想用树莓派做行人识别,不知道可以吗

先在树莓派上装c++版的opencv,用板子上的csi摄像头采集图像,然后用HOG特征和SVM来检测其中的行人。不知道树莓派算力够吗?

想把这个程序写进去。

#include <iostream>
#include <fstream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/ml/ml.hpp>

using namespace std;
using namespace cv;

#define PosSamNO 1114  //正样本个数
#define NegSamNO 12180   //负样本个数

#define TRAIN true//是否进行训练,true表示重新训练,false表示读取xml文件中的SVM模型
#define CENTRAL_CROP false   //true:训练时,对96*160的INRIA正样本图片剪裁出中间的64*128大小人体

//HardExample:负样本个数。如果HardExampleNO大于0,表示处理完初始负样本集后,继续处理HardExample负样本集。
//不使用HardExample时必须设置为0,因为特征向量矩阵和特征类别矩阵的维数初始化时用到这个值
#define HardExampleNO 433


//继承自CvSVM的类,因为生成setSVMDetector()中用到的检测子参数时,需要用到训练好的SVM的decision_func参数,
//但通过查看CvSVM源码可知decision_func参数是protected类型变量,无法直接访问到,只能继承之后通过函数访问
class MySVM : public CvSVM  
{  
public:  
    //获得SVM的决策函数中的alpha数组  
    double * get_alpha_vector()  
    {  
        return this->decision_func->alpha;  
    }  

    //获得SVM的决策函数中的rho参数,即偏移量  
    float get_rho()  
    {  
        return this->decision_func->rho;  
    }  
}; 



int main()
{
    //检测窗口(64,128),块尺寸(16,16),块步长(8,8),cell尺寸(8,8),直方图bin个数9
    HOGDescriptor hog(Size(64,128),Size(16,16),Size(8,8),Size(8,8),9);//HOG检测器,用来计算HOG描述子的
    int DescriptorDim;//HOG描述子的维数,由图片大小、检测窗口大小、块大小、细胞单元中直方图bin个数决定
    MySVM svm;//SVM分类器

    //若TRAIN为true,重新训练分类器
    if(TRAIN)
    {
        string ImgName;//图片名(绝对路径)
        ifstream finPos("d:/hogmit/pos/pos.txt");//正样本图片的文件名列表
        //ifstream finPos("PersonFromVOC2012List.txt");//正样本图片的文件名列表
        ifstream finNeg("d:/hogmit/neg/neg.txt");//负样本图片的文件名列表

        Mat sampleFeatureMat;//所有训练样本的特征向量组成的矩阵,行数等于所有样本的个数,列数等于HOG描述子维数    
        Mat sampleLabelMat;//训练样本的类别向量,行数等于所有样本的个数,列数等于1;1表示有人,-1表示无人


        //依次读取正样本图片,生成HOG描述子
        for(int num=0; num<PosSamNO && getline(finPos,ImgName); num++)
        {
            cout<<"处理:"<<ImgName<<endl;
            //ImgName = "D:\\DataSet\\PersonFromVOC2012\\" + ImgName;//加上正样本的路径名
            ImgName = "d:/hogmit/pos/" + ImgName;//加上正样本的路径名
            Mat src = imread(ImgName);//读取图片
            if(CENTRAL_CROP)
                src = src(Rect(16,16,64,128));//将96*160的INRIA正样本图片剪裁为64*128,即剪去上下左右各16个像素
            //resize(src,src,Size(64,128));

            vector<float> descriptors;//HOG描述子向量
            hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
            //
            cout<<"描述子维数:"<<descriptors.size()<<endl;

            //处理第一个样本时初始化特征向量矩阵和类别矩阵,因为只有知道了特征向量的维数才能初始化特征向量矩阵
            if( 0 == num )
            {
                DescriptorDim = descriptors.size();//HOG描述子的维数
                //初始化所有训练样本的特征向量组成的矩阵,行数等于所有样本的个数,列数等于HOG描述子维数sampleFeatureMat
                sampleFeatureMat = Mat::zeros(PosSamNO+NegSamNO+HardExampleNO, DescriptorDim, CV_32FC1);
                //初始化训练样本的类别向量,行数等于所有样本的个数,列数等于1;1表示有人,0表示无人
                sampleLabelMat = Mat::zeros(PosSamNO+NegSamNO+HardExampleNO, 1, CV_32FC1);
            }

