可以看看这两个问题:怎么降低精确度和别的编写出特征的方法吗?
```import pandas
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
td=pandas.read_csv(r'C:\Users\Hana\Desktop\TaxDetection.csv',encoding='utf-8')
td.info()
features=['营业场所面积','登记天数','注册资金(万元)','专职人员总数','中级以上职称人员总数','参加财税培训人员总数','业绩合同数量','异地评审场所个数','异地营业场所面积(平方米)','经度','纬度','纳税不遵从记录']
x=td[features]
y=td['纳税不遵从记录']
x_mean = x.mean(axis=0)
x_std = x.std(axis=0)
x_scaled = (x-x_mean)/x_std
X_train, X_test, y_train, y_test = train_test_split(
x_scaled, y , stratify=y, random_state=42)
tree = DecisionTreeClassifier(random_state=0)
tree.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))
```