Darknet yolov3训练数据,为何载入迭代200次的数据开始训练控制台却显示从100次开始运行?

如题。
本人在做毕业设计,因疫情影响无法回学校用良好的设备训练模型,只能用自己的计算机硬跑,目标先跑个1000次。
一上午大概能迭代100次,但如果从0到100再继续训练就会在154次左右出现大量的nan,于是我退出,载入100次时候保留的权重成功跑到200并保存有权重文件。
今早我打算故技重施,可载入200次权重文件跑的时候却显示从100开始,然后101,102。我太难了。
有没有懂的兄弟可以说说原因和解决办法?跪谢!

1个回答

我也是遇见这个问题,本来是忘记改了原来的50200,幸运的是迭代到134次时,电脑卡退了,我再重新训练时改迭代次数,发现在100以下的,用保存的最后的权重模型去训练时直接就不训练了,然后改成了150次,可以训练了,但和你说的一样从101开始而不是从134开始,当时没在意,原来这还是个问题呢,之后陆续改了150、200、250、1000也没发生类似问题都是从前依次截止权重开始训练的,我的建议是你可以把迭代次数再写高点,因为我发现迭代1000次始,程序自动保存了此时的权重模型,你也可以将源代码里这个自动保存模型的界限(1000)改成100,这样就会每100次保存一次模型,只要迭代次数使得目标损失降到源代码设定的阈值,程序还会自动保存最佳模型

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
darknet版本的yolov3训练自己的数据集

使用darknet版本的yolov3训练自己的数据集,如果我改了网络结构,还能在预训练模型的基础上训练吗?还是什么都不用重头开始训练?

在vs平台上调用yolov3训练好的模型去检测新的图片速度很慢

前段时间做一个事情是基于darknet53网络训练的yolov3的模型,在vs2017平台上基于opencv调用yolo训练出来的权重文件去检测新的图片时发现速度很慢,每张用时300ms的样子,达不到我的要求,样本图片很大 2100X1000,所以现在我想请教一下能有什么方法能加速这个检测过程的么?只说思路也可以。有大神能给提供一个思路没,能在这个基础上速度提升4倍以上就行。

用darkenet训练yolov3,跑着跑着LOSS越来越大,然后就出现了大面积NAN,LOSS,IOU等都是NAN值

![图片说明](https://img-ask.csdn.net/upload/201809/30/1538270368_592051.jpg)

AlexeyAB darknet 怎么用GPU训练?

cuda+cudnn+opencv+vs2017安装应该都没有问题,也用了-gpu 0的命令,ENABLE_CUDA也√了,makefile也试着了GPU=1,CUDNN=1。我想不出来还有哪里出了纰漏,我是真的没辙了,如果有大佬会的,希望私聊我QQ1059605256,可以远程协助检查一下我的环境配置。现在有6G的gpu不知道怎么用。用CPU训练,迭代1000次就要4.5天,全天24小时都运行。真的很无奈。时间紧迫快开学了。

最近在使用YOLOv3进行测试时候,会报错cuda out of memory

最近在使用YOLOv3进行测试时候,会报错cuda out of memory,然后自己也尝试了一些方法,比如缩小测试图片尺寸等等,但是问题依然没有解决。想问一下各位大佬,有没有什么好的解决办法,或者YOLOv3有没有提供一些函数来释放显存,就是模型用完以后直接释放掉。谢谢谢!!!

yolo v3 怎么使用网络摄像头而不是笔记本摄像头?

大二的小白 刚接触yolo没几天,训练好自己的权重后已经能调用笔记本摄像头来识别海星 现在想使用网络摄像头来识别,用的是雄迈xm530模组 使用darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights rtsp://192.168.1.10:30554/user=admin&password=admin&channel=1&stream=0.sdp?real_stream 命令 会提示video stream stopped 希望有人帮忙 可以有偿 微信17860702880

YOLO的darknet make时出错

makefile里gpu和opencv=0。先是显示ofast无效的选项参数,后来注释掉了之后就显示darknet.h里有typedef‘network’重定义错误。很崩溃,跪求大佬

