在单因素线性回归分析中,PPI的使用与LDL的平均值(±SE)升高相关(3.4±3.2 mg/dL;P= 0.301)。在多因素线性回归分析中,PPI的使用与空腹LDL显著升高相关(11.7±3.4 mg/ dL;P=0.006)。PPI使用者的平均LDL为125.0 mg/dL,而非PPI使用者的平均LDL为113.3 mg/dL。
我理解的单因素分析的平均值是直接使用mean();多因素分析的平均值我使用的是predict(),
代码如下:
dummy_data1 <- model.matrix(~ Race * Education * Gender * Smoking * Drinking - 1, data = TABLE_a2)
dummy_data1_df <- data.frame(dummy_data1)
dummy_data1_df$VitB12 <- TABLE_a2$VitB12
dummy_data1_df$Age <- TABLE_a2$Age
model1 <- lm(VitB12 ~ Age + ., data = dummy_data1_df)
TABLE_a2$Race <- as.factor(TABLE_a2$Race)
TABLE_a2$Education <- as.factor(TABLE_a2$Education)
TABLE_a2$Gender <- as.factor(TABLE_a2$Gender)
TABLE_a2$Smoking <- as.factor(TABLE_a2$Smoking)
TABLE_a2$Drinking <- as.factor(TABLE_a2$Drinking)
combinations1 <- expand.grid(
Race = levels(TABLE_a2$Race),
Education = levels(TABLE_a2$Education),
Gender = levels(TABLE_a2$Gender),
Smoking = levels(TABLE_a2$Smoking),
Drinking = levels(TABLE_a2$Drinking)
)
combinations1 <- cbind(combinations1, model.matrix(~ . - 1, data = combinations1))
combinations1$Age <- 53
combinations1$predicted_mean <- predict(model1, newdata = combinations1)
运行到此步时,出现以下错误
```r
Error in eval(predvars, data, env) :
object 'RaceNon_Hispanic_Black.EducationLess_than_high_school' not found
请问我的思路是正确的吗?这个代码到底是哪里出问题了呢?