoch 1/5 19532/19532 [==============================] - 549s 28ms/step - loss: 0.4660 - AUC: 0.8519 - val_loss: 1.0059 - val_AUC: 0.5829 Epoch 2/5 19532/19532 [==============================] - 522s 27ms/step - loss: 0.1861 - AUC: 0.9787 - val_loss: 1.7618 - val_AUC: 0.5590 Epoch 3/5 17150/19532 [=========================>....] - ETA: 1:06 - loss: 0.0877 - AUC: 0.9951 Process finished with exit code 137 ``` 还有个问题,我在设计过程中关闭了eager模式,必须使用了下面代码进行初始化: ``` sess.run([tf.compat.v1.global_variables_initializer(), tf.compat.v1.tables_initializer()]) ``` 但我的代码中使用了其他的初始化方法: ``` initializer = tf.keras.initializers.TruncatedNormal(stddev=stddev, seed=29) regularizer = tf.keras.regularizers.l2(l2_reg) .... dnn_hidden_layer_3 = tf.keras.layers.Dense(64, activation='selu', kernel_initializer=initializer, kernel_regularizer=regularizer)(dnn_hidden_layer_2) .... ``` 我这样做他还是按我定义的初始化方法那样初始化吗? 本人小白,在这里先跪谢大家了!

请问tensorflow如何查看一个神经网络运行时所占用的内存大小?

tensorflow有没有专门的函数可以查看神经网络运行时所占用的内存,如果没有的话有什么方法可以查看呢? 跪求大佬们的指导

做keras的可视化时utils.apply_modifications出错

**#(1)用mnist文件生成了model.h5文件:** import numpy as np import keras from keras.datasets import mnist from keras.models import Sequential,Model from keras.layers import Dense,Dropout,Flatten,Activation,Input from keras.layers import Conv2D,MaxPooling2D from keras import backend as K batch_size=128 num_classes=10 epochs=5 #定义图像的长宽 img_rows,img_cols=28,28 #加载mnist数据集 (x_train,y_train),(x_test,y_test)=mnist.load_data() #定义图像的格式 x_train=x_train.reshape(x_train.shape[0],img_rows,img_cols,1) x_test=x_test.reshape(x_test.shape[0],img_rows,img_cols,1) input_shape=(img_rows,img_cols,1) x_train=x_train.astype('float32') x_test=x_test.astype('float32') x_train/=255 x_test/=255 print('x_train shape:',x_train.shape) print(x_train.shape[0],'train samples') print(x_test.shape[0],'test samples') y_train=keras.utils.to_categorical(y_train,num_classes) y_test=keras.utils.to_categorical(y_test,num_classes) #开始DNN网络 model=Sequential() model.add(Conv2D(32,kernel_size=(3,3),activation='relu',input_shape=input_shape)) model.add(Conv2D(54,(3,3),activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128,activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes,activation='softmax',name='preds')) model.compile(loss=keras.losses.categorical_crossentropy,optimizer=keras.optimizers.Adam(),metrics=['accuracy']) model.fit(x_train,y_train,batch_size=batch_size,epochs=epochs,verbose=1,validation_data=(x_test,y_test)) score=model.evaluate(x_test,y_test,verbose=0) print('Test loss:',score[0]) print('Test accuracy:',score[1]) model.save('model.h5') **#(2)用生成的mnist文件做测试:** from keras.models import load_model from vis.utils import utils from keras import activations model=load_model('model.h5') layer_idx=utils.find_layer_idx(model,'preds') model.layers[layer_idx].activation=activations.linear model = utils.apply_modifications(model) 报错:FileNotFoundError: [WinError 3] 系统找不到指定的路径。: '/tmp/curzzxs_.h5'