基于Keras的YOLOV3源码实现疑问

``` @wraps(Conv2D) def DarknetConv2D(*args, **kwargs): """Wrapper to set Darknet parameters for Convolution2D.""" darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)} darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides')==(2,2) else 'same' darknet_conv_kwargs.update(kwargs) return Conv2D(*args, **darknet_conv_kwargs) def DarknetConv2D_BN_Leaky(*args, **kwargs):#*用于参数前面,表示传入的(多个)参数将按照元组的形式存储;**用于参数前则表示传入的(多个)参数将按照字典的形式存储 """Darknet Convolution2D followed by BatchNormalization and LeakyReLU.""" no_bias_kwargs = {'use_bias': False} no_bias_kwargs.update(kwargs) return compose( DarknetConv2D(*args, **no_bias_kwargs), BatchNormalization(),#归一化 LeakyReLU(alpha=0.1))#compose函数的作用:为嵌套函数 a = compose(b,c,d) 则a(1)=d(c(b(1))) def resblock_body(x, num_filters, num_blocks): '''A series of resblocks starting with a downsampling Convolution2D''' # Darknet uses left and top padding instead of 'same' mode x = ZeroPadding2D(((1,0),(1,0)))(x)#??? x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x) for i in range(num_blocks): y = compose( DarknetConv2D_BN_Leaky(num_filters//2, (1,1)), DarknetConv2D_BN_Leaky(num_filters, (3,3)))(x) x = Add()([x,y]) return x ``` 1.请问这里wraps的功能以及意义是什么? 2.源码中出现大量类似x = ZeroPadding2D(((1,0),(1,0)))(x)#???形式的语句,请问语句最后的(x)是什么意思? 3. x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x)语句在调用DarknetConv2D_BN_Leaky函数时传入的参数哪一部分是*args,哪一步分是 **kwargs

树莓派上跑yolov3-tiny.weigths出现segmentation fault是什么原因?

./darknet detector test cfg/voc.data cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights data/dog.jpg ![图片说明](https://img-ask.csdn.net/upload/201908/28/1566964218_348263.png)

使用darknet时出现的问题

./darknet detect ./cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights ./data/eagle.jpg 在我输入这条指令测试时冒出了 layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 1 max 2 x 2 / 2 416 x 416 x 32 -> 208 x 208 x 32 2 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 3 max 2 x 2 / 2 208 x 208 x 64 -> 104 x 104 x 64 4 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 5 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 6 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 7 max 2 x 2 / 2 104 x 104 x 128 -> 52 x 52 x 128 8 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 9 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 10 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 11 max 2 x 2 / 2 52 x 52 x 256 -> 26 x 26 x 256 12 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 13 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 14 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 15 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 16 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 17 max 2 x 2 / 2 26 x 26 x 512 -> 13 x 13 x 512 18 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 19 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 20 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 21 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 22 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 23 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024 24 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024 25 route 16 26 conv 64 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 64 27 reorg / 2 26 x 26 x 64 -> 13 x 13 x 256 28 route 27 24 29 conv 1024 3 x 3 / 1 13 x 13 x1280 -> 13 x 13 x1024 30 conv 120 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 120 31 detection darknet: ./src/parser.c:280: parse_region: Assertion `l.outputs == params.inputs' failed. 已放弃 (核心已转储) 这样的提示 请问这个错误提示是因为什么呢? 另外我在安装完darknet之后按照csdn上的教程改参数,可是发现我的src文件夹中没有yolo.c等文件,但是example里面有,我就给拷贝到了scr中并做了修改,现在想想是不是安装失败了啊orz

安装YOLO的darknet编译出现问题

请教一下各位,就是我在下载darknet后编译出现了make: * [obj/convolutiona_l_layer.o] Error 1 的问题 ![图片说明](https://img-ask.csdn.net/upload/201701/14/1484380384_669825.png) cuda版本7.5 gcc版本7.5 opencv版本2.4.8 ubuntu版本14.04 希望大家能帮我解决一下,谢谢!

求助 win10配置yolo,运行darknet.sln,编译器报错。

win10配置yolo,运行darknet.sln,编译器报了一堆奇奇怪怪的错误 cuda 10.0 opencv 3.4.1 vs2017 ![图片说明](https://img-ask.csdn.net/upload/201812/02/1543756187_755458.jpg)