            //将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat
            for(int i=0; i<DescriptorDim; i++)
                sampleFeatureMat.at<float>(num,i) = descriptors[i];//第num个样本的特征向量中的第i个元素
            sampleLabelMat.at<float>(num,0) = 1;//正样本类别为1,有人
        }

        //依次读取负样本图片,生成HOG描述子
        for(int num=0; num<NegSamNO && getline(finNeg,ImgName); num++)
        {
            cout<<"处理:"<<ImgName<<endl;
            ImgName = "d:/hogmit/neg/" + ImgName;//加上负样本的路径名
            Mat src = imread(ImgName);//读取图片
            //resize(src,img,Size(64,128));

            vector<float> descriptors;//HOG描述子向量
            hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
            //cout<<"描述子维数:"<<descriptors.size()<<endl;

            //将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat
            for(int i=0; i<DescriptorDim; i++)
                sampleFeatureMat.at<float>(num+PosSamNO,i) = descriptors[i];//第PosSamNO+num个样本的特征向量中的第i个元素
            sampleLabelMat.at<float>(num+PosSamNO,0) = -1;//负样本类别为-1,无人

        }

        //处理HardExample负样本
        if(HardExampleNO > 0)
        {
            ifstream finHardExample("d:/hogmit/hard/hard.txt");//HardExample负样本的文件名列表
            //依次读取HardExample负样本图片,生成HOG描述子
            for(int num=0; num<HardExampleNO && getline(finHardExample,ImgName); num++)
            {
                cout<<"处理:"<<ImgName<<endl;
                ImgName = "d:/hogmit/hard/" + ImgName;//加上HardExample负样本的路径名
                Mat src = imread(ImgName);//读取图片
                //resize(src,img,Size(64,128));

                vector<float> descriptors;//HOG描述子向量
                hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
                //cout<<"描述子维数:"<<descriptors.size()<<endl;

                //将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat
                for(int i=0; i<DescriptorDim; i++)
                    sampleFeatureMat.at<float>(num+PosSamNO+NegSamNO,i) = descriptors[i];//第PosSamNO+num个样本的特征向量中的第i个元素
                sampleLabelMat.at<float>(num+PosSamNO+NegSamNO,0) = -1;//负样本类别为-1,无人
            }
        }

        //输出样本的HOG特征向量矩阵到文件
        ofstream fout("d:/xlw/SampleFeatureMat.txt");
        for(int i=0; i<PosSamNO+NegSamNO; i++)
        {
            fout<<i<<endl;
            for(int j=0; j<DescriptorDim; j++)
            {   fout<<sampleFeatureMat.at<float>(i,j)<<"  ";

            }
            fout<<endl;
        }

        //训练SVM分类器
        //迭代终止条件,当迭代满1000次或误差小于FLT_EPSILON时停止迭代
        CvTermCriteria criteria = cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON);
        //SVM参数:SVM类型为C_SVC;线性核函数;松弛因子C=0.01
        CvSVMParams param(CvSVM::C_SVC, CvSVM::LINEAR, 0, 1, 0, 0.01, 0, 0, 0, criteria);
        cout<<"开始训练SVM分类器"<<endl;
        double time0=static_cast<double>(getTickCount());
        svm.train(sampleFeatureMat,sampleLabelMat, Mat(), Mat(), param);//训练分类器
        time0=((double)getTickCount()-time0)/getTickFrequency();
        cout<<"训练完成"<<endl;
        cout<<"训练花费时间:"<<time0<<endl;
        svm.save("d:/xlw/SVM_HOG_mit_inria(1114pos+12180neg+433hard).xml");//将训练好的SVM模型保存为xml文件

    }
    else //若TRAIN为false,从XML文件读取训练好的分类器
    {
        cout<<"fail train"<<endl;
        //svm.load("SVM_HOG_2400PosINRIA_12000Neg_HardExample(误报少了漏检多了).xml");//从XML文件读取训练好的SVM模型
        svm.load("d:/LBP/SVM_Model.xml");
    }