TensorFlow2.0训练模型时,指标不收敛一直上升到1

我尝试着使用tf2.0来搭建一个DeepFM模型来预测用户是否喜欢某部影片, optimizer选择Adam,loss选择BinaryCrossentropy,评价指标是AUC; 因为涉及到了影片ID,所以我用了shared_embedding,并且必须关闭eager模式; 选用binary_crossentropy作为损失函数时模型在训练时AUC很快就到1了,但选用categorical_crossentropy时loss没太大变化,并且AUC一直保持在0.5,准确率也一直在0.5附近震荡。 下面是选用binary_crossentropy时的输出日志: ![图片说明](https://img-ask.csdn.net/upload/202002/21/1582271521_157835.png) ![图片说明](https://img-ask.csdn.net/upload/202002/21/1582271561_279055.png) 下面是我的代码: ``` one_order_feature_layer = tf.keras.layers.DenseFeatures(one_order_feature_columns) one_order_feature_layer_outputs = one_order_feature_layer(feature_layer_inputs) two_order_feature_layer = tf.keras.layers.DenseFeatures(two_order_feature_columns) two_order_feature_layer_outputs = two_order_feature_layer(feature_layer_inputs) # lr部分 lr_layer = tf.keras.layers.Dense(len(one_order_feature_columns), kernel_initializer=initializer)( one_order_feature_layer_outputs) # fm部分 reshape = tf.reshape(two_order_feature_layer_outputs, [-1, len(two_order_feature_columns), two_order_feature_columns[0].dimension]) sum_square = tf.square(tf.reduce_sum(reshape, axis=1)) square_sum = tf.reduce_sum(tf.square(reshape), axis=1) fm_layers = tf.multiply(0.5, tf.subtract(sum_square, square_sum)) # DNN部分 dnn_hidden_layer_1 = tf.keras.layers.Dense(64, activation='selu', kernel_initializer=initializer, kernel_regularizer=regularizer)(two_order_feature_layer_outputs) dnn_hidden_layer_2 = tf.keras.layers.Dense(64, activation='selu', kernel_initializer=initializer, kernel_regularizer=regularizer)(dnn_hidden_layer_1) dnn_hidden_layer_3 = tf.keras.layers.Dense(64, activation='selu', kernel_initializer=initializer, kernel_regularizer=regularizer)(dnn_hidden_layer_2) dnn_dropout = tf.keras.layers.Dropout(0.5, seed=29)(dnn_hidden_layer_3) # 连接并输出 concatenate_layer = tf.keras.layers.concatenate([lr_layer, fm_layers, dnn_dropout]) out_layer = tf.keras.layers.Dense(1, activation='sigmoid')(concatenate_layer) model = tf.keras.Model(inputs=[v for v in feature_layer_inputs.values()], outputs=out_layer) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['AUC']) # tf.keras.utils.plot_model(model, 'test.png', show_shapes=True) train_ds = make_dataset(train_df, buffer_size=None, shuffle=True) test_ds = make_dataset(test_df) with tf.compat.v1.Session() as sess: sess.run([tf.compat.v1.global_variables_initializer(), tf.compat.v1.tables_initializer()]) model.fit(train_ds, epochs=5) loss, auc = model.evaluate(test_ds) print("AUC", auc) ```

关于opencv中dnn模块内存泄漏

我在c#中持续地去调用一个dll,dll中写的是相关的图像算法,算法中我用到了opencv的dnn模块去读取caffe网络,然后在net.forward的时候会造成内存泄漏,从而使内存爆炸,目前能想到的办法是在c#中清除这部分dll的内存,在不杀死进程的前提下这应该怎么操作呢

vs2015 cmake编译opencv3.1+opencv_contrib报错

在OPENCV_EXTRA_MODULES_PATH,添加opencv_contrib目录后报错,求问是什么问题啊? CMake Error at /Users/Documents/opencv/source/opencv-3.2.0/cmake/OpenCVUtils.cmake:1045 (file): file DOWNLOAD cannot open file for write. Call Stack (most recent call first): /Users/Documents/opencv/source/opencv_contrib-master/modules/dnn/cmake/OpenCVFindLibProtobuf.cmake:32 (ocv_download) /Users/Documents/opencv/source/opencv_contrib-master/modules/dnn/CMakeLists.txt:5 (include) CMake Error at /Users/Documents/opencv/source/opencv-3.2.0/cmake/OpenCVUtils.cmake:1049 (message): Failed to download . Status= Call Stack (most recent call first): /Users/Documents/opencv/source/opencv_contrib-master/modules/dnn/cmake/OpenCVFindLibProtobuf.cmake:32 (ocv_download) /Users/Documents/opencv/source/opencv_contrib-master/modules/dnn/CMakeLists.txt:5 (include)

tensorflow如何在训练一定迭代次数后停止对某个参数的训练,而继续对其他参数进行训练?

我现在想在训练过程中,前100个iteration对某个Variable和其他所有的参数一起进行权重更新,然后在100个iteration之后就停止对这个参数的训练,其他参数继续照常训练,请问这个在tensorflow中要怎么实现?

stacked auto-encoder如何初始化DNN权值

请问哪位大神知道如何用stacked auto-encoder初始化DNN神经网络权值? 有没有相关的代码?谢谢!

opencv模型加载的时候报错,用官方的模型也不行

我在载入模型的时候,如果用的自己的模型或者把模型换目录会出现“face_cascade = cv2.CascadeClassifier("/home/lj/data/haarcascade_frontalface_alt.xml") error: /home/lj/opencv/opencv-3.0.0/modules/core/src/persistence.cpp:1807: error: (-212) /home/lj/data/haarcascade_frontalface_alt.xml(0): Too long string or a last string w/o newline in function icvXMLSkipSpaces”的错误,请问这是什么问题?

大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了

大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...

