qq_46706768 2022-08-22 17:29 采纳率: 100%
浏览 19
已结题

qsort使用时,其中第四个函数是需要自己编写的,那么自定义函数中的参数是如何实现传参的呢?

qsort使用时,其中第四个函数是需要自己编写的,那么自定义函数中的参数是如何实现传参的呢?
例如:

img


其中arr中数据到const voide1 和const voide2 的传参是如何实现的呢?

  • 写回答

1条回答 默认 最新

  • 赵4老师 2022-08-22 17:56
    关注

    C:\Program Files (x86)\Microsoft SDK\src\crt\qsort.c

    仅供参考:

    /***
    *qsort.c - quicksort algorithm; qsort() library function for sorting arrays
    *
    *       Copyright (c) 1985-2001, Microsoft Corporation. All rights reserved.
    *
    *Purpose:
    *       To implement the qsort() routine for sorting arrays.
    *
    *******************************************************************************/
    
    #include <cruntime.h>
    #include <stdlib.h>
    #include <search.h>
    #include <internal.h>
    
    /* Always compile this module for speed, not size */
    #pragma optimize("t", on)
    
    /* prototypes for local routines */
    static void __cdecl shortsort(char *lo, char *hi, size_t width,
                    int (__cdecl *comp)(const void *, const void *));
    static void __cdecl swap(char *p, char *q, size_t width);
    
    /* this parameter defines the cutoff between using quick sort and
       insertion sort for arrays; arrays with lengths shorter or equal to the
       below value use insertion sort */
    
    #define CUTOFF 8            /* testing shows that this is good value */
    
    /***
    *qsort(base, num, wid, comp) - quicksort function for sorting arrays
    *
    *Purpose:
    *       quicksort the array of elements
    *       side effects:  sorts in place
    *       maximum array size is number of elements times size of elements,
    *       but is limited by the virtual address space of the processor
    *
    *Entry:
    *       char *base = pointer to base of array
    *       size_t num  = number of elements in the array
    *       size_t width = width in bytes of each array element
    *       int (*comp)() = pointer to function returning analog of strcmp for
    *               strings, but supplied by user for comparing the array elements.
    *               it accepts 2 pointers to elements and returns neg if 1<2, 0 if
    *               1=2, pos if 1>2.
    *
    *Exit:
    *       returns void
    *
    *Exceptions:
    *
    *******************************************************************************/
    
    /* sort the array between lo and hi (inclusive) */
    
    #define STKSIZ (8*sizeof(void*) - 2)
    
    void __cdecl qsort (
        void *base,
        size_t num,
        size_t width,
        int (__cdecl *comp)(const void *, const void *)
        )
    {
        /* Note: the number of stack entries required is no more than
           1 + log2(num), so 30 is sufficient for any array */
        char *lo, *hi;              /* ends of sub-array currently sorting */
        char *mid;                  /* points to middle of subarray */
        char *loguy, *higuy;        /* traveling pointers for partition step */
        size_t size;                /* size of the sub-array */
        char *lostk[STKSIZ], *histk[STKSIZ];
        int stkptr;                 /* stack for saving sub-array to be processed */
    
        if (num < 2 || width == 0)
            return;                 /* nothing to do */
    
        stkptr = 0;                 /* initialize stack */
    
        lo = base;
        hi = (char *)base + width * (num-1);        /* initialize limits */
    
        /* this entry point is for pseudo-recursion calling: setting
           lo and hi and jumping to here is like recursion, but stkptr is
           preserved, locals aren't, so we preserve stuff on the stack */
    recurse:
    
        size = (hi - lo) / width + 1;        /* number of el's to sort */
    
        /* below a certain size, it is faster to use a O(n^2) sorting method */
        if (size <= CUTOFF) {
            shortsort(lo, hi, width, comp);
        }
        else {
            /* First we pick a partitioning element.  The efficiency of the
               algorithm demands that we find one that is approximately the median
               of the values, but also that we select one fast.  We choose the
               median of the first, middle, and last elements, to avoid bad
               performance in the face of already sorted data, or data that is made
               up of multiple sorted runs appended together.  Testing shows that a
               median-of-three algorithm provides better performance than simply
               picking the middle element for the latter case. */
    
            mid = lo + (size / 2) * width;      /* find middle element */
    
            /* Sort the first, middle, last elements into order */
            if (comp(lo, mid) > 0) {
                swap(lo, mid, width);
            }
            if (comp(lo, hi) > 0) {
                swap(lo, hi, width);
            }
            if (comp(mid, hi) > 0) {
                swap(mid, hi, width);
            }
    
