weixin_58174404 2025-11-05 10:08 采纳率: 100%
浏览 4
已结题

YOLOv8.On backbone(骨干网络)配置

这篇文章“YOLOv8 极限突破:融合 Hybrid Attention Transformer (HAT) 实现小目标检测与模型实战部署的全方位指南-附源码”的的3.3yaml配置文件的YOLOv8.On backbone(骨干网络)是怎么配置的,文章乱码,下载链接过期了

  • 写回答

3条回答 默认 最新

  • 宝码香车 优质创作者: JavaScript技术领域 2025-11-05 16:23
    关注

    让【宝码香车】来帮您解答,本回答参考DeepSeek编写,并整理提供。

    如果答案让您满意,请采纳、点赞、关注,非常感谢!
    .
    每日一句正能量,让它带给您好心情:做一个积极向上的人,读温柔的句子,见阳光的人,眼里全是温柔和笑意。
    .

    根据您描述的情况,这篇文章中的YOLOv8骨干网络配置应该是将原始的YOLOv8骨干网络替换为Hybrid Attention Transformer (HAT)结构。由于原文链接失效,我将基于HAT网络结构和YOLOv8的架构特点,为您提供一个完整的配置方案。

    YOLOv8 + HAT 骨干网络配置

    以下是完整的YAML配置文件:

    # YOLOv8 with HAT backbone configuration
    nc: 80  # number of classes
    scales:
      # 模型尺度配置 (n, s, m, l, x)
      n: [0.33, 0.25, 1024]
      s: [0.33, 0.50, 1024]
      m: [0.67, 0.75, 1024]
      l: [1.00, 1.00, 1024]
      x: [1.00, 1.25, 1024]
    
    
    # 骨干网络配置 (Backbone)
    backbone:
      # [from, repeats, module, args]
      # HAT 骨干网络结构
      - [-1, 1, "Conv", [64, 3, 2]]  # 0-P1/2
      - [-1, 1, "Conv", [128, 3, 2]]  # 1-P2/4
      
      # HAT Block Stage 1
      - [-1, 1, "HATBlock", [128, 4, 8, 2]]  # 2
      - [-1, 2, "HATBlock", [128, 4, 8, 2]]  # 3-4
      
      # HAT Block Stage 2
      - [-1, 1, "Conv", [256, 3, 2]]  # 5-P3/8
      - [-1, 1, "HATBlock", [256, 4, 8, 2]]  # 6
      - [-1, 6, "HATBlock", [256, 4, 8, 2]]  # 7-12
      
      # HAT Block Stage 3
      - [-1, 1, "Conv", [512, 3, 2]]  # 13-P4/16
      - [-1, 1, "HATBlock", [512, 4, 8, 2]]  # 14
      - [-1, 6, "HATBlock", [512, 4, 8, 2]]  # 15-20
      
      # HAT Block Stage 4
      - [-1, 1, "Conv", [1024, 3, 2]]  # 21-P5/32
      - [-1, 1, "HATBlock", [1024, 4, 8, 2]]  # 22
      - [-1, 3, "HATBlock", [1024, 4, 8, 2]]  # 23-25
    
    
    # 颈部网络 (Neck)
    head:
      - [-1, 1, "SPPF", [1024, 5]]  # 26
      
      # 上采样路径
      - [-1, 1, "Conv", [512, 1, 1]]
      - [-1, 1, "nn.Upsample", [None, 2, "nearest"]]
      - [[-1, 20], 1, "Concat", [1]]  # 从骨干网络第20层concat
      - [-1, 3, "C2f", [512]]  # 30
      
      - [-1, 1, "Conv", [256, 1, 1]]
      - [-1, 1, "nn.Upsample", [None, 2, "nearest"]]
      - [[-1, 12], 1, "Concat", [1]]  # 从骨干网络第12层concat
      - [-1, 3, "C2f", [256]]  # 34 (P3/8)
      
      # 下采样路径
      - [-1, 1, "Conv", [256, 3, 2]]
      - [[-1, 30], 1, "Concat", [1]]  # 与第30层concat
      - [-1, 3, "C2f", [512]]  # 37 (P4/16)
      
      - [-1, 1, "Conv", [512, 3, 2]]
      - [[-1, 26], 1, "Concat", [1]]  # 与第26层concat
      - [-1, 3, "C2f", [1024]]  # 40 (P5/32)
      
      # 检测头
      - [[34, 37, 40], 1, "Detect", [nc]]  # Detect(P3, P4, P5)
    

    HAT Block 实现代码

    您还需要在模型中实现HATBlock模块:

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from timm.models.layers import DropPath
    
    
    class WindowAttention(nn.Module):
        """窗口注意力机制"""
        def __init__(self, dim, window_size, num_heads):
            super().__init__()
            self.dim = dim
            self.window_size = window_size
            self.num_heads = num_heads
            head_dim = dim // num_heads
            self.scale = head_dim ** -0.5
            
            self.qkv = nn.Linear(dim, dim * 3, bias=True)
            self.proj = nn.Linear(dim, dim)
            
        def forward(self, x):
            B, H, W, C = x.shape
            x = x.view(B, H // self.window_size, self.window_size, 
                      W // self.window_size, self.window_size, C)
            x = x.permute(0, 1, 3, 2, 4, 5).contiguous()
            
            qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
            q, k, v = qkv[0], qkv[1], qkv[2]
            
            attn = (q @ k.transpose(-2, -1)) * self.scale
            attn = attn.softmax(dim=-1)
            
            x = (attn @ v).transpose(1, 2).reshape(B, H, W, C)
            x = self.proj(x)
            return x
    
    
    class HATBlock(nn.Module):
        """Hybrid Attention Transformer Block"""
        def __init__(self, dim, num_heads, window_size, mlp_ratio=4., drop_path=0.):
            super().__init__()
            self.norm1 = nn.LayerNorm(dim)
            self.attn = WindowAttention(dim, window_size, num_heads)
            self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
            self.norm2 = nn.LayerNorm(dim)
            
            mlp_hidden_dim = int(dim * mlp_ratio)
            self.mlp = nn.Sequential(
                nn.Linear(dim, mlp_hidden_dim),
                nn.GELU(),
                nn.Linear(mlp_hidden_dim, dim)
            )
            
        def forward(self, x):
            # 简化实现,实际HAT有更复杂的注意力机制
            shortcut = x
            x = self.norm1(x)
            x = self.attn(x)
            x = shortcut + self.drop_path(x)
            
            x = x + self.drop_path(self.mlp(self.norm2(x)))
            return x
    

    使用说明

    1. 配置文件使用:将上述YAML配置保存为 yolov8_hat.yaml
    2. 模型创建
    from ultralytics import YOLO
    
    
    # 创建模型
    model = YOLO('yolov8_hat.yaml')
    model.train(data='coco128.yaml', epochs=100, imgsz=640)
    

    这个配置将原始的CSPDarknet骨干网络替换为HAT结构,特别适合小目标检测任务。HAT的混合注意力机制能够更好地捕捉全局和局部特征,提升检测性能。

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(2条)

报告相同问题?

问题事件

  • 系统已结题 11月20日
  • 已采纳回答 11月12日
  • 创建了问题 11月5日