在中国程序员是青春饭吗?

今年,我也32了 ,为了不给大家误导,咨询了猎头、圈内好友,以及年过35岁的几位老程序员……舍了老脸去揭人家伤疤……希望能给大家以帮助,记得帮我点赞哦。 目录: 你以为的人生 一次又一次的伤害 猎头界的真相 如何应对互联网行业的「中年危机」 一、你以为的人生 刚入行时,拿着傲人的工资,想着好好干,以为我们的人生是这样的: 等真到了那一天,你会发现,你的人生很可能是这样的: ...

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

我以为我学懂了数据结构,直到看了这个导图才发现,我错了

数据结构与算法思维导图

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

和黑客斗争的 6 天!

互联网公司工作,很难避免不和黑客们打交道,我呆过的两家互联网公司,几乎每月每天每分钟都有黑客在公司网站上扫描。有的是寻找 Sql 注入的缺口,有的是寻找线上服务器可能存在的漏洞,大部分都...

Linux 会成为主流桌面操作系统吗?

整理 |屠敏出品 | CSDN(ID:CSDNnews)2020 年 1 月 14 日,微软正式停止了 Windows 7 系统的扩展支持,这意味着服役十年的 Windows 7,属于...

讲一个程序员如何副业月赚三万的真实故事

loonggg读完需要3分钟速读仅需 1 分钟大家好,我是你们的校长。我之前讲过,这年头,只要肯动脑,肯行动,程序员凭借自己的技术,赚钱的方式还是有很多种的。仅仅靠在公司出卖自己的劳动时...

学习总结之HTML5剑指前端(建议收藏,图文并茂)

前言学习《HTML5与CSS3权威指南》这本书很不错,学完之后我颇有感触,觉得web的世界开明了许多。这本书是需要有一定基础的web前端开发工程师。这本书主要学习HTML5和css3,看...

女程序员,为什么比男程序员少???

昨天看到一档综艺节目,讨论了两个话题:(1)中国学生的数学成绩,平均下来看,会比国外好?为什么?(2)男生的数学成绩,平均下来看,会比女生好?为什么?同时,我又联想到了一个技术圈经常讨...

搜狗输入法也在挑战国人的智商!

故事总是一个接着一个到来...上周写完《鲁大师已经彻底沦为一款垃圾流氓软件!》这篇文章之后,鲁大师的市场工作人员就找到了我,希望把这篇文章删除掉。经过一番沟通我先把这篇文章从公号中删除了...

副业收入是我做程序媛的3倍,工作外的B面人生是怎样的?

提到“程序员”,多数人脑海里首先想到的大约是:为人木讷、薪水超高、工作枯燥…… 然而,当离开工作岗位,撕去层层标签,脱下“程序员”这身外套,有的人生动又有趣,马上展现出了完全不同的A/B面人生! 不论是简单的爱好,还是正经的副业,他们都干得同样出色。偶尔,还能和程序员的特质结合,产生奇妙的“化学反应”。 @Charlotte:平日素颜示人,周末美妆博主 大家都以为程序媛也个个不修边幅,但我们也许...

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

新一代神器STM32CubeMonitor介绍、下载、安装和使用教程

关注、星标公众号,不错过精彩内容作者:黄工公众号:strongerHuang最近ST官网悄悄新上线了一款比较强大的工具:STM32CubeMonitor V1.0.0。经过我研究和使用之...

记一次腾讯面试,我挂在了最熟悉不过的队列上……

腾讯后台面试,面试官问:如何自己实现队列?

如果你是老板,你会不会踢了这样的员工?

有个好朋友ZS,是技术总监,昨天问我:“有一个老下属,跟了我很多年,做事勤勤恳恳,主动性也很好。但随着公司的发展,他的进步速度,跟不上团队的步伐了,有点...

我入职阿里后,才知道原来简历这么写

私下里,有不少读者问我:“二哥,如何才能写出一份专业的技术简历呢?我总感觉自己写的简历太烂了,所以投了无数份,都石沉大海了。”说实话,我自己好多年没有写过简历了,但我认识的一个同行,他在阿里,给我说了一些他当年写简历的方法论,我感觉太牛逼了,实在是忍不住,就分享了出来,希望能够帮助到你。 01、简历的本质 作为简历的撰写者,你必须要搞清楚一点,简历的本质是什么,它就是为了来销售你的价值主张的。往深...

