2302_81181161 2025-05-28 11:23 采纳率: 0%
浏览 5

完成随机森林练习。从理论思想、流程图、伪代码、细化伪代码、程序的步骤体现在中。并和决策树进行对比,在中体现单棵决策树和多棵决策树的森林有哪些不同。

完成随机森林练习。从理论思想、流程图、伪代码、细化伪代码、程序的步骤体现在中。并和决策树进行对比,在中体现单棵决策树和多棵决策树的森林有哪些不同。

  • 写回答

5条回答 默认 最新

  • 阿里嘎多学长 2025-05-28 11:23
    关注

    阿里嘎多学长整理AIGC生成,因移动端显示问题导致当前答案未能完全显示,请使用PC端查看更加详细的解答过程

    随机森林练习

    理论思想

    随机森林是一种集成学习算法,通过组合多个决策树来提高预测准确性。它的主要思想是:在训练集上随机选择一部分样本和特征,构建一个决策树,然后将多个决策树组合起来,最后对测试样本进行预测。

    流程图

    随机森林流程图

    伪代码

    def random_forest(X_train, y_train, num_trees, num_features):
        # 初始化森林
        forest = []
        
        # 训练每棵树
        for i in range(num_trees):
            # 随机选择样本和特征
            X_random, y_random = random.sample(X_train, len(X_train)), random.sample(y_train, len(y_train))
            X_random = X_random[:, random.sample(range(X_random.shape[1]), num_features)]
            
            # 训练决策树
            tree = DecisionTree(X_random, y_random)
            forest.append(tree)
        
        # 预测
        def predict(X_test):
            predictions = []
            for tree in forest:
                predictions.append(tree.predict(X_test))
            return np.array(predictions).mean(axis=0)
    

    细化伪代码

    class DecisionTree:
        def __init__(self, X, y):
            self.X = X
            self.y = y
            self.tree = {}
        
        def train(self):
            # 选择最优特征和阈值
            best_feature, best_threshold = self.find_best_feature()
            self.tree['feature'] = best_feature
            self.tree['threshold'] = best_threshold
            
            #  recursively train left and right child nodes
            left_X, left_y = self.split(self.X, self.y, best_feature, best_threshold)
            if len(left_y) > 0:
                self.tree['left'] = DecisionTree(left_X, left_y).train()
            else:
                self.tree['left'] = None
            
            right_X, right_y = self.split(self.X, self.y, best_feature, best_threshold, True)
            if len(right_y) > 0:
                self.tree['right'] = DecisionTree(right_X, right_y).train()
            else:
                self.tree['right'] = None
        
        def predict(self, X):
            predictions = []
            for x in X:
                node = self.tree
                while node['left'] is not None:
                    if x[node['feature']] <= node['threshold']:
                        node = node['left']
                    else:
                        node = node['right']
                predictions.append(node['value'])
            return predictions
    
        def find_best_feature(self):
            # 选择最优特征和阈值
            best_feature = None
            best_threshold = None
            best_gini = float('inf')
            for feature in range(self.X.shape[1]):
                for threshold in np.unique(self.X[:, feature]):
                    left_X, left_y = self.split(self.X, self.y, feature, threshold)
                    right_X, right_y = self.split(self.X, self.y, feature, threshold, True)
                    gini = self.gini(left_y) + self.gini(right_y)
                    if gini < best_gini:
                        best_feature = feature
                        best_threshold = threshold
                        best_gini = gini
            return best_feature, best_threshold
    
        def split(self, X, y, feature, threshold, is_right=False):
            left_X = X[X[:, feature] <= threshold]
            left_y = y[X[:, feature] <= threshold]
            right_X = X[X[:, feature] > threshold]
            right_y = y[X[:, feature] > threshold]
            return left_X, left_y if not is_right else right_X, right_y
    
        def gini(self, y):
            # 计算GINI指数
            n = len(y)
            gini = 1
            for i in np.unique(y):
                p = len(y[y == i]) / n
                gini -= p ** 2
            return gini
    

    程序步骤

    1. 初始化森林
    2. 训练每棵树
    3. 预测

    与决策树的对比

    • 单棵决策树:只有一棵树,可能会出现过拟合
    • 多棵决策树森林:组合多棵树,提高预测准确性和鲁棒性

    代码实现

    import numpy as np
    from sklearn.tree import DecisionTreeClassifier
    
    def random_forest(X_train, y_train, num_trees, num_features):
        forest = []
        for i in range(num_trees):
            X_random, y_random = random.sample(X_train, len(X_train)), random.sample(y_train, len(y_train))
            X_random = X_random[:, random.sample(range(X_random.shape[1]), num_features)]
            tree = DecisionTreeClassifier()
            tree.fit(X_random, y_random)
            forest.append(tree)
        def predict(X_test):
            predictions = []
            for tree in forest:
                predictions.append(tree.predict(X_test))
            return np.array(predictions).mean(axis=0)
        return predict
    

    Note: 以上代码只是一个简单的示例,实际实现中可能需要更多的细节和优化。

    评论

报告相同问题?

问题事件

  • 创建了问题 5月28日