tensorflow cifar10教程如何实现断点续训?我希望每次能从上次的结果继续训练

cifar10_train.py FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('train_dir', 'D:/tmp/cifar10_trainn', """Directory where to write event logs """ """and checkpoint.""") tf.app.flags.DEFINE_integer('max_steps', 100000, """Number of batches to run.""") tf.app.flags.DEFINE_boolean('log_device_placement', False, """Whether to log device placement.""") tf.app.flags.DEFINE_integer('log_frequency', 10, """How often to log results to the console.""") def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.train.get_or_create_global_step() # Get images and labels for CIFAR-10. # Force input pipeline to CPU:0 to avoid operations sometimes ending up on # GPU and resulting in a slow down. with tf.device('/cpu:0'): images, labels = cifar10.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = cifar10.inference(images) # Calculate loss. loss = cifar10.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = cifar10.train(loss, global_step) class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 self._start_time = time.time() def before_run(self, run_context): self._step += 1 return tf.train.SessionRunArgs(loss) # Asks for loss value. def after_run(self, run_context, run_values): if self._step % FLAGS.log_frequency == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time loss_value = run_values.results examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration sec_per_batch = float(duration / FLAGS.log_frequency) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) saver = tf.train.Saver() with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook()], config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op) def main(argv=None): # pylint: disable=unused-argument cifar10.maybe_download_and_extract() if tf.gfile.Exists(FLAGS.train_dir): tf.gfile.DeleteRecursively(FLAGS.train_dir) tf.gfile.MakeDirs(FLAGS.train_dir) train() if __name__ == '__main__': tf.app.run()

yolo3 darknet.py问题

我用darknetAB https://github.com/AlexeyAB/darknet 编译gpu版本后生成darknet.py文件 然后我也编译了yolo_cpp_dll.sln文件 生成dll文件 然后运行darknet.py文件 不显示图片 异常退出 ![图片说明](https://img-ask.csdn.net/upload/201911/02/1572688446_628910.png) 百度了这个问题 有人说要换python3.5版本 我也尝试了 但是也是不行 不会显示图片。请问各位大佬到底怎么解决??急!!!谢谢!!! ``` #!python3 """ Python 3 wrapper for identifying objects in images Requires DLL compilation Both the GPU and no-GPU version should be compiled; the no-GPU version should be renamed "yolo_cpp_dll_nogpu.dll". On a GPU system, you can force CPU evaluation by any of: - Set global variable DARKNET_FORCE_CPU to True - Set environment variable CUDA_VISIBLE_DEVICES to -1 - Set environment variable "FORCE_CPU" to "true" To use, either run performDetect() after import, or modify the end of this file. See the docstring of performDetect() for parameters. Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`) Original *nix 2.7: https://github.com/pjreddie/darknet/blob/0f110834f4e18b30d5f101bf8f1724c34b7b83db/python/darknet.py Windows Python 2.7 version: https://github.com/AlexeyAB/darknet/blob/fc496d52bf22a0bb257300d3c79be9cd80e722cb/build/darknet/x64/darknet.py @author: Philip Kahn @date: 20180503 """ #pylint: disable=R, W0401, W0614, W0703 from ctypes import * import math import random import os def sample(probs): s = sum(probs) probs = [a/s for a in probs] r = random.uniform(0, 1) for i in range(len(probs)): r = r - probs[i] if r <= 0: return i return len(probs)-1 def c_array(ctype, values): arr = (ctype*len(values))() arr[:] = values return arr class BOX(Structure): _fields_ = [("x", c_float), ("y", c_float), ("w", c_float), ("h", c_float)] class DETECTION(Structure): _fields_ = [("bbox", BOX), ("classes", c_int), ("prob", POINTER(c_float)), ("mask", POINTER(c_float)), ("objectness", c_float), ("sort_class", c_int)] class IMAGE(Structure): _fields_ = [("w", c_int), ("h", c_int), ("c", c_int), ("data", POINTER(c_float))] class METADATA(Structure): _fields_ = [("classes", c_int), ("names", POINTER(c_char_p))] #lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL) #lib = CDLL("libdarknet.so", RTLD_GLOBAL) hasGPU = True if os.name == "nt": cwd = os.path.dirname(__file__) os.environ['PATH'] = cwd + ';' + os.environ['PATH'] winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll") winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_nogpu.dll") envKeys = list() for k, v in os.environ.items(): envKeys.append(k) try: try: tmp = os.environ["FORCE_CPU"].lower() if tmp in ["1", "true", "yes", "on"]: raise ValueError("ForceCPU") else: print("Flag value '"+tmp+"' not forcing CPU mode") except KeyError: # We never set the flag if 'CUDA_VISIBLE_DEVICES' in envKeys: if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0: raise ValueError("ForceCPU") try: global DARKNET_FORCE_CPU if DARKNET_FORCE_CPU: raise ValueError("ForceCPU") except NameError: pass # print(os.environ.keys()) # print("FORCE_CPU flag undefined, proceeding with GPU") if not os.path.exists(winGPUdll): raise ValueError("NoDLL") lib = CDLL(winGPUdll, RTLD_GLOBAL) except (KeyError, ValueError): hasGPU = False if os.path.exists(winNoGPUdll): lib = CDLL(winNoGPUdll, RTLD_GLOBAL) print("Notice: CPU-only mode") else: # Try the other way, in case no_gpu was # compile but not renamed lib = CDLL(winGPUdll, RTLD_GLOBAL) print("Environment variables indicated a CPU run, but we didn't find `"+winNoGPUdll+"`. Trying a GPU run anyway.") else: lib = CDLL("./libdarknet.so", RTLD_GLOBAL) lib.network_width.argtypes = [c_void_p] lib.network_width.restype = c_int lib.network_height.argtypes = [c_void_p] lib.network_height.restype = c_int copy_image_from_bytes = lib.copy_image_from_bytes copy_image_from_bytes.argtypes = [IMAGE,c_char_p] def network_width(net): return lib.network_width(net) def network_height(net): return lib.network_height(net) predict = lib.network_predict_ptr predict.argtypes = [c_void_p, POINTER(c_float)] predict.restype = POINTER(c_float) if hasGPU: set_gpu = lib.cuda_set_device set_gpu.argtypes = [c_int] make_image = lib.make_image make_image.argtypes = [c_int, c_int, c_int] make_image.restype = IMAGE get_network_boxes = lib.get_network_boxes get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int] get_network_boxes.restype = POINTER(DETECTION) make_network_boxes = lib.make_network_boxes make_network_boxes.argtypes = [c_void_p] make_network_boxes.restype = POINTER(DETECTION) free_detections = lib.free_detections free_detections.argtypes = [POINTER(DETECTION), c_int] free_ptrs = lib.free_ptrs free_ptrs.argtypes = [POINTER(c_void_p), c_int] network_predict = lib.network_predict_ptr network_predict.argtypes = [c_void_p, POINTER(c_float)] reset_rnn = lib.reset_rnn reset_rnn.argtypes = [c_void_p] load_net = lib.load_network load_net.argtypes = [c_char_p, c_char_p, c_int] load_net.restype = c_void_p load_net_custom = lib.load_network_custom load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int] load_net_custom.restype = c_void_p do_nms_obj = lib.do_nms_obj do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] do_nms_sort = lib.do_nms_sort do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] free_image = lib.free_image free_image.argtypes = [IMAGE] letterbox_image = lib.letterbox_image letterbox_image.argtypes = [IMAGE, c_int, c_int] letterbox_image.restype = IMAGE load_meta = lib.get_metadata lib.get_metadata.argtypes = [c_char_p] lib.get_metadata.restype = METADATA load_image = lib.load_image_color load_image.argtypes = [c_char_p, c_int, c_int] load_image.restype = IMAGE rgbgr_image = lib.rgbgr_image rgbgr_image.argtypes = [IMAGE] predict_image = lib.network_predict_image predict_image.argtypes = [c_void_p, IMAGE] predict_image.restype = POINTER(c_float) predict_image_letterbox = lib.network_predict_image_letterbox predict_image_letterbox.argtypes = [c_void_p, IMAGE] predict_image_letterbox.restype = POINTER(c_float) def array_to_image(arr): import numpy as np # need to return old values to avoid python freeing memory arr = arr.transpose(2,0,1) c = arr.shape[0] h = arr.shape[1] w = arr.shape[2] arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0 data = arr.ctypes.data_as(POINTER(c_float)) im = IMAGE(w,h,c,data) return im, arr def classify(net, meta, im): out = predict_image(net, im) res = [] for i in range(meta.classes): if altNames is None: nameTag = meta.names[i] else: nameTag = altNames[i] res.append((nameTag, out[i])) res = sorted(res, key=lambda x: -x[1]) return res def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug= False): """ Performs the meat of the detection """ #pylint: disable= C0321 im = load_image(image, 0, 0) if debug: print("Loaded image") ret = detect_image(net, meta, im, thresh, hier_thresh, nms, debug) free_image(im) if debug: print("freed image") return ret def detect_image(net, meta, im, thresh=.5, hier_thresh=.5, nms=.45, debug= False): #import cv2 #custom_image_bgr = cv2.imread(image) # use: detect(,,imagePath,) #custom_image = cv2.cvtColor(custom_image_bgr, cv2.COLOR_BGR2RGB) #custom_image = cv2.resize(custom_image,(lib.network_width(net), lib.network_height(net)), interpolation = cv2.INTER_LINEAR) #import scipy.misc #custom_image = scipy.misc.imread(image) #im, arr = array_to_image(custom_image) # you should comment line below: free_image(im) num = c_int(0) if debug: print("Assigned num") pnum = pointer(num) if debug: print("Assigned pnum") predict_image(net, im) letter_box = 0 #predict_image_letterbox(net, im) #letter_box = 1 if debug: print("did prediction") # dets = get_network_boxes(net, custom_image_bgr.shape[1], custom_image_bgr.shape[0], thresh, hier_thresh, None, 0, pnum, letter_box) # OpenCV dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum, letter_box) if debug: print("Got dets") num = pnum[0] if debug: print("got zeroth index of pnum") if nms: do_nms_sort(dets, num, meta.classes, nms) if debug: print("did sort") res = [] if debug: print("about to range") for j in range(num): if debug: print("Ranging on "+str(j)+" of "+str(num)) if debug: print("Classes: "+str(meta), meta.classes, meta.names) for i in range(meta.classes): if debug: print("Class-ranging on "+str(i)+" of "+str(meta.classes)+"= "+str(dets[j].prob[i])) if dets[j].prob[i] > 0: b = dets[j].bbox if altNames is None: nameTag = meta.names[i] else: nameTag = altNames[i] if debug: print("Got bbox", b) print(nameTag) print(dets[j].prob[i]) print((b.x, b.y, b.w, b.h)) res.append((nameTag, dets[j].prob[i], (b.x, b.y, b.w, b.h))) if debug: print("did range") res = sorted(res, key=lambda x: -x[1]) if debug: print("did sort") free_detections(dets, num) if debug: print("freed detections") return res netMain = None metaMain = None altNames = None def performDetect(imagePath="data/dog.jpg", thresh= 0.25, configPath = "./cfg/yolov3.cfg", weightPath = "yolov3.weights", metaPath= "./cfg/coco.data", showImage= True, makeImageOnly = False, initOnly= False): """ Convenience function to handle the detection and returns of objects. Displaying bounding boxes requires libraries scikit-image and numpy Parameters ---------------- imagePath: str Path to the image to evaluate. Raises ValueError if not found thresh: float (default= 0.25) The detection threshold configPath: str Path to the configuration file. Raises ValueError if not found weightPath: str Path to the weights file. Raises ValueError if not found metaPath: str Path to the data file. Raises ValueError if not found showImage: bool (default= True) Compute (and show) bounding boxes. Changes return. makeImageOnly: bool (default= False) If showImage is True, this won't actually *show* the image, but will create the array and return it. initOnly: bool (default= False) Only initialize globals. Don't actually run a prediction. Returns ---------------------- When showImage is False, list of tuples like ('obj_label', confidence, (bounding_box_x_px, bounding_box_y_px, bounding_box_width_px, bounding_box_height_px)) The X and Y coordinates are from the center of the bounding box. Subtract half the width or height to get the lower corner. Otherwise, a dict with { "detections": as