冒泡排序动画(基于python pygame实现)

本项目效果初始截图如下 动画见本人b站投稿:https://www.bilibili.com/video/av95491382 本项目对应github地址:https://github.com/BigShuang python版本:3.6,pygame版本:1.9.3。(python版本一致应该就没什么问题) 样例gif如下 ======================= 大爽歌作,mad

Redis核心原理与应用实践

Redis核心原理与应用实践 在很多场景下都会使用Redis,但是到了深层次的时候就了解的不是那么深刻,以至于在面试的时候经常会遇到卡壳的现象,学习知识要做到系统和深入,不要把Redis想象的过于复杂,和Mysql一样,是个读取数据的软件。 有一个理解是Redis是key value缓存服务器,更多的优点在于对value的操作更加丰富。 安装 yum install redis #yum安装 b...

现代的 “Hello, World”,可不仅仅是几行代码而已

作者 |Charles R. Martin译者 | 弯月,责编 | 夕颜头图 |付费下载自视觉中国出品 | CSDN(ID:CSDNnews)新手...

带了6个月的徒弟当了面试官,而身为高级工程师的我天天修Bug......

即将毕业的应届毕业生一枚,现在只拿到了两家offer,但最近听到一些消息,其中一个offer,我这个组据说客户很少,很有可能整组被裁掉。 想问大家: 如果我刚入职这个组就被裁了怎么办呢? 大家都是什么时候知道自己要被裁了的? 面试软技能指导: BQ/Project/Resume 试听内容: 除了刷题,还有哪些技能是拿到offer不可或缺的要素 如何提升面试软实力:简历, 行为面试,沟通能...

!大部分程序员只会写3年代码

如果世界上都是这种不思进取的软件公司,那别说大部分程序员只会写 3 年代码,恐怕就没有程序员这种职业。

离职半年了,老东家又发 offer,回不回?

有小伙伴问松哥这个问题,他在上海某公司,在离职了几个月后,前公司的领导联系到他,希望他能够返聘回去,他很纠结要不要回去? 俗话说好马不吃回头草,但是这个小伙伴既然感到纠结了,我觉得至少说明了两个问题:1.曾经的公司还不错;2.现在的日子也不是很如意。否则应该就不会纠结了。 老实说,松哥之前也有过类似的经历,今天就来和小伙伴们聊聊回头草到底吃不吃。 首先一个基本观点,就是离职了也没必要和老东家弄的苦...

2020阿里全球数学大赛:3万名高手、4道题、2天2夜未交卷

阿里巴巴全球数学竞赛( Alibaba Global Mathematics Competition)由马云发起,由中国科学技术协会、阿里巴巴基金会、阿里巴巴达摩院共同举办。大赛不设报名门槛,全世界爱好数学的人都可参与,不论是否出身数学专业、是否投身数学研究。 2020年阿里巴巴达摩院邀请北京大学、剑桥大学、浙江大学等高校的顶尖数学教师组建了出题组。中科院院士、美国艺术与科学院院士、北京国际数学...

为什么你不想学习?只想玩?人是如何一步一步废掉的

不知道是不是只有我这样子,还是你们也有过类似的经历。 上学的时候总有很多光辉历史,学年名列前茅,或者单科目大佬,但是虽然慢慢地长大了,你开始懈怠了,开始废掉了。。。 什么?你说不知道具体的情况是怎么样的? 我来告诉你: 你常常潜意识里或者心理觉得,自己真正的生活或者奋斗还没有开始。总是幻想着自己还拥有大把时间,还有无限的可能,自己还能逆风翻盘,只不是自己还没开始罢了,自己以后肯定会变得特别厉害...

HTTP与HTTPS的区别

面试官问HTTP与HTTPS的区别,我这样回答让他竖起大拇指!

程序员毕业去大公司好还是小公司好?

虽然大公司并不是人人都能进,但我仍建议还未毕业的同学,尽力地通过校招向大公司挤,但凡挤进去,你这一生会容易很多。 大公司哪里好?没能进大公司怎么办?答案都在这里了,记得帮我点赞哦。 目录: 技术氛围 内部晋升与跳槽 啥也没学会,公司倒闭了? 不同的人脉圈,注定会有不同的结果 没能去大厂怎么办? 一、技术氛围 纵观整个程序员技术领域,哪个在行业有所名气的大牛,不是在大厂? 而且众所...

男生更看重女生的身材脸蛋,还是思想?

往往,我们看不进去大段大段的逻辑。深刻的哲理,往往短而精悍,一阵见血。问:产品经理挺漂亮的,有点心动,但不知道合不合得来。男生更看重女生的身材脸蛋,还是...

程序员为什么千万不要瞎努力?

本文作者用对比非常鲜明的两个开发团队的故事,讲解了敏捷开发之道 —— 如果你的团队缺乏统一标准的环境,那么即使勤劳努力,不仅会极其耗时而且成果甚微,使用...

为什么程序员做外包会被瞧不起?

二哥,有个事想询问下您的意见,您觉得应届生值得去外包吗?公司虽然挺大的,中xx,但待遇感觉挺低,马上要报到,挺纠结的。

立即提问
相关内容推荐