这是我的代码,用LSTM模型来预测股票的价格,在这个代码的基础上怎么用WD-CNN-LSTM模型来对股票价格进行预测
import pandas as pd
def parse_date(date_string):
return pd.Timestamp(date_string.replace('_', '-'))
df = pd.read_csv('D:/LSTMdata.csv', index_col='Date', parse_dates=True, date_parser=parse_date)
df.sort_index(inplace=True)
def Stock_Price_LSTM_Data_Precesing(df,mem_his_days,pre_days):
df.dropna(inplace=True)
df.sort_index(inplace=True)
df['label']= df['Close'].shift(-pre_days)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
sca_X=scaler.fit_transform(df.iloc[:,:-1])
mem_his_days = 10
from collections import deque
deq = deque(maxlen=mem_his_days)
X = []
for i in sca_X:
deq.append(list(i))
if len(deq)==mem_his_days:
X.append(list(deq))
X_lately = X[-pre_days:]
X = X[:-pre_days]
y = df['label'].values[mem_his_days-1:-pre_days]
import numpy as np
X = np.array(X)
y = np.array(y)
return X,y,X_lately
X,y,X_lately = Stock_Price_LSTM_Data_Precesing(df,5,10)
print(len(X))
print(len(y))
print(len(X_lately))
pre_days = 10
mem_days=[5,10,15]
lstm_layers=[1,2,3]
dense_layers=[1,2,3]
units = [16,32]
# mem_days=[10]
# lstm_layers=[1]
# dense_layers=[1]
# units = [32]
from tensorflow.keras.callbacks import ModelCheckpoint
for the_mem_days in mem_days:
for the_lstm_layers in lstm_layers:
for the_dense_layers in dense_layers:
for the_units in units:
filepath=filepath=f"./theLSTMbestmodel1/{{val_mape:.2f}}{{epoch:02d}}men{the_mem_days}lstm{the_lstm_layers}dense{the_dense_layers}unit{the_units}.keras"
checkpoint = ModelCheckpoint(
filepath=filepath,
save_weights_only=False,
monitor='val_mape',
mode='min',
save_best_only=True)
X,y,X_lately = Stock_Price_LSTM_Data_Precesing(df,the_mem_days,pre_days)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,shuffle=False,test_size=0.1)
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM,Dense,Dropout
model = Sequential()
model.add(LSTM(the_units,input_shape=X.shape[1:],activation='relu',return_sequences=True))
model.add(Dropout(0.1))
for i in range(the_lstm_layers):
model.add(LSTM(the_units,activation='relu',return_sequences=True))
model.add(Dropout(0.1))
model.add(LSTM(the_units,activation='relu'))
model.add(Dropout(0.1))
for i in range(the_dense_layers):
model.add(Dense(the_units,activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(1))
model.compile(optimizer='adam',
loss='mse',
metrics=['mape'])
model.fit(X_train,y_train,batch_size=32,epochs=50,validation_data=(X_test,y_test),callbacks=[checkpoint])