above "image": a numpy array representing an image, compatible with scikit-image "caption": an image caption } """ # Import the global variables. This lets us instance Darknet once, then just call performDetect() again without instancing again global metaMain, netMain, altNames #pylint: disable=W0603 assert 0 < thresh < 1, "Threshold should be a float between zero and one (non-inclusive)" if not os.path.exists(configPath): raise ValueError("Invalid config path `"+os.path.abspath(configPath)+"`") if not os.path.exists(weightPath): raise ValueError("Invalid weight path `"+os.path.abspath(weightPath)+"`") if not os.path.exists(metaPath): raise ValueError("Invalid data file path `"+os.path.abspath(metaPath)+"`") if netMain is None: netMain = load_net_custom(configPath.encode("ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1 if metaMain is None: metaMain = load_meta(metaPath.encode("ascii")) if altNames is None: # In Python 3, the metafile default access craps out on Windows (but not Linux) # Read the names file and create a list to feed to detect try: with open(metaPath) as metaFH: metaContents = metaFH.read() import re match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE) if match: result = match.group(1) else: result = None try: if os.path.exists(result): with open(result) as namesFH: namesList = namesFH.read().strip().split("\n") altNames = [x.strip() for x in namesList] except TypeError: pass except Exception: pass if initOnly: print("Initialized detector") return None if not os.path.exists(imagePath): raise ValueError("Invalid image path `"+os.path.abspath(imagePath)+"`") # Do the detection #detections = detect(netMain, metaMain, imagePath, thresh) # if is used cv2.imread(image) detections = detect(netMain, metaMain, imagePath.encode("ascii"), thresh) if showImage: try: from skimage import io, draw import numpy as np image = io.imread(imagePath) print("*** "+str(len(detections))+" Results, color coded by confidence ***") imcaption = [] for detection in detections: label = detection[0] confidence = detection[1] pstring = label+": "+str(np.rint(100 * confidence))+"%" imcaption.append(pstring) print(pstring) bounds = detection[2] shape = image.shape # x = shape[1] # xExtent = int(x * bounds[2] / 100) # y = shape[0] # yExtent = int(y * bounds[3] / 100) yExtent = int(bounds[3]) xEntent = int(bounds[2]) # Coordinates are around the center xCoord = int(bounds[0] - bounds[2]/2) yCoord = int(bounds[1] - bounds[3]/2) boundingBox = [ [xCoord, yCoord], [xCoord, yCoord + yExtent], [xCoord + xEntent, yCoord + yExtent], [xCoord + xEntent, yCoord] ] # Wiggle it around to make a 3px border rr, cc = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] for x in boundingBox], shape= shape) rr2, cc2 = draw.polygon_perimeter([x[1] + 1 for x in boundingBox], [x[0] for x in boundingBox], shape= shape) rr3, cc3 = draw.polygon_perimeter([x[1] - 1 for x in boundingBox], [x[0] for x in boundingBox], shape= shape) rr4, cc4 = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] + 1 for x in boundingBox], shape= shape) rr5, cc5 = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] - 1 for x in boundingBox], shape= shape) boxColor = (int(255 * (1 - (confidence ** 2))), int(255 * (confidence ** 2)), 0) draw.set_color(image, (rr, cc), boxColor, alpha= 0.8) draw.set_color(image, (rr2, cc2), boxColor, alpha= 0.8) draw.set_color(image, (rr3, cc3), boxColor, alpha= 0.8) draw.set_color(image, (rr4, cc4), boxColor, alpha= 0.8) draw.set_color(image, (rr5, cc5), boxColor, alpha= 0.8) if not makeImageOnly: io.imshow(image) io.show() detections = { "detections": detections, "image": image, "caption": "\n<br/>".join(imcaption) } except Exception as e: print("Unable to show image: "+str(e)) return detections if __name__ == "__main__": print(performDetect()) ```

YOLO v3 OpenCV-3.4.1

