朋友们帮我看看这个问题,到底是怎么回事,应该怎么解决这个
import pandas_datareader.data as web
import datetime
start = datetime.datetime(2000,1,1)
end = datetime.datetime(2024,1,1)
df = web.DataReader('GOOGL', 'stooq',start,end)
def Stock_Price_LSTM_Data_Precesing(df,mem_his_days,pre_days):
df.dropna(inplace=True)
df.sort_index(inplace=True)
df['label']= df['Close'].shift(-pre_days)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
sca_X=scaler.fit_transform(df.iloc[:,:-1])
mem_his_days = 10
from collections import deque
deq = deque(maxlen=mem_his_days)
X = []
for i in sca_X:
deq.append(list(i))
if len(deq)==mem_his_days:
X.append(list(deq))
X_lately = X[-pre_days:]
X = X[:-pre_days]
y = df['label'].values[mem_his_days-1:-pre_days]
import numpy as np
X = np.array(X)
y = np.array(y)
return X,y,X_lately
X,y,X_lately = Stock_Price_LSTM_Data_Precesing(df,5,10)
pre_days = 10
mem_days=[5,10,15]
lstm_layers=[1,2,3]
dense_layers=[1,2,3]
units = [16,32]
from tensorflow.keras.callbacks import ModelCheckpoint
for the_mem_days in mem_days:
for the_lstm_layers in lstm_layers:
for the_dense_layers in dense_layers:
for the_units in units:
filepath = './models/{val_mape:.2f}_{epoch:02d}_men_{the_lstm_layers}_lstm_{the_lstm_layers}_dense_{the_dense_layers}_unit_{the_units}.weights.h5'
checkpoint = ModelCheckpoint(
filepath=filepath,
save_weights_only=True,
monitor='val_mape',
mode='min',
save_best_only=True)
X,y,X_lately = Stock_Price_LSTM_Data_Precesing(df,the_mem_days,pre_days)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,shuffle=False,test_size=0.1)
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM,Dense,Dropout
model = Sequential()
model.add(LSTM(the_units,input_shape=X.shape[1:],activation='relu',return_sequences=True))
model.add(Dropout(0.1))
for i in range(the_lstm_layers):
model.add(LSTM(the_units,activation='relu',return_sequences=True))
model.add(Dropout(0.1))
model.add(LSTM(the_units,activation='relu'))
model.add(Dropout(0.1))
for i in range(the_dense_layers):
model.add(Dense(the_units,activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(1))
model.compile(optimizer='adam',
loss='mse',
metrics=['mape'])
model.fit(X_train,y_train,batch_size=32,epochs=50,validation_data=(X_test,y_test),callbacks=[checkpoint])
这个是错误原因
KeyError Traceback (most recent call last)
Cell In[10], line 41
37 model.add(Dense(1))
38 model.compile(optimizer='adam',
39 loss='mse',
40 metrics=['mape'])
---> 41 model.fit(X_train,y_train,batch_size=32,epochs=50,validation_data=(X_test,y_test),callbacks=[checkpoint])
File D:\anaconda\Lib\site-packages\keras\src\utils\traceback_utils.py:122, in filter_traceback.<locals>.error_handler(*args, **kwargs)
119 filtered_tb = _process_traceback_frames(e.__traceback__)
120 # To get the full stack trace, call:
121 # `keras.config.disable_traceback_filtering()`
--> 122 raise e.with_traceback(filtered_tb) from None
123 finally:
124 del filtered_tb
File D:\anaconda\Lib\site-packages\keras\src\callbacks\model_checkpoint.py:323, in ModelCheckpoint._get_file_path(self, epoch, batch, logs)
319 file_path = self.filepath.format(
320 epoch=epoch + 1, batch=batch + 1, **logs
321 )
322 except KeyError as e:
--> 323 raise KeyError(
324 f'Failed to format this callback filepath: "{self.filepath}". '
325 f"Reason: {e}"
326 )
327 return file_path
KeyError: 'Failed to format this callback filepath: "./models/{val_mape:.2f}_{epoch:02d}_men_{the_lstm_layers}_lstm_{the_lstm_layers}_dense_{the_dense_layers}_unit_{the_units}.weights.h5". Reason: \'the_lstm_layers\''
应该修改代码哪个部分,帮我一下把