用vs2015和opencv做人脸识别时碰到LNK2019的错误

错误如下:
图片说明

不是链接器的问题,应该是代码的问题,但我对c++和vs还不太熟悉。请哪位大神告知。代码如下:
#include "stdafx.h"
#include
#include
#include "opencv2/core.hpp"
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
//#include
#include
#include
#include

using namespace cv;
using namespace cv::face;
using namespace std;

static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// 创建和返回一个归一化后的图像矩阵:
Mat dst;
switch (src.channels()) {
case 1:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
break;
case 3:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
}
//使用CSV文件去读图像和标签,主要使用stringstream和getline方法
static void read_csv(const string& filename, vector& images, vector& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(Error::StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if (!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}

int main() {
// 检测合法的命令,显示用法
// 如果没有参数输入则退出!.

string output_folder;
output_folder = string("D:\\Documents\\faceData\\output");

//读取你的CSV文件路径.
string fn_csv = string("D:\\Documents\\faceData\\ORL\\at.txt");
// 2个容器来存放图像数据和对应的标签
vector<Mat> images;
vector<int> labels;
// 读取数据. 如果文件不合法就会出错
// 输入的文件名已经有了.
try {
    read_csv(fn_csv, images, labels);
}
catch (cv::Exception& e) {
    cerr << "Error opening file " << fn_csv << ". Reason: " << e.msg << endl;
    // 文件有问题,我们啥也做不了了,退出了
    exit(1);
}
// 如果没有读取到足够图片,我们也得退出.
if (images.size() <= 1) {
    string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
    CV_Error(Error::StsError, error_message);
}
// 得到第一张照片的高度. 在下面对图像
// 变形到他们原始大小时需要
int height = images[0].rows;
// 下面的几行代码仅仅是从你的数据集中移除最后一张图片
//[gm:自然这里需要根据自己的需要修改,他这里简化了很多问题]
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
images.pop_back();
labels.pop_back();
// 下面几行创建了一个特征脸模型用于人脸识别,
// 通过CSV文件读取的图像和标签训练它。
// T这里是一个完整的PCA变换
//如果你只想保留10个主成分,使用如下代码
      //cv::createEigenFaceRecognizer(10);
//
// 如果你还希望使用置信度阈值来初始化,使用以下语句:
//      cv::createEigenFaceRecognizer(10, 123.0);
//
// 如果你使用所有特征并且使用一个阈值,使用以下语句:
//      cv::createEigenFaceRecognizer(0, 123.0);
//
Ptr<BasicFaceRecognizer> model = createEigenFaceRecognizer();
model->train(images, labels);
// 下面对测试图像进行预测,predictedLabel是预测标签结果
int predictedLabel = model->predict(testSample);
//
// 还有一种调用方式,可以获取结果同时得到阈值:
//      int predictedLabel = -1;
//      double confidence = 0.0;
//      model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// 这里是如何获取特征脸模型的特征值的例子,使用了getMat方法:
Mat eigenvalues = model->getEigenValues();
// 同样可以获取特征向量:
Mat W = model->getEigenVectors();
// 得到训练图像的均值向量
Mat mean = model->getMean();
// 显示还是保存:

imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));

imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));

// 显示还是保存特征脸:
for (int i = 0; i < min(10, W.cols); i++) {
    string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
    cout << msg << endl;
    // 得到第 #i个特征
    Mat ev = W.col(i).clone();
    //把它变成原始大小,为了把数据显示归一化到0~255.
    Mat grayscale = norm_0_255(ev.reshape(1, height));
    // 使用伪彩色来显示结果,为了更好的感受.
    Mat cgrayscale;
    applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
    // 显示或者保存:

    imshow(format("eigenface_%d", i), cgrayscale);

    imwrite(format("%s/eigenface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));

}
// 在一些预测过程中,显示还是保存重建后的图像:
for (int num_components = 10; num_components <300; num_components += 15) {
    // 从模型中的特征向量截取一部分
    Mat evs = Mat(W, Range::all(), Range(0, num_components));
    Mat projection = LDA::subspaceProject(evs, mean, images[0].reshape(1, 1));
    Mat reconstruction = LDA::subspaceReconstruct(evs, mean, projection);
    // 归一化结果,为了显示:
    reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
    // 显示或者保存:

    imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);

    imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);

}
// 如果我们不是存放到文件中,就显示他,这里使用了暂定等待键盘输入:

waitKey(0);

return 0;