            /* We now wish to partition the array into three pieces, one consisting
               of elements <= partition element, one of elements equal to the
               partition element, and one of elements > than it.  This is done
               below; comments indicate conditions established at every step. */
    
            loguy = lo;
            higuy = hi;
    
            /* Note that higuy decreases and loguy increases on every iteration,
               so loop must terminate. */
            for (;;) {
                /* lo <= loguy < hi, lo < higuy <= hi,
                   A[i] <= A[mid] for lo <= i <= loguy,
                   A[i] > A[mid] for higuy <= i < hi,
                   A[hi] >= A[mid] */
    
                /* The doubled loop is to avoid calling comp(mid,mid), since some
                   existing comparison funcs don't work when passed the same
                   value for both pointers. */
    
                if (mid > loguy) {
                    do  {
                        loguy += width;
                    } while (loguy < mid && comp(loguy, mid) <= 0);
                }
                if (mid <= loguy) {
                    do  {
                        loguy += width;
                    } while (loguy <= hi && comp(loguy, mid) <= 0);
                }
    
                /* lo < loguy <= hi+1, A[i] <= A[mid] for lo <= i < loguy,
                   either loguy > hi or A[loguy] > A[mid] */
    
                do  {
                    higuy -= width;
                } while (higuy > mid && comp(higuy, mid) > 0);
    
                /* lo <= higuy < hi, A[i] > A[mid] for higuy < i < hi,
                   either higuy == lo or A[higuy] <= A[mid] */
    
                if (higuy < loguy)
                    break;
    
                /* if loguy > hi or higuy == lo, then we would have exited, so
                   A[loguy] > A[mid], A[higuy] <= A[mid],
                   loguy <= hi, higuy > lo */
    
                swap(loguy, higuy, width);
    
                /* If the partition element was moved, follow it.  Only need
                   to check for mid == higuy, since before the swap,
                   A[loguy] > A[mid] implies loguy != mid. */
    
                if (mid == higuy)
                    mid = loguy;
    
                /* A[loguy] <= A[mid], A[higuy] > A[mid]; so condition at top
                   of loop is re-established */
            }
    
            /*     A[i] <= A[mid] for lo <= i < loguy,
                   A[i] > A[mid] for higuy < i < hi,
                   A[hi] >= A[mid]
                   higuy < loguy
               implying:
                   higuy == loguy-1
                   or higuy == hi - 1, loguy == hi + 1, A[hi] == A[mid] */
    
            /* Find adjacent elements equal to the partition element.  The
               doubled loop is to avoid calling comp(mid,mid), since some
               existing comparison funcs don't work when passed the same value
               for both pointers. */
    
            higuy += width;
            if (mid < higuy) {
                do  {
                    higuy -= width;
                } while (higuy > mid && comp(higuy, mid) == 0);
            }
            if (mid >= higuy) {
                do  {
                    higuy -= width;
                } while (higuy > lo && comp(higuy, mid) == 0);
            }
    
            /* OK, now we have the following:
                  higuy < loguy
                  lo <= higuy <= hi
                  A[i]  <= A[mid] for lo <= i <= higuy
                  A[i]  == A[mid] for higuy < i < loguy
                  A[i]  >  A[mid] for loguy <= i < hi
                  A[hi] >= A[mid] */
    
            /* We've finished the partition, now we want to sort the subarrays
               [lo, higuy] and [loguy, hi].
               We do the smaller one first to minimize stack usage.
               We only sort arrays of length 2 or more.*/
    
            if ( higuy - lo >= hi - loguy ) {
                if (lo < higuy) {
                    lostk[stkptr] = lo;
                    histk[stkptr] = higuy;
                    ++stkptr;
                }                           /* save big recursion for later */
    
                if (loguy < hi) {
                    lo = loguy;
                    goto recurse;           /* do small recursion */
                }
            }
            else {
                if (loguy < hi) {
                    lostk[stkptr] = loguy;
                    histk[stkptr] = hi;
                    ++stkptr;               /* save big recursion for later */
                }
    
                if (lo < higuy) {
                    hi = higuy;
                    goto recurse;           /* do small recursion */
                }
            }
        }
    