    /*************************************************************************************************
    线性SVM训练完成后得到的XML文件里面,有一个数组,叫做support vector,还有一个数组,叫做alpha,有一个浮点数,叫做rho;
    将alpha矩阵同support vector相乘,注意,alpha*supportVector,将得到一个列向量。之后,再该列向量的最后添加一个元素rho。
    如此,变得到了一个分类器,利用该分类器,直接替换opencv中行人检测默认的那个分类器(cv::HOGDescriptor::setSVMDetector()),
    就可以利用你的训练样本训练出来的分类器进行行人检测了。
    ***************************************************************************************************/
    DescriptorDim = svm.get_var_count();//特征向量的维数,即HOG描述子的维数
    int supportVectorNum = svm.get_support_vector_count();//支持向量的个数
    cout<<"支持向量个数:"<<supportVectorNum<<endl;

    Mat alphaMat = Mat::zeros(1, supportVectorNum, CV_32FC1);//alpha向量,长度等于支持向量个数
    Mat supportVectorMat = Mat::zeros(supportVectorNum, DescriptorDim, CV_32FC1);//支持向量矩阵
    Mat resultMat = Mat::zeros(1, DescriptorDim, CV_32FC1);//alpha向量乘以支持向量矩阵的结果

    //将支持向量的数据复制到supportVectorMat矩阵中
    for(int i=0; i<supportVectorNum; i++)
    {
        const float * pSVData = svm.get_support_vector(i);//返回第i个支持向量的数据指针
        for(int j=0; j<DescriptorDim; j++)
        {
            //cout<<pData[j]<<" ";
            supportVectorMat.at<float>(i,j) = pSVData[j];
        }
    }

    //将alpha向量的数据复制到alphaMat中
    double * pAlphaData = svm.get_alpha_vector();//返回SVM的决策函数中的alpha向量
    for(int i=0; i<supportVectorNum; i++)
    {
        alphaMat.at<float>(0,i) = pAlphaData[i];
    }

    //计算-(alphaMat * supportVectorMat),结果放到resultMat中
    //gemm(alphaMat, supportVectorMat, -1, 0, 1, resultMat);//不知道为什么加负号?
    resultMat = -1 * alphaMat * supportVectorMat;

    //得到最终的setSVMDetector(const vector<float>& detector)参数中可用的检测子
    vector<float> myDetector;
    //将resultMat中的数据复制到数组myDetector中
    for(int i=0; i<DescriptorDim; i++)
    {
        myDetector.push_back(resultMat.at<float>(0,i));
    }
    //最后添加偏移量rho,得到检测子
    myDetector.push_back(svm.get_rho());
    cout<<"检测子维数:"<<myDetector.size()<<endl;
    //设置HOGDescriptor的检测子
    HOGDescriptor myHOG;
    myHOG.setSVMDetector(myDetector);
    //myHOG.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());

    //保存检测子参数到文件
    ofstream fout("d:/xlw/HOGDetectorForOpenCV.txt");
    for(int i=0; i<myDetector.size(); i++)
    {
        fout<<myDetector[i]<<endl;
    }


    /**************读入图片进行HOG行人检测******************/
    Mat src = imread("d:/timg.png");
    //Mat src = imread("2007_000423.jpg");
    //Mat src = imread("1.png");
    vector<Rect> found, found_filtered;//矩形框数组
    cout<<"进行多尺度HOG人体检测"<<endl;
    myHOG.detectMultiScale(src, found, 0, Size(8,8), Size(32,32), 1.05, 2);//对图片进行多尺度行人检测
     //src为输入待检测的图片;found为检测到目标区域列表;参数3为程序内部计算为行人目标的阈值,也就是检测到的特征到SVM分类超平面的距离;
    //参数4为滑动窗口每次移动的距离。它必须是块移动的整数倍;参数5为图像扩充的大小;参数6为比例系数,即测试图片每次尺寸缩放增加的比例;
    //参数7为组阈值,即校正系数,当一个目标被多个窗口检测出来时,该参数此时就起了调节作用,为0时表示不起调节作用。
    cout<<"找到的矩形框个数:"<<found.size()<<endl;

    //找出所有没有嵌套的矩形框r,并放入found_filtered中,如果有嵌套的话,则取外面最大的那个矩形框放入found_filtered中
    for(int i=0; i < found.size(); i++)
    {
        Rect r = found[i];
        int j=0;
        for(; j < found.size(); j++)
            if(j != i && (r & found[j]) == r)
                break;
        if( j == found.size())
            found_filtered.push_back(r);
    }