balbal..... 下载完weight后,在终端输入: ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg 我是根据网上Yolo v3教程一步一步来的,装了最新的opencv,发现如下问题: 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs 105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.353 BFLOPs 106 yolo Loading weights from yolov3.weights...Done! data/dog.jpg: Predicted in 0.045922 seconds. dog: 99% truck: 92% bicycle: 99% OpenCV(3.4.1) Error: Assertion failed ((flags & FIXED_TYPE) != 0) in type, file /home/kiraq/home/installation/opencv-3.4.1/modules/core/src/matrix_wrap.cpp, line 807 terminate called after throwing an instance of 'cv::Exception' what(): OpenCV(3.4.1) /home/kiraq/home/installation/opencv-3.4.1/modules/core/src/matrix_wrap.cpp:807: error: (-215) (flags & FIXED_TYPE) != 0 in function type Aborted (core dumped) 请问如何解决?

tiny yolo 训练 已放弃 (核心已转储)

jerrylew@jerrylew-CW15:~/darknet$ ./darknet detector train ./cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc layer filters size input output 0 conv 16 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 16 1 max 2 x 2 / 2 416 x 416 x 16 -> 208 x 208 x 16 2 conv 32 3 x 3 / 1 208 x 208 x 16 -> 208 x 208 x 32 3 max 2 x 2 / 2 208 x 208 x 32 -> 104 x 104 x 32 4 conv 64 3 x 3 / 1 104 x 104 x 32 -> 104 x 104 x 64 5 max 2 x 2 / 2 104 x 104 x 64 -> 52 x 52 x 64 6 conv 128 3 x 3 / 1 52 x 52 x 64 -> 52 x 52 x 128 7 max 2 x 2 / 2 52 x 52 x 128 -> 26 x 26 x 128 8 conv 256 3 x 3 / 1 26 x 26 x 128 -> 26 x 26 x 256 9 max 2 x 2 / 2 26 x 26 x 256 -> 13 x 13 x 256 10 conv 512 3 x 3 / 1 13 x 13 x 256 -> 13 x 13 x 512 11 max 2 x 2 / 1 13 x 13 x 512 -> 13 x 13 x 512 12 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 13 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024 14 conv 305 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 305 15 detection darknet: ./src/parser.c:281: parse_region: Assertion `l.outputs == params.inputs' failed. 已放弃 (核心已转储) 这什么情况啊 求解

faster-rcnn第一次迭代完之后卡住了

![图片说明](https://img-ask.csdn.net/upload/201608/08/1470622058_346210.jpg) 之前我用其它数据集跑过了,没有问题,这次跑就出问题了,我用的是12G的显存,泰坦。所以应该不是硬件配置不够,希望大神们能帮我解答一下。。。

YOLO在python中调用设置darknet.set_gpu(1)无效

我的操作系统是macos,显卡为GT750M,已经成功安装了cuda,在终端调用yolo官网的示例代码可以实现gpu运算,但在python中按照作者封装好的darknet.py调用yolo时设置darknet.set_gpu(1)却无法使用gpu运算,仍是cpu运算。 我在/src/cuda.c中把cuda_set_device函数的gpu_index直接设置为1,仍无法使用gpu运算,我对c++了解的不是很多,希望大神可以帮我解决这个问题。

VS2015+Opencv3.4.0配置无GPU下darknet环境编译出错

![图片说明](https://img-ask.csdn.net/upload/202004/07/1586252632_26621.png) 编译darknet-master->build->darknet->darknet_no_gpu.sln文件出现如下错误,已经按照相关教程在包含目录、库目录下修改为自己的opencv安装路径。也是在Release+x64平台下编译的。

程序员的兼职技能课

获取讲师答疑方式: 在付费视频第一节(触摸命令_ALL)片头有二维码及加群流程介绍 限时福利 原价99元,今日仅需39元!购课添加小助手(微信号:csdn590)按提示还可领取价值800元的编程大礼包! 讲师介绍: 苏奕嘉&nbsp;前阿里UC项目工程师 脚本开发平台官方认证满级(六级)开发者。 我将如何教会你通过【定制脚本】赚到你人生的第一桶金? 零基础程序定制脚本开发课程,是完全针对零脚本开发经验的小白而设计,课程内容共分为3大阶段: ①前期将带你掌握Q开发语言和界面交互开发能力; ②中期通过实战来制作有具体需求的定制脚本; ③后期将解锁脚本的更高阶玩法,打通任督二脉; ④应用定制脚本合法赚取额外收入的完整经验分享,带你通过程序定制脚本开发这项副业,赚取到你的第一桶金!

Windows版YOLOv4目标检测实战:训练自己的数据集

课程演示环境:Windows10; cuda 10.2; cudnn7.6.5; Python3.7; VisualStudio2019; OpenCV3.4 需要学习ubuntu系统上YOLOv4的同学请前往:《YOLOv4目标检测实战:训练自己的数据集》 课程链接:https://edu.csdn.net/course/detail/28745 YOLOv4来了!速度和精度双提升! 与 YOLOv3 相比,新版本的 AP (精度)和 FPS (每秒帧率)分别提高了 10% 和 12%。 YOLO系列是基于深度学习的端到端实时目标检测方法。本课程将手把手地教大家使用labelImg标注和使用YOLOv4训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。 本课程的YOLOv4使用AlexyAB/darknet,在Windows系统上做项目演示。包括:安装软件环境、安装YOLOv4、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算)和先验框聚类分析。还将介绍改善YOLOv4目标检测性能的技巧。 除本课程《Windows版YOLOv4目标检测实战:训练自己的数据集》外,本人将推出有关YOLOv4目标检测的系列课程。请持续关注该系列的其它视频课程,包括: 《Windows版YOLOv4目标检测实战:人脸口罩佩戴检测》 《Windows版YOLOv4目标检测实战:中国交通标志识别》 《Windows版YOLOv4目标检测:原理与源码解析》

lena全身原图(非256*256版本,而是全身原图)

lena全身原图(非256*256版本,而是全身原图) lena原图很有意思,我们通常所用的256*256图片是在lena原图上截取了头部部分的256*256正方形得到的. 原图是花花公子杂志上的一个

快速入门Android开发 视频 教程 android studio

这是一门快速入门Android开发课程,顾名思义是让大家能快速入门Android开发。 学完能让你学会如下知识点: Android的发展历程 搭建Java开发环境 搭建Android开发环境 Android Studio基础使用方法 Android Studio创建项目 项目运行到模拟器 项目运行到真实手机 Android中常用控件 排查开发中的错误 Android中请求网络 常用Android开发命令 快速入门Gradle构建系统 项目实战:看美图 常用Android Studio使用技巧 项目签名打包 如何上架市场

Java调用微信支付

Java 使用微信支付 一. 准备工作 1.

汽车租赁管理系统需求分析规格说明书

汽车租赁管理系统需求分析规格说明书,这只是一个模板,如果有不会的可以借鉴一下,还是蛮详细的。。。。

C/C++跨平台研发从基础到高阶实战系列套餐