        /* We have sorted the array, except for any pending sorts on the stack.
           Check if there are any, and do them. */
    
        --stkptr;
        if (stkptr >= 0) {
            lo = lostk[stkptr];
            hi = histk[stkptr];
            goto recurse;           /* pop subarray from stack */
        }
        else
            return;                 /* all subarrays done */
    }
    
    
    /***
    *shortsort(hi, lo, width, comp) - insertion sort for sorting short arrays
    *
    *Purpose:
    *       sorts the sub-array of elements between lo and hi (inclusive)
    *       side effects:  sorts in place
    *       assumes that lo < hi
    *
    *Entry:
    *       char *lo = pointer to low element to sort
    *       char *hi = pointer to high element to sort
    *       size_t width = width in bytes of each array element
    *       int (*comp)() = pointer to function returning analog of strcmp for
    *               strings, but supplied by user for comparing the array elements.
    *               it accepts 2 pointers to elements and returns neg if 1<2, 0 if
    *               1=2, pos if 1>2.
    *
    *Exit:
    *       returns void
    *
    *Exceptions:
    *
    *******************************************************************************/
    
    static void __cdecl shortsort (
        char *lo,
        char *hi,
        size_t width,
        int (__cdecl *comp)(const void *, const void *)
        )
    {
        char *p, *max;
    
        /* Note: in assertions below, i and j are alway inside original bound of
           array to sort. */
    
        while (hi > lo) {
            /* A[i] <= A[j] for i <= j, j > hi */
            max = lo;
            for (p = lo+width; p <= hi; p += width) {
                /* A[i] <= A[max] for lo <= i < p */
                if (comp(p, max) > 0) {
                    max = p;
                }
                /* A[i] <= A[max] for lo <= i <= p */
            }
    
            /* A[i] <= A[max] for lo <= i <= hi */
    
            swap(max, hi, width);
    
            /* A[i] <= A[hi] for i <= hi, so A[i] <= A[j] for i <= j, j >= hi */
    
            hi -= width;
    
            /* A[i] <= A[j] for i <= j, j > hi, loop top condition established */
        }
        /* A[i] <= A[j] for i <= j, j > lo, which implies A[i] <= A[j] for i < j,
           so array is sorted */
    }
    
    
    /***
    *swap(a, b, width) - swap two elements
    *
    *Purpose:
    *       swaps the two array elements of size width
    *
    *Entry:
    *       char *a, *b = pointer to two elements to swap
    *       size_t width = width in bytes of each array element
    *
    *Exit:
    *       returns void
    *
    *Exceptions:
    *
    *******************************************************************************/
    
    static void __cdecl swap (
        char *a,
        char *b,
        size_t width
        )
    {
        char tmp;
    
        if ( a != b )
            /* Do the swap one character at a time to avoid potential alignment
               problems. */
            while ( width-- ) {
                tmp = *a;
                *a++ = *b;
                *b++ = tmp;
            }
    }
    
    
    
    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论 编辑记录

报告相同问题?

问题事件

  • 系统已结题 8月31日
  • 已采纳回答 8月23日
  • 创建了问题 8月22日

悬赏问题

  • ¥15 2020长安杯与连接网探
  • ¥15 关于#matlab#的问题:在模糊控制器中选出线路信息,在simulink中根据线路信息生成速度时间目标曲线(初速度为20m/s,15秒后减为0的速度时间图像)我想问线路信息是什么
  • ¥15 banner广告展示设置多少时间不怎么会消耗用户价值
  • ¥16 mybatis的代理对象无法通过@Autowired装填
  • ¥15 可见光定位matlab仿真
  • ¥15 arduino 四自由度机械臂
  • ¥15 wordpress 产品图片 GIF 没法显示
  • ¥15 求三国群英传pl国战时间的修改方法
  • ¥15 matlab代码代写,需写出详细代码,代价私
  • ¥15 ROS系统搭建请教(跨境电商用途)