您好,我现在想用原形网络训练自己的样本,但是我只会用其复现标准样本,可以请问一下怎么操作嘛?
1条回答 默认 最新
- TechLens 2023-03-22 14:18关注
您可以按照以下步骤使用原形网络训练您自己的样本:
- 将您的数据集转换为pytorch可以使用的数据格式,例如使用torchvision中的ImageFolder或Dataset类。请确保每个类别的样本数量相等并且都在一个文件夹中。
- 加载原形网络模型,例如:
from prototypical_loss import PrototypicalLoss from models import ProtoNet # create a model model = ProtoNet() # define the loss function loss_fn = PrototypicalLoss() # define the optimizer optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
- 划分您的数据集为训练集、验证集和测试集,并使用pytorch的DataLoader对它们进行加载:
from torch.utils.data import Dataset, DataLoader # define your dataset dataset = YourDataset(...) # define the split sizes train_size = int(0.7 * len(dataset)) val_size = int(0.2 * len(dataset)) test_size = len(dataset) - train_size - val_size # split the dataset train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, val_size, test_size]) # define the data loaders train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=32) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32)
- 训练网络。您可以按照以下方式迭代训练和验证集:
# train the model for epoch in range(num_epochs): model.train() train_loss = 0 for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = loss_fn(output, target) loss.backward() optimizer.step() train_loss += loss.item() train_loss /= len(train_loader) # evaluate on the validation set model.eval() val_loss = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(val_loader): output = model(data) val_loss += loss_fn(output, target).item() val_loss /= len(val_loader) # print the loss and accuracy print(f"Epoch {epoch+1}/{num_epochs}: train_loss={train_loss:.4f}, val_loss={val_loss:.4f}"
- 测试模型:
# test the model model.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): output = model(data) loss = loss_fn(output, target) test_loss += loss.item() _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() test_loss /= len(test_loader) accuracy = correct / total # print the test loss and accuracy print(f"Test loss={test_loss:.4f}, Accuracy={accuracy:.4f}"
以上是使用原形网络训练自己的样本的基本步骤,您可以根据自己的数据集和任务进行修改和调整。
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报
悬赏问题
- ¥15 资源泄露软件闪退怎么解决?
- ¥15 各位佬,下面的问题怎么用python实现?
- ¥15 CCF-CSP 2023 第三题 解压缩(50%)
- ¥30 comfyui openpose报错
- ¥20 Wpf Datarid单元格闪烁效果的实现
- ¥15 图像分割、图像边缘提取
- ¥15 sqlserver执行存储过程报错
- ¥100 nuxt、uniapp、ruoyi-vue 相关发布问题
- ¥15 浮窗和全屏应用同时存在,全屏应用输入法无法弹出
- ¥100 matlab2009 32位一直初始化