python小菜 2014-03-03 11:54 采纳率: 0%
浏览 854
已采纳

为什么我应该使用指针而不是对象本身?

I'm coming from a Java background and have started working with objects in C++. But one thing that occurred to me is that people often use pointers to objects rather than the objects themselves, for example this declaration:

Object *myObject = new Object;

rather than:

Object myObject;

Or instead of using a function, let's say testFunc(), like this:

myObject.testFunc();

we have to write:

myObject->testFunc();

But I can't figure out why should we do it this way. I would assume it has to do with efficiency and speed since we get direct access to the memory address. Am I right?

转载于:https://stackoverflow.com/questions/22146094/why-should-i-use-a-pointer-rather-than-the-object-itself

  • 写回答

21条回答 默认 最新

  • 10.24 2014-03-14 16:57
    关注

    It's very unfortunate that you see dynamic allocation so often. That just shows how many bad C++ programmers there are.

    In a sense, you have two questions bundled up into one. The first is when should we use dynamic allocation (using new)? The second is when should we use pointers?

    The important take-home message is that you should always use the appropriate tool for the job. In almost all situations, there is something more appropriate and safer than performing manual dynamic allocation and/or using raw pointers.

    Dynamic allocation

    In your question, you've demonstrated two ways of creating an object. The main difference is the storage duration of the object. When doing Object myObject; within a block, the object is created with automatic storage duration, which means it will be destroyed automatically when it goes out of scope. When you do new Object(), the object has dynamic storage duration, which means it stays alive until you explicitly delete it. You should only use dynamic storage duration when you need it. That is, you should always prefer creating objects with automatic storage duration when you can.

    The main two situations in which you might require dynamic allocation:

    1. You need the object to outlive the current scope - that specific object at that specific memory location, not a copy of it. If you're okay with copying/moving the object (most of the time you should be), you should prefer an automatic object.
    2. You need to allocate a lot of memory, which may easily fill up the stack. It would be nice if we didn't have to concern ourselves with this (most of the time you shouldn't have to), as it's really outside the purview of C++, but unfortunately we have to deal with the reality of the systems we're developing for.

    When you do absolutely require dynamic allocation, you should encapsulate it in a smart pointer or some other type that performs RAII (like the standard containers). Smart pointers provide ownership semantics of dynamically allocated objects. Take a look at std::unique_ptr and std::shared_ptr, for example. If you use them appropriately, you can almost entirely avoid performing your own memory management (see the Rule of Zero).

    Pointers

    However, there are other more general uses for raw pointers beyond dynamic allocation, but most have alternatives that you should prefer. As before, always prefer the alternatives unless you really need pointers.

    1. You need reference semantics. Sometimes you want to pass an object using a pointer (regardless of how it was allocated) because you want the function to which you're passing it to have access that that specific object (not a copy of it). However, in most situations, you should prefer reference types to pointers, because this is specifically what they're designed for. Note this is not necessarily about extending the lifetime of the object beyond the current scope, as in situation 1 above. As before, if you're okay with passing a copy of the object, you don't need reference semantics.

    2. You need polymorphism. You can only call functions polymorphically (that is, according to the dynamic type of an object) through a pointer or reference to the object. If that's the behaviour you need, then you need to use pointers or references. Again, references should be preferred.

    3. You want to represent that an object is optional by allowing a nullptr to be passed when the object is being omitted. If it's an argument, you should prefer to use default arguments or function overloads. Otherwise, you should prefer use a type that encapsulates this behaviour, such as std::optional (introduced in C++17 - with earlier C++ standards, use boost::optional).

    4. You want to decouple compilation units to improve compilation time. The useful property of a pointer is that you only require a forward declaration of the pointed-to type (to actually use the object, you'll need a definition). This allows you to decouple parts of your compilation process, which may significantly improve compilation time. See the Pimpl idiom.

    5. You need to interface with a C library or a C-style library. At this point, you're forced to use raw pointers. The best thing you can do is make sure you only let your raw pointers loose at the last possible moment. You can get a raw pointer from a smart pointer, for example, by using its get member function. If a library performs some allocation for you which it expects you to deallocate via a handle, you can often wrap the handle up in a smart pointer with a custom deleter that will deallocate the object appropriately.

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(20条)

报告相同问题?

悬赏问题

  • ¥17 pro*C预编译“闪回查询”报错SCN不能识别
  • ¥15 微信会员卡接入微信支付商户号收款
  • ¥15 如何获取烟草零售终端数据
  • ¥15 数学建模招标中位数问题
  • ¥15 phython路径名过长报错 不知道什么问题
  • ¥15 深度学习中模型转换该怎么实现
  • ¥15 HLs设计手写数字识别程序编译通不过
  • ¥15 Stata外部命令安装问题求帮助!
  • ¥15 从键盘随机输入A-H中的一串字符串,用七段数码管方法进行绘制。提交代码及运行截图。
  • ¥15 TYPCE母转母,插入认方向