import math
import torch
import torch.nn as nn
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super().__init__()
self.pos_encoding = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
self.pos_encoding[:, 0::2] = torch.sin(position * div_term)
self.pos_encoding[:, 1::2] = torch.cos(position * div_term)
self.pos_encoding = self.pos_encoding.unsqueeze(0).transpose(0, 1)
def forward(self, x):
** return x + self.pos_encoding[:x.size(0), :]####**
class TransformerModel(nn.Module):
def __init__(self, output_len, d_model=128, nhead=4, num_encoder_layers=3):
super().__init__()
self.pos_encoder = PositionalEncoding(d_model=d_model)
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer=encoder_layer,
num_layers=num_encoder_layers)
self.fc1 = nn.Linear(d_model, 128)
self.fc2 = nn.Linear(128, output_len)
self.output_cnt = output_len
def forward(self, x):
x = x.permute(2, 0, 1)
** x = self.pos_encoder(x)####**
x = self.transformer_encoder(x)
x = x.permute(1, 0, 2)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = self.fc2(x)
if self.output_cnt == 1:
x = x.squeeze(dim=-1)
return x
def GetNbaIotModel(output_len):
model = TransformerModel(output_len)
return model
RuntimeError: The size of tensor a (23) must match the size of tensor b (128) at non-singleton dimension 2
求老哥解决这个问题,已经困扰很久了,文中标记的地方就是出错的地方