如何设计一个程序,使用运算符重载创建定义复数相加、相减、相乘和相除的复数类Complex,并根据用户输入实现复数类的加减乘除运算?
2条回答 默认 最新
- CSDN专家-showbo 2022-01-08 12:16关注
题主要的代码如下
using System; namespace ConsoleApp2 {/// <summary> /// 复数类 /// </summary> class ComplexNumber { //实部 double _RealPart; public double RealPart { get { return _RealPart; } set { _RealPart = value; } } //虚部 double _ImaginaryPart; public double ImaginaryPart { get { return _ImaginaryPart; } set { _ImaginaryPart = value; } } /// <summary> /// 创建一个复数类实例 /// </summary> /// <param name="rp">实部</param> /// <param name="ip">虚部</param> public ComplexNumber(double rp, double ip) { RealPart = rp; ImaginaryPart = ip; } /// <summary> /// 返回一个复数的共轭复数 /// </summary> /// <param name="cn"></param> /// <returns></returns> public static ComplexNumber ConjugateOf(ComplexNumber cn) { return new ComplexNumber(cn.RealPart, -cn.ImaginaryPart); } /// <summary> /// 以字符串形式输出复数 /// </summary> /// <returns></returns> public override string ToString() { //输出:实部 +/- 虚部 i 虚部前的加减号取决于虚部的正负 return string.Format(" {0} {1} {2} i ", RealPart.ToString("#0.00"), ImaginaryPart >= 0 ? "+" : "-", Math.Abs(ImaginaryPart).ToString("#0.00")); } #region 重载一元运算符 //取正、取负 public static ComplexNumber operator +(ComplexNumber cn) { return cn; } public static ComplexNumber operator -(ComplexNumber cn) { return new ComplexNumber(-cn.RealPart, -cn.ImaginaryPart); } #endregion #region 重载二元运算符 //加法 (a+bi)+(c+di)=(a+c)+(b+d)i public static ComplexNumber operator +(double num, ComplexNumber cn) { return new ComplexNumber(cn.RealPart + num, cn.ImaginaryPart); } public static ComplexNumber operator +(ComplexNumber cn, double num) { return new ComplexNumber(cn.RealPart + num, cn.ImaginaryPart); } public static ComplexNumber operator +(ComplexNumber cn1, ComplexNumber cn2) { return new ComplexNumber( cn1.RealPart + cn2.RealPart, cn1.ImaginaryPart + cn2.ImaginaryPart); } //减法 (a-bi)+(c-di)=(a-c)+(b-d)i public static ComplexNumber operator -(double num, ComplexNumber cn) { return new ComplexNumber(cn.RealPart - num, cn.ImaginaryPart); } public static ComplexNumber operator -(ComplexNumber cn, double num) { return new ComplexNumber(cn.RealPart - num, cn.ImaginaryPart); } public static ComplexNumber operator -(ComplexNumber cn1, ComplexNumber cn2) { return new ComplexNumber( cn1.RealPart - cn2.RealPart, cn1.ImaginaryPart - cn2.ImaginaryPart); } //乘法 (a+bi)*(c+di)=(ac-bd)+(ad+bc)i public static ComplexNumber operator *(double num, ComplexNumber cn) { return new ComplexNumber(cn.RealPart * num, cn.ImaginaryPart * num); } public static ComplexNumber operator *(ComplexNumber cn, double num) { return new ComplexNumber(cn.RealPart * num, cn.ImaginaryPart * num); } public static ComplexNumber operator *(ComplexNumber cn1, ComplexNumber cn2) { return new ComplexNumber( cn1.RealPart * cn2.RealPart - cn1.ImaginaryPart * cn2.ImaginaryPart, cn1.RealPart * cn2.ImaginaryPart + cn1.ImaginaryPart * cn2.RealPart); } //除法: //实数除以复数:n/(c+di)=n*(c-di)/(c*c+d*d) public static ComplexNumber operator /(double num, ComplexNumber cn) { return num * new ComplexNumber(cn.RealPart, -cn.ImaginaryPart) / (cn.RealPart * cn.RealPart + cn.ImaginaryPart * cn.ImaginaryPart); } //复数除以实数:(a+bi)/n=a/n+b/n*i public static ComplexNumber operator /(ComplexNumber cn, double num) { return new ComplexNumber(cn.RealPart / num, cn.ImaginaryPart / num); } //复数除以复数:(a+bi)/(c+di)=((ac+bd)+(ad+bc)i)/(c*c+d*d) public static ComplexNumber operator /(ComplexNumber cn1, ComplexNumber cn2) { double a = cn1.RealPart, b = cn1.ImaginaryPart; double c = cn2.RealPart, d = cn2.ImaginaryPart; return new ComplexNumber(a * c + b * d, a * d + b * c) / (c * c + d * d); } #endregion #region 重载关系运算符 //等于 public static bool operator ==(ComplexNumber cn1, ComplexNumber cn2) { return cn1.RealPart == cn2.RealPart && cn1.ImaginaryPart == cn2.ImaginaryPart ? true : false; } public static bool operator ==(ComplexNumber cn, double n) { return cn.RealPart == n && cn.ImaginaryPart == 0 ? true : false; } public static bool operator ==(double n, ComplexNumber cn) { return cn.RealPart == n && cn.ImaginaryPart == 0 ? true : false; } //不等于 public static bool operator !