#在进行yolo5训练时报错
#报错代码如下
请各位同志们在闲暇时间帮我看看非常感谢
D:\CONDA\python.exe C:\Users\WEIHAO\Desktop\yolo5\yolov5-5.0\train.py
github: skipping check (not a git repository)
YOLOv5 2021-4-12 torch 2.1.0 CPU
Namespace(weights='yolov5s.pt', cfg='models/anniu-yolov5s.yaml', data='data/anniu-voc.yaml', hyp='data/hyp.scratch.yaml', epochs=100, batch_size=8, img_size=[640, 640], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='', multi_scale=False, single_cls=False, adam=False, sync_bn=False, local_rank=-1, workers=8, project='runs/train', entity=None, name='exp', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', world_size=1, global_rank=-1, save_dir='runs\\train\\exp3', total_batch_size=8)
tensorboard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/
hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0
wandb: Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)
from n params module arguments
0 -1 1 3520 models.common.Focus [3, 32, 3]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 models.common.C3 [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 1 156928 models.common.C3 [128, 128, 3]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 1 625152 models.common.C3 [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]]
9 -1 1 1182720 models.common.C3 [512, 512, 1, False]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 361984 models.common.C3 [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 90880 models.common.C3 [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 296448 models.common.C3 [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1182720 models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 16182 models.yolo.Detect [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model Summary: 283 layers, 7063542 parameters, 7063542 gradients, 16.5 GFLOPS
Transferred 354/362 items from yolov5s.pt
Scaled weight_decay = 0.0005
Optimizer groups: 62 .bias, 62 conv.weight, 59 other
Plotting labels...
train: Scanning 'C:\Users\WEIHAO\Desktop\yolo5\yolov5-5.0\VOCdevkit\labels\train.cache' images and labels... 5 found, 0 missing, 0 empty, 0 corrupted: 100%|██████████| 5/5 [00:00<?, ?it/s]
val: Scanning 'C:\Users\WEIHAO\Desktop\yolo5\yolov5-5.0\VOCdevkit\labels\val.cache' images and labels... 1 found, 0 missing, 0 empty, 0 corrupted: 100%|██████████| 1/1 [00:00<?, ?it/s]
D:\CONDA\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight
self._figure.tight_layout(*args, **kwargs)
autoanchor: Analyzing anchors... anchors/target = 5.10, Best Possible Recall (BPR) = 1.0000
Traceback (most recent call last):
File "C:\Users\WEIHAO\Desktop\yolo5\yolov5-5.0\train.py", line 543, in <module>
train(hyp, opt, device, tb_writer)
File "C:\Users\WEIHAO\Desktop\yolo5\yolov5-5.0\train.py", line 233, in train
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\WEIHAO\Desktop\yolo5\yolov5-5.0\utils\general.py", line 222, in labels_to_class_weights
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
^^^^^^
File "D:\CONDA\Lib\site-packages\numpy\__init__.py", line 305, in __getattr__
raise AttributeError(__former_attrs__[attr])
AttributeError: module 'numpy' has no attribute 'int'.
`np.int` was a deprecated alias for the builtin `int`. To avoid this error in existing code, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations. Did you mean: 'inf'?
进程已结束,退出代码为 1

在weights中并没有生成我需要的.pt文件