久菜盒子工作室 2025-07-04 15:15 采纳率: 40%
浏览 11

R报错:[LightGBM] [Warning] Contains only one class[LightGBM] [Warning] Stopped training because there

R报错:[LightGBM] [Warning] Contains only one class[LightGBM] [Warning] Stopped training because there


[LightGBM] [Warning] Contains only one class
[LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements
[LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements
[LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements
[LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements
[LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements
这个是为什么呢?



```r
lgb_train <- lgb.Dataset(
  data = as.matrix(train_data[, -which(names(train_data) == "critical")]),
  label = train_data$outcome
)

params <- list(
  objective = "binary",
  metric = "auc",
  boosting_type = "gbdt",
  num_leaves = 31,
  learning_rate = 0.05,
  feature_fraction = 0.9
)

model <- lgb.train(
  params,
  lgb_train,
  nrounds = 100,
  verbose = 0
)


  • 写回答

6条回答 默认 最新

  • 阿里嘎多学长 2025-07-04 15:15
    关注

    阿里嘎多学长整理AIGC生成,因移动端显示问题导致当前答案未能完全显示,请使用PC端查看更加详细的解答过程

    问题解答

    你遇到的问题是 LightGBM 在 R 语言中报错,提示包含只有一个类别,停止训练。这个错误是因为 LightGBM 需要至少两个类别来进行训练,但是你的数据集中只有一个类别。

    解决方法:

    1. 检查你的数据集中是否真的只有一个类别。如果是,那么你需要合并或分离数据,以便包含至少两个类别。
    2. 如果你的数据集中确实只有一个类别,那么你可以尝试使用其他机器学习算法,例如 logistic 回归、决策树等,这些算法可以处理单类别数据。

    代码示例:

    # 如果你的数据集中只有一个类别,可以使用 logistic 回归
    library(caret)
    train_control <- trainControl(method = "cv", number = 10)
    model <- train(y ~ ., data = your_data, method = "glm", trControl = train_control)
    

    注意:上述代码只是一个示例,需要根据你的实际情况进行修改。

    评论

报告相同问题?

问题事件

  • 创建了问题 7月4日