

这个香农编码为啥可以这样做,怎么这样做出来的,又没人帮我解答一下
关注让 “紫雾凌寒” 来帮你回答,本回答结合 DeepSeek
如果还有问题,请评论或点击头像私信,如果有帮助到您, 请关注、采纳、点赞
代码示例(Python实现):
import math
def shannon_encoding(symbols, probabilities):
n = len(symbols)
cumulative_probabilities = [0]
for p in probabilities:
cumulative_probabilities.append(cumulative_probabilities[-1] + p)
encodings = {}
for i in range(n):
symbol = symbols[i]
p = probabilities[i]
l = math.ceil(-math.log2(p))
encoding = bin(int((cumulative_probabilities[i + 1] - cumulative_probabilities[i]) * (2 ** l)))[2:].zfill(l)
encodings[symbol] = encoding
return encodings
symbols = ['a', 'b', 'c']
probabilities = [0.5, 0.3, 0.2]
print(shannon_encoding(symbols, probabilities))
这段代码实现了香农编码的过程,输入符号列表和对应的概率列表,输出每个符号的编码。
希望以上解答对您有所帮助。如果您有任何疑问,欢迎在评论区提出。