完成随机森林练习。从理论思想、流程图、伪代码、细化伪代码、程序的步骤体现在中。并和决策树进行对比,在中体现单棵决策树和多棵决策树的森林有哪些不同。
5条回答 默认 最新
阿里嘎多学长 2025-05-28 11:23关注阿里嘎多学长整理AIGC生成,因移动端显示问题导致当前答案未能完全显示,请使用PC端查看更加详细的解答过程
随机森林练习
理论思想
随机森林是一种集成学习算法,通过组合多个决策树来提高预测准确性。它的主要思想是:在训练集上随机选择一部分样本和特征,构建一个决策树,然后将多个决策树组合起来,最后对测试样本进行预测。
流程图

伪代码
def random_forest(X_train, y_train, num_trees, num_features): # 初始化森林 forest = [] # 训练每棵树 for i in range(num_trees): # 随机选择样本和特征 X_random, y_random = random.sample(X_train, len(X_train)), random.sample(y_train, len(y_train)) X_random = X_random[:, random.sample(range(X_random.shape[1]), num_features)] # 训练决策树 tree = DecisionTree(X_random, y_random) forest.append(tree) # 预测 def predict(X_test): predictions = [] for tree in forest: predictions.append(tree.predict(X_test)) return np.array(predictions).mean(axis=0)细化伪代码
class DecisionTree: def __init__(self, X, y): self.X = X self.y = y self.tree = {} def train(self): # 选择最优特征和阈值 best_feature, best_threshold = self.find_best_feature() self.tree['feature'] = best_feature self.tree['threshold'] = best_threshold # recursively train left and right child nodes left_X, left_y = self.split(self.X, self.y, best_feature, best_threshold) if len(left_y) > 0: self.tree['left'] = DecisionTree(left_X, left_y).train() else: self.tree['left'] = None right_X, right_y = self.split(self.X, self.y, best_feature, best_threshold, True) if len(right_y) > 0: self.tree['right'] = DecisionTree(right_X, right_y).train() else: self.tree['right'] = None def predict(self, X): predictions = [] for x in X: node = self.tree while node['left'] is not None: if x[node['feature']] <= node['threshold']: node = node['left'] else: node = node['right'] predictions.append(node['value']) return predictions def find_best_feature(self): # 选择最优特征和阈值 best_feature = None best_threshold = None best_gini = float('inf') for feature in range(self.X.shape[1]): for threshold in np.unique(self.X[:, feature]): left_X, left_y = self.split(self.X, self.y, feature, threshold) right_X, right_y = self.split(self.X, self.y, feature, threshold, True) gini = self.gini(left_y) + self.gini(right_y) if gini < best_gini: best_feature = feature best_threshold = threshold best_gini = gini return best_feature, best_threshold def split(self, X, y, feature, threshold, is_right=False): left_X = X[X[:, feature] <= threshold] left_y = y[X[:, feature] <= threshold] right_X = X[X[:, feature] > threshold] right_y = y[X[:, feature] > threshold] return left_X, left_y if not is_right else right_X, right_y def gini(self, y): # 计算GINI指数 n = len(y) gini = 1 for i in np.unique(y): p = len(y[y == i]) / n gini -= p ** 2 return gini程序步骤
- 初始化森林
- 训练每棵树
- 预测
与决策树的对比
- 单棵决策树:只有一棵树,可能会出现过拟合
- 多棵决策树森林:组合多棵树,提高预测准确性和鲁棒性
代码实现
import numpy as np from sklearn.tree import DecisionTreeClassifier def random_forest(X_train, y_train, num_trees, num_features): forest = [] for i in range(num_trees): X_random, y_random = random.sample(X_train, len(X_train)), random.sample(y_train, len(y_train)) X_random = X_random[:, random.sample(range(X_random.shape[1]), num_features)] tree = DecisionTreeClassifier() tree.fit(X_random, y_random) forest.append(tree) def predict(X_test): predictions = [] for tree in forest: predictions.append(tree.predict(X_test)) return np.array(predictions).mean(axis=0) return predictNote: 以上代码只是一个简单的示例,实际实现中可能需要更多的细节和优化。
解决 无用评论 打赏 举报