    //画矩形框,因为hog检测出的矩形框比实际人体框要稍微大些,所以这里需要做一些调整
    for(int i=0; i<found_filtered.size(); i++)
    {
        Rect r = found_filtered[i];
        r.x += cvRound(r.width*0.1);
        r.width = cvRound(r.width*0.8);
        r.y += cvRound(r.height*0.07);
        r.height = cvRound(r.height*0.8);
        rectangle(src, r.tl(), r.br(), Scalar(0,255,0), 3);
    }

    imwrite("d:/SVM/ImgProcessed3.jpg",src);
    namedWindow("src",0);
    imshow("src",src);
    waitKey();//注意:imshow之后必须加waitKey,否则无法显示图像


    /******************读入单个64*128的测试图并对其HOG描述子进行分类*********************/
    ////读取测试图片(64*128大小),并计算其HOG描述子
    //Mat testImg = imread("person014142.jpg");
    //Mat testImg = imread("noperson000026.jpg");
    //vector<float> descriptor;
    //hog.compute(testImg,descriptor,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
    //Mat testFeatureMat = Mat::zeros(1,3780,CV_32FC1);//测试样本的特征向量矩阵
    //将计算好的HOG描述子复制到testFeatureMat矩阵中
    //for(int i=0; i<descriptor.size(); i++)
    //  testFeatureMat.at<float>(0,i) = descriptor[i];

    //用训练好的SVM分类器对测试图片的特征向量进行分类
    //int result = svm.predict(testFeatureMat);//返回类标
    //cout<<"分类结果:"<<result<<endl;