=(ComplexNumber cn1, ComplexNumber cn2) { return cn1.RealPart != cn2.RealPart || cn1.ImaginaryPart != cn2.ImaginaryPart ? true : false; } public static bool operator !=(ComplexNumber cn, double n) { return cn.RealPart != n || cn.ImaginaryPart != 0 ? true : false; } public static bool operator !=(double n, ComplexNumber cn) { return cn.RealPart != n || cn.ImaginaryPart != 0 ? true : false; } //重载==和!=运算符后应该重写Equal是和GetHashCode函数 //重写Equals函数 public override bool Equals(object obj) { if (!(obj is ComplexNumber)) return false; else { ComplexNumber cn = (ComplexNumber)obj; if (this.RealPart != cn.RealPart) return false; if (this.ImaginaryPart != cn.ImaginaryPart) return false; return true; } } //重写GetHashCode函数 public override int GetHashCode() { return base.GetHashCode(); } #endregion #region 重载true和false //实部和虚部至少有一个不为0时,为true,否则为false public static bool operator true(ComplexNumber cn) { return cn.RealPart != 0 || cn.ImaginaryPart != 0 ? true : false; } public static bool operator false(ComplexNumber cn) { return cn.RealPart == 0 && cn.ImaginaryPart == 0 ? true : false; } #endregion #region 转换运算符 //只能显示转换,强制转换时舍弃虚部 public static explicit operator int(ComplexNumber cn) { return (int)cn.RealPart; } public static explicit operator long(ComplexNumber cn) { return (long)cn.RealPart; } public static explicit operator double(ComplexNumber cn) { return cn.RealPart; } #endregion } class Program { static void Main(string[] args) { ComplexNumber cn = new ComplexNumber(1, 1); //两个复数 ComplexNumber cn1 = new ComplexNumber(1, 1); ComplexNumber cn2 = new ComplexNumber(1, -1); //打印复数 Console.WriteLine("cn1: " + cn1); Console.WriteLine("cn2: " + cn2); //求复数的共轭复数 Console.WriteLine("Conjugate of cn1: " + ComplexNumber.ConjugateOf(cn1)); Console.WriteLine("Conjugate of cn2: " + ComplexNumber.ConjugateOf(cn2)); //复数取正负 Console.WriteLine("+cn1: " + (+cn1)); Console.WriteLine("-cn1: " + (-cn1)); //复数加法 Console.WriteLine("cn1+cn2: " + (cn1 + cn2)); Console.WriteLine("cn1+1.2: " + (cn1 + 1.2)); Console.WriteLine("1.2+cn1: " + (1.2 + cn1)); //复数减法 Console.WriteLine("cn1-cn2: " + (cn1 - cn2)); Console.WriteLine("cn1-1.2: " + (cn1 - 1.2)); Console.WriteLine("1.2-cn1: " + (1.2 - cn1)); //复数乘法 Console.WriteLine("cn1*cn2: " + (cn1 * cn2)); Console.WriteLine("cn1*1.2: " + (cn1 * 1.2)); Console.WriteLine("1.2*cn1: " + (1.2 * cn1)); //复数除法 Console.WriteLine("cn1/cn2: " + (cn1 / cn2)); Console.WriteLine("cn1/1.2: " + (cn1 / 1.2)); Console.WriteLine("1.2/cn1: " + (1.2 / cn1)); //检验是否相等 if (cn1 == cn2) { Console.WriteLine("cn1==cn2"); } if (cn1 != cn2) { Console.WriteLine("cn1!=cn2"); } if (cn1 + cn2 == 2) { Console.WriteLine("cn1+cn2==2"); } if (cn1 + cn2 != 2) { Console.WriteLine("cn1+cn2!=2"); } //显式类型转换 Console.WriteLine("(int)(cn1+cn2): " + (int)(cn1 + cn2)); Console.WriteLine("(long)(cn1+cn2): " + (long)(cn1 + cn2)); Console.WriteLine("(double)(cn1+cn2): " + (double)(cn1 + cn2)); Console.ReadLine(); } } }
有其他问题可以继续交流~本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报 编辑记录
悬赏问题
- ¥15 软件供应链安全是跟可靠性有关还是跟安全性有关?
- ¥15 电脑蓝屏logfilessrtsrttrail问题
- ¥20 关于wordpress建站遇到的问题!(语言-php)(相关搜索:云服务器)
- ¥15 【求职】怎么找到一个周围人素质都很高不会欺负他人,并且未来月薪能够达到一万以上(技术岗)的工作?希望可以收到写有具体,可靠,已经实践过了的路径的回答?
- ¥15 Java+vue部署版本反编译
- ¥100 对反编译和ai熟悉的开发者。
- ¥15 带序列特征的多输出预测模型
- ¥15 Python 如何安装 distutils模块
- ¥15 关于#网络#的问题:网络是从楼上引一根网线下来,接了2台傻瓜交换机,也更换了ip还是不行
- ¥15 资源泄露软件闪退怎么解决?