这篇文章“YOLOv8 极限突破:融合 Hybrid Attention Transformer (HAT) 实现小目标检测与模型实战部署的全方位指南-附源码”的的3.3yaml配置文件的YOLOv8.On backbone(骨干网络)是怎么配置的,文章乱码,下载链接过期了
3条回答 默认 最新
关注让【宝码香车】来帮您解答,本回答参考DeepSeek编写,并整理提供。
如果答案让您满意,请采纳、点赞、关注,非常感谢!
.
每日一句正能量,让它带给您好心情:做一个积极向上的人,读温柔的句子,见阳光的人,眼里全是温柔和笑意。
.根据您描述的情况,这篇文章中的YOLOv8骨干网络配置应该是将原始的YOLOv8骨干网络替换为Hybrid Attention Transformer (HAT)结构。由于原文链接失效,我将基于HAT网络结构和YOLOv8的架构特点,为您提供一个完整的配置方案。
YOLOv8 + HAT 骨干网络配置
以下是完整的YAML配置文件:
# YOLOv8 with HAT backbone configuration nc: 80 # number of classes scales: # 模型尺度配置 (n, s, m, l, x) n: [0.33, 0.25, 1024] s: [0.33, 0.50, 1024] m: [0.67, 0.75, 1024] l: [1.00, 1.00, 1024] x: [1.00, 1.25, 1024] # 骨干网络配置 (Backbone) backbone: # [from, repeats, module, args] # HAT 骨干网络结构 - [-1, 1, "Conv", [64, 3, 2]] # 0-P1/2 - [-1, 1, "Conv", [128, 3, 2]] # 1-P2/4 # HAT Block Stage 1 - [-1, 1, "HATBlock", [128, 4, 8, 2]] # 2 - [-1, 2, "HATBlock", [128, 4, 8, 2]] # 3-4 # HAT Block Stage 2 - [-1, 1, "Conv", [256, 3, 2]] # 5-P3/8 - [-1, 1, "HATBlock", [256, 4, 8, 2]] # 6 - [-1, 6, "HATBlock", [256, 4, 8, 2]] # 7-12 # HAT Block Stage 3 - [-1, 1, "Conv", [512, 3, 2]] # 13-P4/16 - [-1, 1, "HATBlock", [512, 4, 8, 2]] # 14 - [-1, 6, "HATBlock", [512, 4, 8, 2]] # 15-20 # HAT Block Stage 4 - [-1, 1, "Conv", [1024, 3, 2]] # 21-P5/32 - [-1, 1, "HATBlock", [1024, 4, 8, 2]] # 22 - [-1, 3, "HATBlock", [1024, 4, 8, 2]] # 23-25 # 颈部网络 (Neck) head: - [-1, 1, "SPPF", [1024, 5]] # 26 # 上采样路径 - [-1, 1, "Conv", [512, 1, 1]] - [-1, 1, "nn.Upsample", [None, 2, "nearest"]] - [[-1, 20], 1, "Concat", [1]] # 从骨干网络第20层concat - [-1, 3, "C2f", [512]] # 30 - [-1, 1, "Conv", [256, 1, 1]] - [-1, 1, "nn.Upsample", [None, 2, "nearest"]] - [[-1, 12], 1, "Concat", [1]] # 从骨干网络第12层concat - [-1, 3, "C2f", [256]] # 34 (P3/8) # 下采样路径 - [-1, 1, "Conv", [256, 3, 2]] - [[-1, 30], 1, "Concat", [1]] # 与第30层concat - [-1, 3, "C2f", [512]] # 37 (P4/16) - [-1, 1, "Conv", [512, 3, 2]] - [[-1, 26], 1, "Concat", [1]] # 与第26层concat - [-1, 3, "C2f", [1024]] # 40 (P5/32) # 检测头 - [[34, 37, 40], 1, "Detect", [nc]] # Detect(P3, P4, P5)HAT Block 实现代码
您还需要在模型中实现HATBlock模块:
import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import DropPath class WindowAttention(nn.Module): """窗口注意力机制""" def __init__(self, dim, window_size, num_heads): super().__init__() self.dim = dim self.window_size = window_size self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=True) self.proj = nn.Linear(dim, dim) def forward(self, x): B, H, W, C = x.shape x = x.view(B, H // self.window_size, self.window_size, W // self.window_size, self.window_size, C) x = x.permute(0, 1, 3, 2, 4, 5).contiguous() qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, H, W, C) x = self.proj(x) return x class HATBlock(nn.Module): """Hybrid Attention Transformer Block""" def __init__(self, dim, num_heads, window_size, mlp_ratio=4., drop_path=0.): super().__init__() self.norm1 = nn.LayerNorm(dim) self.attn = WindowAttention(dim, window_size, num_heads) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = nn.LayerNorm(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = nn.Sequential( nn.Linear(dim, mlp_hidden_dim), nn.GELU(), nn.Linear(mlp_hidden_dim, dim) ) def forward(self, x): # 简化实现,实际HAT有更复杂的注意力机制 shortcut = x x = self.norm1(x) x = self.attn(x) x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x使用说明
- 配置文件使用:将上述YAML配置保存为
yolov8_hat.yaml - 模型创建:
from ultralytics import YOLO # 创建模型 model = YOLO('yolov8_hat.yaml') model.train(data='coco128.yaml', epochs=100, imgsz=640)这个配置将原始的CSPDarknet骨干网络替换为HAT结构,特别适合小目标检测任务。HAT的混合注意力机制能够更好地捕捉全局和局部特征,提升检测性能。
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报- 配置文件使用:将上述YAML配置保存为