donglefu6195 2017-01-01 11:13
浏览 63
已采纳

Golang:为什么使用goroutines并行化调用会导致速度变慢?

I have two versions of merge sort implementation. The first is a "normal" version and the second uses goroutines that parallelize the work being done on each subset of the slice in each step of the recursion.

One would assume that being able to parallelize this work would make the concurrent implementation faster: if I need to work on slice A and slice B, then working on them concurrently should be faster than doing so synchronously.

Now I'm assuming something is wrong with either my implementation of my understanding, because my concurrent version ends up being 13-14x slower than the sync version.

Can anyone point me in the right direction as to what I'm missing?

"Normal" (synchronous implementation):

// MergeSort sorts the slice s using Merge Sort Algorithm
func MergeSort(s []int) []int {
    if len(s) <= 1 {
        return s
    }

    n := len(s) / 2

    var l []int
    var r []int

    l = MergeSort(s[:n])
    r = MergeSort(s[n:])

    return merge(l, r)
}

"Concurrent" version:

// MergeSortMulti sorts the slice s using Merge Sort Algorithm
func MergeSortMulti(s []int) []int {
    if len(s) <= 1 {
        return s
    }

    n := len(s) / 2

    wg := sync.WaitGroup{}
    wg.Add(2)

    var l []int
    var r []int

    go func() {
        l = MergeSortMulti(s[:n])
        wg.Done()
    }()

    go func() {
        r = MergeSortMulti(s[n:])
        wg.Done()
    }()

    wg.Wait()
    return merge(l, r)
}

Both use the same merge function:

func merge(l, r []int) []int {
    ret := make([]int, 0, len(l)+len(r))
    for len(l) > 0 || len(r) > 0 {
        if len(l) == 0 {
            return append(ret, r...)
        }
        if len(r) == 0 {
            return append(ret, l...)
        }
        if l[0] <= r[0] {
            ret = append(ret, l[0])
            l = l[1:]
        } else {
            ret = append(ret, r[0])
            r = r[1:]
        }
    }
    return ret
}

This is my benchmarking code:

package msort

import "testing"

var a []int

func init() {
    for i := 0; i < 1000000; i++ {
        a = append(a, i)
    }
}
func BenchmarkMergeSortMulti(b *testing.B) {
    for n := 0; n < b.N; n++ {
        MergeSortMulti(a)
    }
}

func BenchmarkMergeSort(b *testing.B) {
    for n := 0; n < b.N; n++ {
        MergeSort(a)
    }
}

It reveals that the concurrent version is a lot slower than the normal synchronous version:

BenchmarkMergeSortMulti-8              1    1711428093 ns/op
BenchmarkMergeSort-8                  10     131232885 ns/op

展开全部

  • 写回答

2条回答 默认 最新

  • dongxiongshi9952 2017-01-01 12:00
    关注

    This is because you spawn tons of goroutines which preempt when calling wg.Wait(). Scheduler has no idea which one to pick, it can pick randomly blocked ones till it meets one that finally can return and unblock another one. When I limited number of concurrent calls to MergeSortMulti it became roughly 3x faster than synchronous version.

    This code isn't beautiful, but it is a proof.

    // MergeSortMulti sorts the slice s using Merge Sort Algorithm
    func MergeSortMulti(s []int) []int {
        if len(s) <= 1 {
            return s
        }
    
        n := len(s) / 2
    
        wg := sync.WaitGroup{}
        wg.Add(2)
    
        var l []int
        var r []int
    
        const N = len(s)
        const FACTOR = 8  // ugly but easy way to limit number of goroutines
    
        go func() {
            if n < N/FACTOR {
                l = MergeSort(s[:n])
            } else {
                l = MergeSortMulti(s[:n])
            }
            wg.Done()
        }()
    
        go func() {
            if n < N/FACTOR {
                r = MergeSort(s[n:])
            } else {
                r = MergeSortMulti(s[n:])
            }
            wg.Done()
        }()
    
        wg.Wait()
        return merge(l, r)
    }
    

    Results will be different on your machine, but:

    FACTOR = 4:

    BenchmarkMergeSortMulti-8             50          33268370 ns/op
    BenchmarkMergeSort-8                  20          91479573 ns/op
    

    FACTOR = 10000

    BenchmarkMergeSortMulti-8             20          84822824 ns/op
    BenchmarkMergeSort-8                  20         103068609 ns/op
    

    FACTOR = N/4

    BenchmarkMergeSortMulti-8              3         352870855 ns/op
    BenchmarkMergeSort-8                  10         129107177 ns/op
    

    Bonus: You can do also use semaphore to limit the number of goroutines which is a bit slower on my machine (select is used to avoid dead-lock):

    var sem = make(chan struct{}, 100)
    
    // MergeSortMulti sorts the slice s using Merge Sort Algorithm
    func MergeSortMulti(s []int) []int {
        if len(s) <= 1 {
            return s
        }
    
        n := len(s) / 2
    
        wg := sync.WaitGroup{}
        wg.Add(2)
    
        var l []int
        var r []int
    
        select {
        case sem <- struct{}{}:
            go func() {
                l = MergeSortMulti(s[:n])
                <-sem
                wg.Done()
            }()
        default:
            l = MergeSort(s[:n])
            wg.Done()
        }
    
        select {
        case sem <- struct{}{}:
            go func() {
                r = MergeSortMulti(s[n:])
                <-sem
                wg.Done()
            }()
        default:
            r = MergeSort(s[n:])
            wg.Done()
        }
    
        wg.Wait()
        return merge(l, r)
    }
    

    It yields:

    BenchmarkMergeSortMulti-8             30          36741152 ns/op
    BenchmarkMergeSort-8                  20          90843812 ns/op
    

    展开全部

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(1条)
编辑
预览

报告相同问题?

手机看
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回
顶部