    system("pause");
}

1个回答

看你的用途了,如果是学校课题,实验室里的小车避障,我觉得问题不大,但是要是无人驾驶汽车、肯定不行。

weixin_42446600
Herr Song
3 个月之前 回复
weixin_42446600
Herr Song 想把这个程序写进去不知道可以不
3 个月之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
关于树莓派摄像头识别频闪次数的问题
现在要做一个项目关于树莓派摄像头捕捉小灯频闪次数,看了一下文献,很多文献都提到了opencv。由于第一次使用树莓派,一头雾水,所以来csdn上面取取经,有没有什么具体的方法。
树莓派opencv调用树莓派摄像头
在树莓派3上安装了opencv,用opencv去掉用usb接上的摄像头可以,但是不能获取树莓派的标准摄像头?应该怎么去设置
树莓派上的QT5按键错乱问题
如题,最近在玩树莓派。 安装好QT5之后,我用树莓派连接显示器独自登录,能正常写代码跑程序都没问题。 用远程桌面登录后,打开QT Creator,里面按键就全乱了,可是同时在终端下按键没有任何问题。 树莓派一开始的104键盘也已经配置过了。 有大神知道这是什么原因么?
在树莓派上做深度图像处理?
想做一个基于树莓派的智能视频监控系统,能够实现动作捕捉,运动检测,后期还想实现机器学习模型训练,想知道树莓派的硬件支持做这些吗?
.树莓派上不太适合用opencv实时处理吗??
是这样。。跟着网上的教程用树莓派装了opencv 然后也运行了一些简单的图像处理 识别分割啥的但是感觉效果都好差。。本科生想出去参加竞赛来着。做机器人 拿树莓派做上位机再加上 跑opencv+cnn等等。。。 会不会arm根本忙不过来啊。。。我看到很多人用 openmv那个硬件不知道好不好用 听说比opencv更适用在机器人上 opencv还是需要强大的操作系统来跑啊。。!! 有没有小伙伴能给我讲一下 我现在的想法对不对或者给些建议参考 关于我后期是做opencv还是mv 或者其他方面的建议 谢谢
急救树莓派!不到万不得已不想重装系统!
因为在树莓派上安装了anaconda之后再重启,然后树莓片就一直黑屏了。 试了很多次alt+ctrl+F1,都是闪退,有没有办法拯救一下?
树莓派关闭开机启动python脚本
树莓派开机时设置了自动启动某个python脚本想知道怎么关闭
Qt arm移植 树莓派
想在树莓派B版上跑Qt程序,自己下载源码包按照网上的教程,arm包没编译成功。求一份编译好的源码包能够放到树莓派上,树莓派是armv6的
树莓派搭建wordpress的ip地址问题
本人刚入手树莓派。我在家用树莓派搭了wordpress,但是到学校以后就无法登陆管理员页面。我用ngrok进行的内网穿透,但是我无论在公网还是局域网下访问管理员界面都自动跳转家里wifi下分配的ip地址。(网页是可以加载的,就是管理员界面打不开,IP/wp-login.php登陆成功之后就没了。。。)后来我删了mysql里的数据,重新搭的wordpress,自己手机开热点操作的,现在想连校园网,但想请教一下ip地址问题如何解决? 想了一下,是不是通过分配局域网内的静态ip就可以解决了?
在树莓派中执行QT程序提示QXcbConnection: Could not connect to display :0.0 Aborted
QT程序是把程序拷进树莓派编译运行的,我使用的xshell远程连接树莓派执行出错的,外接键盘到树莓派执行也是一样的问题,请各位大佬指教
用树莓派怎么安装ubuntu-core-12
我想用树莓派安装ubuntu12.04的系统,但是找遍网上都没有找到。
现在树莓派摄像头流行用什么技术远程监控?
请问现在树莓派摄像头流行用什么技术远程监控?还是motion吗
各位树莓派和Docker的dalao都来看看,怎么装迅雷?
我想在树莓派上装迅雷,只找到几篇老文章,试着照做,只能做到这样: ![图片说明](https://img-ask.csdn.net/upload/201912/26/1577375180_315693.png) 执行./portal说找不到命令。 请问我是哪里做错了?
树莓派如何使用gpio接口输出音频
目前有一台树莓派,一个喇叭,需要喇叭直接连接在gpio接口上,先不用管声音大小,如何让gpio针脚作为声卡输出声音?
想在树莓派3里面安装旧版本的hostapd,应该选择哪一个呢
如题,因为脚本需要用到老版本的hostapd,但是不知道该选择哪一个才能安装成功 有大神给解惑一下吗 ![图片说明](https://img-ask.csdn.net/upload/201806/29/1530250165_854409.png) 如图,该选择哪个呢,还是说树莓派不能使用这个ubuntu old release 里面的东西 需要去别的地方下载?在哪里?
如何使用树莓派3b+实现usb麦克风录音?
大家早上好, 前段时间购入了一个树莓派3b+套件,查了很多教程还有资料,还是不能够实现录音的功能。 为了方便各位大神,我把几个不明白的地方列了出来: 1. 我需要在系统config.txt文件里面改动任何一行/增加新内容吗? 2. 在连接usb麦克风以后,通过指令lsusb,树莓派没显示出我的设备。 (我买回来的usb麦克风是PnP Sound device, 具网上教程所讲,这个麦克风是免驱动的。) 既然是免驱动的,为什么在树莓派上没能够检测出来呢? 3. 树莓派的声音输出,相对于usb麦克风,我应该选择哪一个, 1)Auto 2) 3.5mm 3)HDMI 4. 我需要安装什么样的录音工具? 恳请大家帮我掠一掠,解答一下。
树莓派4B 摄像头不能正常使用
添加了bcm2835-v4l2 ls -al /dev/ | grep video可以看见video0 raspi-config里开启了摄像头 vcgencmd可以看见识别了摄像头 但是使用raspistill后命令行会卡住 之前摄像头可以正常用 后来突然就这样了 换了个新的摄像头还是这样
