跑模型代码报错如下,不知道为什么一直提醒传参为负数
D:\anaconda3\envs\pfl_quantum_env\python.exe C:\Users\lenovo\PycharmProjects\No_Q_charging\Q-PFL_TimeMixer_Framework\main.py
2025-08-19 09:29:27,743 - INFO - --- Starting Experiment: Centralized ---
2025-08-19 09:29:28,043 - INFO - --- Starting Centralized Training ---
2025-08-19 09:30:34,491 - INFO - Centralized Epoch 1 - MAE: 0.4119, RMSE: 0.6080
2025-08-19 09:30:34,512 - INFO - New best centralized model saved with RMSE: 0.6080
2025-08-19 09:31:54,069 - INFO - Centralized Epoch 2 - MAE: 0.3432, RMSE: 0.5074
2025-08-19 09:31:54,080 - INFO - New best centralized model saved with RMSE: 0.5074
2025-08-19 09:33:10,120 - INFO - Centralized Epoch 3 - MAE: 0.3010, RMSE: 0.4529
2025-08-19 09:33:10,129 - INFO - New best centralized model saved with RMSE: 0.4529
2025-08-19 09:34:12,998 - INFO - Centralized Epoch 4 - MAE: 0.2969, RMSE: 0.4461
2025-08-19 09:34:13,006 - INFO - New best centralized model saved with RMSE: 0.4461
2025-08-19 09:35:14,439 - INFO - Centralized Epoch 5 - MAE: 0.2960, RMSE: 0.4476
2025-08-19 09:36:11,765 - INFO - Centralized Epoch 6 - MAE: 0.2907, RMSE: 0.4403
2025-08-19 09:36:11,780 - INFO - New best centralized model saved with RMSE: 0.4403
2025-08-19 09:37:18,212 - INFO - Centralized Epoch 7 - MAE: 0.2930, RMSE: 0.4452
2025-08-19 09:38:21,377 - INFO - Centralized Epoch 8 - MAE: 0.2735, RMSE: 0.4208
2025-08-19 09:38:21,385 - INFO - New best centralized model saved with RMSE: 0.4208
2025-08-19 09:39:30,061 - INFO - Centralized Epoch 9 - MAE: 0.2802, RMSE: 0.4350
2025-08-19 09:40:31,686 - INFO - Centralized Epoch 10 - MAE: 0.2676, RMSE: 0.4084
2025-08-19 09:40:31,695 - INFO - New best centralized model saved with RMSE: 0.4084
2025-08-19 09:41:43,254 - INFO - Centralized Epoch 11 - MAE: 0.2565, RMSE: 0.3966
2025-08-19 09:41:43,262 - INFO - New best centralized model saved with RMSE: 0.3966
2025-08-19 09:42:45,933 - INFO - Centralized Epoch 12 - MAE: 0.2635, RMSE: 0.4104
2025-08-19 09:43:50,361 - INFO - Centralized Epoch 13 - MAE: 0.2614, RMSE: 0.4056
2025-08-19 09:44:53,441 - INFO - Centralized Epoch 14 - MAE: 0.2591, RMSE: 0.4023
2025-08-19 09:45:54,244 - INFO - Centralized Epoch 15 - MAE: 0.2540, RMSE: 0.3946
2025-08-19 09:45:54,251 - INFO - New best centralized model saved with RMSE: 0.3946
2025-08-19 09:46:55,909 - INFO - Centralized Epoch 16 - MAE: 0.2545, RMSE: 0.3970
2025-08-19 09:48:00,614 - INFO - Centralized Epoch 17 - MAE: 0.2593, RMSE: 0.4018
2025-08-19 09:48:59,210 - INFO - Centralized Epoch 18 - MAE: 0.2607, RMSE: 0.4062
2025-08-19 09:49:57,062 - INFO - Centralized Epoch 19 - MAE: 0.2615, RMSE: 0.4055
2025-08-19 09:50:58,116 - INFO - Centralized Epoch 20 - MAE: 0.2644, RMSE: 0.4079
2025-08-19 09:51:57,344 - INFO - Centralized Epoch 21 - MAE: 0.2615, RMSE: 0.4019
2025-08-19 09:52:57,890 - INFO - Centralized Epoch 22 - MAE: 0.2529, RMSE: 0.3944
2025-08-19 09:52:57,898 - INFO - New best centralized model saved with RMSE: 0.3944
2025-08-19 09:53:53,033 - INFO - Centralized Epoch 23 - MAE: 0.2491, RMSE: 0.3839
2025-08-19 09:53:53,040 - INFO - New best centralized model saved with RMSE: 0.3839
2025-08-19 09:54:47,294 - INFO - Centralized Epoch 24 - MAE: 0.2452, RMSE: 0.3788
2025-08-19 09:54:47,301 - INFO - New best centralized model saved with RMSE: 0.3788
