~Onlooker 2012-02-16 15:58 采纳率: 0%
浏览 282
已采纳

为什么将0.1 f 改为0会降低10倍的性能?

Why does this bit of code,

const float x[16] = {  1.1,   1.2,   1.3,     1.4,   1.5,   1.6,   1.7,   1.8,
                       1.9,   2.0,   2.1,     2.2,   2.3,   2.4,   2.5,   2.6};
const float z[16] = {1.123, 1.234, 1.345, 156.467, 1.578, 1.689, 1.790, 1.812,
                     1.923, 2.034, 2.145,   2.256, 2.367, 2.478, 2.589, 2.690};
float y[16];
for (int i = 0; i < 16; i++)
{
    y[i] = x[i];
}

for (int j = 0; j < 9000000; j++)
{
    for (int i = 0; i < 16; i++)
    {
        y[i] *= x[i];
        y[i] /= z[i];
        y[i] = y[i] + 0.1f; // <--
        y[i] = y[i] - 0.1f; // <--
    }
}

run more than 10 times faster than the following bit (identical except where noted)?

const float x[16] = {  1.1,   1.2,   1.3,     1.4,   1.5,   1.6,   1.7,   1.8,
                       1.9,   2.0,   2.1,     2.2,   2.3,   2.4,   2.5,   2.6};
const float z[16] = {1.123, 1.234, 1.345, 156.467, 1.578, 1.689, 1.790, 1.812,
                     1.923, 2.034, 2.145,   2.256, 2.367, 2.478, 2.589, 2.690};
float y[16];
for (int i = 0; i < 16; i++)
{
    y[i] = x[i];
}

for (int j = 0; j < 9000000; j++)
{
    for (int i = 0; i < 16; i++)
    {
        y[i] *= x[i];
        y[i] /= z[i];
        y[i] = y[i] + 0; // <--
        y[i] = y[i] - 0; // <--
    }
}

when compiling with Visual Studio 2010 SP1. (I haven't tested with other compilers.)

转载于:https://stackoverflow.com/questions/9314534/why-does-changing-0-1f-to-0-slow-down-performance-by-10x

  • 写回答

5条回答 默认 最新

  • elliott.david 2012-02-16 16:20
    关注

    Welcome to the world of denormalized floating-point! They can wreak havoc on performance!!!

    Denormal (or subnormal) numbers are kind of a hack to get some extra values very close to zero out of the floating point representation. Operations on denormalized floating-point can be tens to hundreds of times slower than on normalized floating-point. This is because many processors can't handle them directly and must trap and resolve them using microcode.

    If you print out the numbers after 10,000 iterations, you will see that they have converged to different values depending on whether 0 or 0.1 is used.

    Here's the test code compiled on x64:

    int main() {
    
        double start = omp_get_wtime();
    
        const float x[16]={1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6};
        const float z[16]={1.123,1.234,1.345,156.467,1.578,1.689,1.790,1.812,1.923,2.034,2.145,2.256,2.367,2.478,2.589,2.690};
        float y[16];
        for(int i=0;i<16;i++)
        {
            y[i]=x[i];
        }
        for(int j=0;j<9000000;j++)
        {
            for(int i=0;i<16;i++)
            {
                y[i]*=x[i];
                y[i]/=z[i];
    #ifdef FLOATING
                y[i]=y[i]+0.1f;
                y[i]=y[i]-0.1f;
    #else
                y[i]=y[i]+0;
                y[i]=y[i]-0;
    #endif
    
                if (j > 10000)
                    cout << y[i] << "  ";
            }
            if (j > 10000)
                cout << endl;
        }
    
        double end = omp_get_wtime();
        cout << end - start << endl;
    
        system("pause");
        return 0;
    }
    

    Output:

    #define FLOATING
    1.78814e-007  1.3411e-007  1.04308e-007  0  7.45058e-008  6.70552e-008  6.70552e-008  5.58794e-007  3.05474e-007  2.16067e-007  1.71363e-007  1.49012e-007  1.2666e-007  1.11759e-007  1.04308e-007  1.04308e-007
    1.78814e-007  1.3411e-007  1.04308e-007  0  7.45058e-008  6.70552e-008  6.70552e-008  5.58794e-007  3.05474e-007  2.16067e-007  1.71363e-007  1.49012e-007  1.2666e-007  1.11759e-007  1.04308e-007  1.04308e-007
    
    //#define FLOATING
    6.30584e-044  3.92364e-044  3.08286e-044  0  1.82169e-044  1.54143e-044  2.10195e-044  2.46842e-029  7.56701e-044  4.06377e-044  3.92364e-044  3.22299e-044  3.08286e-044  2.66247e-044  2.66247e-044  2.24208e-044
    6.30584e-044  3.92364e-044  3.08286e-044  0  1.82169e-044  1.54143e-044  2.10195e-044  2.45208e-029  7.56701e-044  4.06377e-044  3.92364e-044  3.22299e-044  3.08286e-044  2.66247e-044  2.66247e-044  2.24208e-044
    

    Note how in the second run the numbers are very close to zero.

    Denormalized numbers are generally rare and thus most processors don't try to handle them efficiently.


    To demonstrate that this has everything to do with denormalized numbers, if we flush denormals to zero by adding this to the start of the code:

    _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
    

    Then the version with 0 is no longer 10x slower and actually becomes faster. (This requires that the code be compiled with SSE enabled.)

    This means that rather than using these weird lower precision almost-zero values, we just round to zero instead.

    Timings: Core i7 920 @ 3.5 GHz:

    //  Don't flush denormals to zero.
    0.1f: 0.564067
    0   : 26.7669
    
    //  Flush denormals to zero.
    0.1f: 0.587117
    0   : 0.341406
    

    In the end, this really has nothing to do with whether it's an integer or floating-point. The 0 or 0.1f is converted/stored into a register outside of both loops. So that has no effect on performance.

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(4条)

报告相同问题?

悬赏问题

  • ¥15 素材场景中光线烘焙后灯光失效
  • ¥15 请教一下各位,为什么我这个没有实现模拟点击
  • ¥15 执行 virtuoso 命令后,界面没有,cadence 启动不起来
  • ¥50 comfyui下连接animatediff节点生成视频质量非常差的原因
  • ¥20 有关区间dp的问题求解
  • ¥15 多电路系统共用电源的串扰问题
  • ¥15 slam rangenet++配置
  • ¥15 有没有研究水声通信方面的帮我改俩matlab代码
  • ¥15 ubuntu子系统密码忘记
  • ¥15 保护模式-系统加载-段寄存器