树莓派 minicom只能输入一个字符
如图 ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571307982_738455.png) 想用树莓派和stm32通信,但是树莓派上的minicom只能输入一个字符,再怎么按都没有反应了,此时lock目录下已经被锁了 ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571308222_914311.png) minicom再怎么按都没有反应,只能关闭了 相关设置如下图 ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571308837_846738.png) 下面是Screen and keyboard的 ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571308920_762564.png) 请求各位大佬赐教!
树莓派键盘布局设置失败
树莓派键盘布局设置修改后测试成功,但是三五分钟后又出现问题,例@和”位置互换,| 敲不出等问题,求解,谢谢。
爬虫福利二 之 妹子图网MM批量下载
爬虫福利一:27报网MM批量下载    点击 看了本文,相信大家对爬虫一定会产生强烈的兴趣,激励自己去学习爬虫,在这里提前祝:大家学有所成! 目标网站:妹子图网 环境:Python3.x 相关第三方模块:requests、beautifulsoup4 Re:各位在测试时只需要将代码里的变量 path 指定为你当前系统要保存的路径,使用 python xxx.py 或IDE运行即可。
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、PDF搜索网站推荐 对于大部
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 顺便拉下票,我在参加csdn博客之星竞选,欢迎投票支持,每个QQ或者微信每天都可以投5票,扫二维码即可,http://m234140.nofollow.ax.
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入  假设现有4个人
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 欢迎 改进 留言。 演示地点跳到演示地点 html代码如下`&lt;!DOCTYPE html&gt; &lt;html&gt; &lt;head&gt; &lt;title&gt;music&lt;/title&gt; &lt;meta charset="utf-8"&gt
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。 1. for - else 什么?不是 if 和 else 才
数据库优化 - SQL优化
前面一篇文章从实例的角度进行数据库优化,通过配置一些参数让数据库性能达到最优。但是一些“不好”的SQL也会导致数据库查询变慢,影响业务流程。本文从SQL角度进行数据库优化,提升SQL运行效率。 判断问题SQL 判断SQL是否有问题时可以通过两个表象进行判断: 系统级别表象 CPU消耗严重 IO等待严重 页面响应时间过长
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 c/c++ 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7
通俗易懂地给女朋友讲:线程池的内部原理
餐厅的约会 餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”我楞了一下,心里想女朋友今天是怎么了,怎么突然问出这么专业的问题,但做为一个专业人士在女朋友面前也不能露怯啊,想了一下便说:“我先给你讲讲我前同事老王的故事吧!” 大龄程序员老王 老王是一个已经北漂十多年的程序员,岁数大了,加班加不动了,升迁也无望,于是拿着手里
经典算法(5)杨辉三角
写在前面: 我是 扬帆向海,这个昵称来源于我的名字以及女朋友的名字。我热爱技术、热爱开源、热爱编程。技术是开源的、知识是共享的。 这博客是对自己学习的一点点总结及记录,如果您对 Java、算法 感兴趣,可以关注我的动态,我们一起学习。 用知识改变命运,让我们的家人过上更好的生活。 目录一、杨辉三角的介绍二、杨辉三角的算法思想三、代码实现1.第一种写法2.第二种写法 一、杨辉三角的介绍 百度
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹
面试官:你连RESTful都不知道我怎么敢要你?
面试官:了解RESTful吗? 我:听说过。 面试官:那什么是RESTful? 我:就是用起来很规范,挺好的 面试官:是RESTful挺好的,还是自我感觉挺好的 我:都挺好的。 面试官:… 把门关上。 我:… 要干嘛?先关上再说。 面试官:我说出去把门关上。 我:what ?,夺门而去 文章目录01 前言02 RESTful的来源03 RESTful6大原则1. C-S架构2. 无状态3.统一的接
JDK12 Collectors.teeing 你真的需要了解一下
前言在 Java 12 里面有个非常好用但在官方 JEP 没有公布的功能,因为它只是 Collector 中的一个小改动,它的作用是 merge 两个 collector 的结果,这句话
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看
SQL-小白最佳入门sql查询一
一 说明 如果是初学者,建议去网上寻找安装Mysql的文章安装,以及使用navicat连接数据库,以后的示例基本是使用mysql数据库管理系统; 二 准备前提 需要建立一张学生表,列分别是id,名称,年龄,学生信息;本示例中文章篇幅原因SQL注释略; 建表语句: CREATE TABLE `student` ( `id` int(11) NOT NULL AUTO_INCREMENT, `