2025-08-19 09:55:43,625 - INFO - Centralized Epoch 25 - MAE: 0.2498, RMSE: 0.3895
2025-08-19 09:56:39,948 - INFO - Centralized Epoch 26 - MAE: 0.2515, RMSE: 0.3907
2025-08-19 09:57:35,183 - INFO - Centralized Epoch 27 - MAE: 0.2471, RMSE: 0.3828
2025-08-19 09:58:36,315 - INFO - Centralized Epoch 28 - MAE: 0.2542, RMSE: 0.3932
2025-08-19 09:59:34,963 - INFO - Centralized Epoch 29 - MAE: 0.2572, RMSE: 0.4014
2025-08-19 10:00:32,700 - INFO - Centralized Epoch 30 - MAE: 0.2456, RMSE: 0.3820
2025-08-19 10:00:32,770 - INFO - --- Joint Framework Round 1/5 ---
2025-08-19 10:00:32,770 - INFO - Generating future demand predictions...
2025-08-19 10:00:32,842 - INFO - Predicted demands for scheduling:
[10.03 1.32 15.92 5.36 16.33 18.38 0.3 9.55 9.5 21.15 0.14 10.71
7.79 1.37 10.34]
2025-08-19 10:00:32,842 - INFO - Running Multi-Objective Scheduler...
Traceback (most recent call last):
File "C:\Users\lenovo\PycharmProjects\No_Q_charging\Q-PFL_TimeMixer_Framework\main.py", line 162, in <module>
run_experiment()
File "C:\Users\lenovo\PycharmProjects\No_Q_charging\Q-PFL_TimeMixer_Framework\main.py", line 70, in run_experiment
_, pareto_front = solve_scheduling_problem(CFG, predicted_demands, grid_base_load, client_preferences)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\lenovo\PycharmProjects\No_Q_charging\Q-PFL_TimeMixer_Framework\src\scheduler\solver.py", line 15, in solve_scheduling_problem
res = minimize(problem,
^^^^^^^^^^^^^^^^^
File "D:\anaconda3\envs\pfl_quantum_env\Lib\site-packages\pymoo\optimize.py", line 67, in minimize
res = algorithm.run()
^^^^^^^^^^^^^^^
File "D:\anaconda3\envs\pfl_quantum_env\Lib\site-packages\pymoo\core\algorithm.py", line 138, in run
self.next()
File "D:\anaconda3\envs\pfl_quantum_env\Lib\site-packages\pymoo\core\algorithm.py", line 154, in next
infills = self.infill()
^^^^^^^^^^^^^
File "D:\anaconda3\envs\pfl_quantum_env\Lib\site-packages\pymoo\core\algorithm.py", line 186, in infill
infills = self._initialize_infill()
^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\anaconda3\envs\pfl_quantum_env\Lib\site-packages\pymoo\algorithms\base\genetic.py", line 75, in _initialize_infill
pop = self.initialization.do(self.problem, self.pop_size, algorithm=self)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\anaconda3\envs\pfl_quantum_env\Lib\site-packages\pymoo\core\initialization.py", line 32, in do
pop = self.sampling(problem, n_samples, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\anaconda3\envs\pfl_quantum_env\Lib\site-packages\pymoo\core\operator.py", line 27, in __call__
out = self.do(problem, elem, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\anaconda3\envs\pfl_quantum_env\Lib\site-packages\pymoo\core\sampling.py", line 35, in do
val = self._do(problem, n_samples, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\anaconda3\envs\pfl_quantum_env\Lib\site-packages\pymoo\operators\sampling\rnd.py", line 20, in _do
X = np.random.random((n_samples, problem.n_var))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "numpy/random/mtrand.pyx", line 450, in numpy.random.mtrand.RandomState.random
File "numpy/random/mtrand.pyx", line 441, in numpy.random.mtrand.RandomState.random_sample
File "numpy/random/_common.pyx", line 310, in numpy.random._common.double_fill
ValueError: negative dimensions are not allowed
进程已结束,退出代码为 1