一 专题从基础的C语言核心到c++ 和stl完成基础强化; 二 再到数据结构,设计模式完成专业计算机技能强化; 三 通过跨平台网络编程,linux编程,qt界面编程,mfc编程,windows编程,c++与lua联合编程来完成应用强化 四 最后通过基于ffmpeg的音视频播放器,直播推流,屏幕录像,

程序员的算法通关课:知己知彼(第一季)

【超实用课程内容】 程序员对于算法一直又爱又恨!特别是在求职面试时,算法类问题绝对是不可逃避的提问点!本门课程作为算法面试系列的第一季,会从“知己知彼”的角度,聊聊关于算法面试的那些事~ 【哪些人适合学习这门课程?】 求职中的开发者,对于面试算法阶段缺少经验 想了解实际工作中算法相关知识 在职程序员,算法基础薄弱,急需充电 【超人气讲师】 孙秀洋&nbsp;| 服务器端工程师 硕士毕业于哈工大计算机科学与技术专业,ACM亚洲区赛铜奖获得者,先后在腾讯和百度从事一线技术研发,对算法和后端技术有深刻见解。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/27272 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程无限观看时长,但是大家可以抓紧时间学习后一起讨论哦~

机器学习初学者必会的案例精讲

通过六个实际的编码项目,带领同学入门人工智能。这些项目涉及机器学习(回归,分类,聚类),深度学习(神经网络),底层数学算法,Weka数据挖掘,利用Git开源项目实战等。

Python入门视频精讲

Python入门视频培训课程以通俗易懂的方式讲解Python核心技术,Python基础,Python入门。适合初学者的教程,让你少走弯路! 课程内容包括:1.Python简介和安装 、2.第一个Python程序、PyCharm的使用 、3.Python基础、4.函数、5.高级特性、6.面向对象、7.模块、8.异常处理和IO操作、9.访问数据库MySQL。教学全程采用笔记+代码案例的形式讲解,通俗易懂!!!

我以为我对Mysql事务很熟,直到我遇到了阿里面试官

太惨了,面试又被吊打

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

Java62数据提取代码

利用苹果手机微信下面的wx.data文件提取出62数据,通过62可以实现不同设备直接登陆,可以通过文件流的方式用脚本上传到服务器进行解析

Python代码实现飞机大战

文章目录经典飞机大战一.游戏设定二.我方飞机三.敌方飞机四.发射子弹五.发放补给包六.主模块 经典飞机大战 源代码以及素材资料(图片,音频)可从下面的github中下载: 飞机大战源代码以及素材资料github项目地址链接 ————————————————————————————————————————————————————————— 不知道大家有没有打过飞机,喜不喜欢打飞机。当我第一次接触这个东西的时候,我的内心是被震撼到的。第一次接触打飞机的时候作者本人是身心愉悦的,因为周边的朋友都在打飞机, 每

2018年全国大学生计算机技能应用大赛决赛 大题

2018年全国大学生计算机技能应用大赛决赛大题,程序填空和程序设计(侵删)

Lena图像处理测试专业用图,高清完整全身原图

Lena图像处理测试专业用图,高清完整全身原图,该图片很好的包含了平坦区域、阴影和纹理等细节,这些都有益于测试各种不同的图像处理算法。它是一幅很好的测试照片!其次,由于这是一个非常有魅力女人的照片。

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

verilog实现地铁系统售票

使用 verilog 实现地铁售票

Python+OpenCV计算机视觉

Python+OpenCV计算机视觉系统全面的介绍。

Python可以这样学(第四季:数据分析与科学计算可视化)

董付国老师系列教材《Python程序设计(第2版)》(ISBN:9787302436515)、《Python可以这样学》(ISBN:9787302456469)配套视频,在教材基础上又增加了大量内容,通过实例讲解numpy、scipy、pandas、statistics、matplotlib等标准库和扩展库用法。

150讲轻松搞定Python网络爬虫

【为什么学爬虫?】 &nbsp; &nbsp; &nbsp; &nbsp;1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到! &nbsp; &nbsp; &nbsp; &nbsp;2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。 &nbsp; 从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑

获取Linux下Ftp目录树并逐步绑定到treeview

在linux下抓取目录树,双击后获取该节点子节点(逐步生成)。另外有两个类,一个是windows下的(一次性获取目录树),一个是linux下的(足部获取目录树)

YOLOv3目标检测实战系列课程

《YOLOv3目标检测实战系列课程》旨在帮助大家掌握YOLOv3目标检测的训练、原理、源码与网络模型改进方法。 本课程的YOLOv3使用原作darknet(c语言编写),在Ubuntu系统上做项目演示。 本系列课程包括三门课: (1)《YOLOv3目标检测实战:训练自己的数据集》 包括:安装darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 (2)《YOLOv3目标检测:原理与源码解析》讲解YOLOv1、YOLOv2、YOLOv3的原理、程序流程并解析各层的源码。 (3)《YOLOv3目标检测:网络模型改进方法》讲解YOLOv3的改进方法,包括改进1:不显示指定类别目标的方法 (增加功能) ;改进2:合并BN层到卷积层 (加快推理速度) ; 改进3:使用GIoU指标和损失函数 (提高检测精度) ;改进4:tiny YOLOv3 (简化网络模型)并介绍 AlexeyAB/darknet项目。

手把手实现Java图书管理系统(附源码)

【超实用课程内容】 本课程演示的是一套基于Java的SSM框架实现的图书管理系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的java人群。详细介绍了图书管理系统的实现,包括:环境搭建、系统业务、技术实现、项目运行、功能演示、系统扩展等,以通俗易懂的方式,手把手的带你从零开始运行本套图书管理系统,该项目附带全部源码可作为毕设使用。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/27513 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化

微信小程序开发实战之番茄时钟开发

微信小程序番茄时钟视频教程,本课程将带着各位学员开发一个小程序初级实战类项目,针对只看过官方文档而又无从下手的开发者来说,可以作为一个较好的练手项目,对于有小程序开发经验的开发者而言,可以更好加深对小程序各类组件和API 的理解,为更深层次高难度的项目做铺垫。

Java 最常见的 200+ 面试题:面试必备

这份面试清单是从我 2015 年做了 TeamLeader 之后开始收集的,一方面是给公司招聘用,另一方面是想用它来挖掘在 Java 技术栈中,还有那些知识点是我不知道的,我想找到这些技术盲点,然后修复它,以此来提高自己的技术水平。虽然我是从 2009 年就开始参加编程工作了,但我依旧觉得自己现在要学的东西很多,并且学习这些知识,让我很有成就感和满足感,那所以何乐而不为呢? 说回面试的事,这份面试...

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

三个项目玩转深度学习(附1G源码)

从事大数据与人工智能开发与实践约十年,钱老师亲自见证了大数据行业的发展与人工智能的从冷到热。事实证明,计算机技术的发展,算力突破,海量数据,机器人技术等,开启了第四次工业革命的序章。深度学习图像分类一直是人工智能的经典任务,是智慧零售、安防、无人驾驶等机器视觉应用领域的核心技术之一,掌握图像分类技术是机器视觉学习的重中之重。针对现有线上学习的特点与实际需求,我们开发了人工智能案例实战系列课程。打造:以项目案例实践为驱动的课程学习方式,覆盖了智能零售,智慧交通等常见领域,通过基础学习、项目案例实践、社群答疑,三维立体的方式,打造最好的学习效果。

微信小程序 实例汇总 完整项目源代码

微信小程序 实例汇总 完整项目源代码

基于西门子S7—1200的单部六层电梯设计程序,1部6层电梯

基于西门子S7—1200的单部六层电梯设计程序,1部6层电梯。 本系统控制六层电梯, 采用集选控制方式。 为了完成设定的控制任务, 主要根据电梯输入/输出点数确定PLC 的机型。 根据电梯控制的要求,

相关热词 c#对文件改写权限 c#中tostring c#支付宝回掉 c#转换成数字 c#判断除法是否有模 c# 横向chart c#控件选择多个 c#报表如何锁定表头 c#分级显示数据 c# 不区分大小写替换
立即提问
相关内容推荐