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // dosho
【图解经典算法题】如何用一行代码解决约瑟夫环问题
约瑟夫环问题算是很经典的题了,估计大家都听说过,然后我就在一次笔试中遇到了,下面我就用 3 种方法来详细讲解一下这道题,最后一种方法学了之后保证让你可以让你装逼。 问题描述:编号为 1-N 的 N 个士兵围坐在一起形成一个圆圈,从编号为 1 的士兵开始依次报数(1,2,3…这样依次报),数到 m 的 士兵会被杀死出列,之后的士兵再从 1 开始报数。直到最后剩下一士兵,求这个士兵的编号。 1、方
致 Python 初学者
文章目录1. 前言2. 明确学习目标,不急于求成,不好高骛远3. 在开始学习 Python 之前,你需要做一些准备2.1 Python 的各种发行版2.2 安装 Python2.3 选择一款趁手的开发工具3. 习惯使用IDLE,这是学习python最好的方式4. 严格遵从编码规范5. 代码的运行、调试5. 模块管理5.1 同时安装了py2/py35.2 使用Anaconda,或者通过IDE来安装模
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,
程序员:我终于知道post和get的区别
IT界知名的程序员曾说:对于那些月薪三万以下,自称IT工程师的码农们,其实我们从来没有把他们归为我们IT工程师的队伍。他们虽然总是以IT工程师自居,但只是他们一厢情愿罢了。 此话一出,不知激起了多少(码农)程序员的愤怒,却又无可奈何,于是码农问程序员。 码农:你知道get和post请求到底有什么区别? 程序员:你看这篇就知道了。 码农:你月薪三万了? 程序员:嗯。 码农:你是怎么做到的? 程序员:
GitHub标星近1万:只需5秒音源,这个网络就能实时“克隆”你的声音
作者 | Google团队译者 | 凯隐编辑 | Jane出品 | AI科技大本营(ID:rgznai100)本文中,Google 团队提出了一种文本语音合成(text to speech)神经系统,能通过少量样本学习到多个不同说话者(speaker)的语音特征,并合成他们的讲话音频。此外,对于训练时网络没有接触过的说话者,也能在不重新训练的情况下,仅通过未知说话者数秒的音频来合成其讲话音频,即网
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU
加快推动区块链技术和产业创新发展,2019可信区块链峰会在京召开
      11月8日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会、可信区块链推进计划联合主办,科技行者协办的2019可信区块链峰会将在北京悠唐皇冠假日酒店开幕。   区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。如果说蒸汽机释放了人类的生产力,电力解决了人类基本的生活需求,互联网彻底改变了信息传递的方式,区块链作为构造信任的技术有重要的价值。   1
程序员把地府后台管理系统做出来了,还有3.0版本!12月7号最新消息:已在开发中有github地址
第一幕:缘起 听说阎王爷要做个生死簿后台管理系统,我们派去了一个程序员…… 996程序员做的梦: 第一场:团队招募 为了应对地府管理危机,阎王打算找“人”开发一套地府后台管理系统,于是就在地府总经办群中发了项目需求。 话说还是中国电信的信号好,地府都是满格,哈哈!!! 经常会有外行朋友问:看某网站做的不错,功能也简单,你帮忙做一下? 而这次,面对这样的需求,这个程序员
网易云6亿用户音乐推荐算法
网易云音乐是音乐爱好者的集聚地,云音乐推荐系统致力于通过 AI 算法的落地,实现用户千人千面的个性化推荐,为用户带来不一样的听歌体验。 本次分享重点介绍 AI 算法在音乐推荐中的应用实践,以及在算法落地过程中遇到的挑战和解决方案。 将从如下两个部分展开: AI 算法在音乐推荐中的应用 音乐场景下的 AI 思考 从 2013 年 4 月正式上线至今,网易云音乐平台持续提供着:乐屏社区、UGC
【技巧总结】位运算装逼指南
位算法的效率有多快我就不说,不信你可以去用 10 亿个数据模拟一下,今天给大家讲一讲位运算的一些经典例子。不过,最重要的不是看懂了这些例子就好,而是要在以后多去运用位运算这些技巧,当然,采用位运算,也是可以装逼的,不信,你往下看。我会从最简单的讲起,一道比一道难度递增,不过居然是讲技巧,那么也不会太难,相信你分分钟看懂。 判断奇偶数 判断一个数是基于还是偶数,相信很多人都做过,一般的做法的代码如下
【管理系统课程设计】美少女手把手教你后台管理
【后台管理系统】URL设计与建模分析+项目源码+运行界面 栏目管理、文章列表、用户管理、角色管理、权限管理模块(文章最后附有源码) 一、这是一个什么系统? 1.1 学习后台管理系统的原因 随着时代的变迁,现如今各大云服务平台横空出世,市面上有许多如学生信息系统、图书阅读系统、停车场管理系统等的管理系统,而本人家里就有人在用烟草销售系统,直接在网上完成挑选、购买与提交收货点,方便又快捷。 试想,
4G EPS 第四代移动通信系统
目录 文章目录目录4G EPSEPS 的架构EPS 的参考模型E-UTRANUEeNodeBEPCMME(移动性控制处理单元)S-GW(E-RAB 无线访问承载接入点)P-GW(PDN 接入点)HSS(用户认证中心)PCRF(计费规则与策略)SPR(用户档案)OCS(在线计费)OFCS(离线计费)接口类型Uu 接口(空中接口,UE 和 AN 之间)S1 接口(AN 和 CN 之间)S1-U 接口和
相关热词 如何提升c#开发能力 矩阵乘法c# c#调用谷歌浏览器 c# 去空格去转义符 c#用户登录窗体代码 c# 流 c# linux 可视化 c# mvc 返回图片 c# 像素空间 c# 日期 最后一天
立即提问