}

3个回答

这种情况一般都是函数只找到声明但没有实现,或者是少了什么链接库

我把opencv3.1换成2.4.12就没有这个问题。具体也不知道为什么。

opencv3的链接库即使配置好了也经常出问题,建议先用2.4.9学习研究。等3的版本稳定了,别人把问题解决方法总结的差不多了,再使用。这样学习事半功倍

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
opencv人脸识别特征脸训练部分出错 求懂得老师大神解决。
在b站上学习贾志刚老师的opencv人脸识别教程 用vs2019和opencv3.2.0做人脸识别的时候 在训练特征脸的时候 程序老是出现LNK2019错误 求懂得大神解决![图片说明](https://img-ask.csdn.net/upload/202003/06/1583500681_792754.png) ``` #include <opencv2/opencv.hpp> #include <opencv2/face.hpp> #include <iostream> using namespace cv; using namespace cv::face; using namespace std; int main(int argc, char** argv) { string filename = string("D:/outface/orl_faces/s1"); ifstream file(filename.c_str(), ifstream::in); if (!file) { printf("could not load file correctly...\n"); return -1; } string line, path, classlabel; vector<Mat> images; vector<int> labels; char separator = ';'; while (getline(file, line)) { stringstream liness(line); getline(liness, path, separator); getline(liness, classlabel); if (!path.empty() && !classlabel.empty()) { //printf("path : %s\n", path.c_str()); images.push_back(imread(path, 0)); labels.push_back(atoi(classlabel.c_str())); } } if (images.size() < 1 || labels.size() < 1) { printf("invalid image path...\n"); return -1; } int height = images[0].rows; int width = images[0].cols; printf("height : %d, width : %d\n", height, width); Mat testSample = images[images.size() - 1]; int testLabel = labels[labels.size() - 1]; images.pop_back(); labels.pop_back(); // train it Ptr<BasicFaceRecognizer> model = createEigenFaceRecognizer(); model->train(images, labels); // recognition face int predictedLabel = model->predict(testSample); printf("actual label : %d, predict label : %d\n", testLabel, predictedLabel); Mat eigenvalues = model->getEigenValues(); Mat W = model->getEigenVectors(); Mat mean = model->getMean(); Mat meanFace = mean.reshape(1, height); Mat dst; if (meanFace.channels() == 1) { normalize(meanFace, dst, 0, 255, NORM_MINMAX, CV_8UC1); } else if (meanFace.channels() == 3) { normalize(meanFace, dst, 0, 255, NORM_MINMAX, CV_8UC3); } imshow("Mean Face", dst); // show eigen faces for (int i = 0; i < min(10, W.cols); i++) { Mat ev = W.col(i).clone(); Mat grayscale; Mat eigenFace = ev.reshape(1, height); if (eigenFace.channels() == 1) { normalize(eigenFace, grayscale, 0, 255, NORM_MINMAX, CV_8UC1); } else if (eigenFace.channels() == 3) { normalize(eigenFace, grayscale, 0, 255, NORM_MINMAX, CV_8UC3); } Mat colorface; applyColorMap(grayscale, colorface, COLORMAP_JET); char* winTitle = new char[128]; sprintf(winTitle, "eigenface_%d", i); imshow(winTitle, colorface); } // 重建人脸 for (int num = min(10, W.cols); num < min(W.cols, 300); num += 15) { Mat evs = Mat(W, Range::all(), Range(0, num)); Mat projection = LDA::subspaceProject(evs, mean, images[0].reshape(1, 1)); Mat reconstruction = LDA::subspaceReconstruct(evs, mean, projection); Mat result = reconstruction.reshape(1, height); if (result.channels() == 1) { normalize(result, reconstruction, 0, 255, NORM_MINMAX, CV_8UC1); } else if (result.channels() == 3) { normalize(result, reconstruction, 0, 255, NORM_MINMAX, CV_8UC3); } char* winTitle = new char[128]; sprintf(winTitle, "recon_face_%d", num); imshow(winTitle, reconstruction); } waitKey(0); return 0; } ```
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
【JSON解析】浅谈JSONObject的使用
简介 在程序开发过程中,在参数传递,函数返回值等方面,越来越多的使用JSON。JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,同时也易于机器解析和生成、易于理解、阅读和撰写,而且Json采用完全独立于语言的文本格式,这使得Json成为理想的数据交换语言。 JSON建构于两种结构: “名称/值”对的集合(A Collection of name/va...
卸载 x 雷某度!GitHub 标星 1.5w+,从此我只用这款全能高速下载工具!
作者 | Rocky0429 来源 | Python空间 大家好,我是 Rocky0429,一个喜欢在网上收集各种资源的蒟蒻… 网上资源眼花缭乱,下载的方式也同样千奇百怪,比如 BT 下载,磁力链接,网盘资源等等等等,下个资源可真不容易,不一样的方式要用不同的下载软件,因此某比较有名的 x 雷和某度网盘成了我经常使用的工具。 作为一个没有钱的穷鬼,某度网盘几十 kb 的下载速度让我...
2019年还剩1天,我从外包公司离职了
这日子过的可真快啊,2019年还剩1天,外包公司干了不到3个月,我离职了
我一个37岁的程序员朋友
周末了,人一旦没有点事情干,心里就瞎想,而且跟几个老男人坐在一起,更容易瞎想,我自己现在也是 30 岁了,也是无时无刻在担心自己的职业生涯,担心丢掉工作没有收入,担心身体机能下降,担心突...
计算机网络的核心概念
这是《计算机网络》系列文章的第二篇文章 我们第一篇文章讲述了计算机网络的基本概念,互联网的基本名词,什么是协议以及几种接入网以及网络传输的物理媒体,那么本篇文章我们来探讨一下网络核心、交换网络、时延、丢包、吞吐量以及计算机网络的协议层次和网络攻击。 网络核心 网络的核心是由因特网端系统和链路构成的网状网络,下面这幅图正确的表达了这一点 那么在不同的 ISP 和本地以及家庭网络是如何交换信息的呢?...
python自动下载图片
近日闲来无事,总有一种无形的力量萦绕在朕身边,让朕精神涣散,昏昏欲睡。 可是,像朕这么有职业操守的社畜怎么能在上班期间睡瞌睡呢,我不禁陷入了沉思。。。。 突然旁边的IOS同事问:‘嘿,兄弟,我发现一个网站的图片很有意思啊,能不能帮我保存下来提升我的开发灵感?’ 作为一个坚强的社畜怎么能说自己不行呢,当时朕就不假思索的答应:‘oh, It’s simple. Wait for me for a ...
一名大专同学的四个问题
【前言】   收到一封来信,赶上各种事情拖了几日,利用今天要放下工作的时机,做个回复。   2020年到了,就以这一封信,作为开年标志吧。 【正文】   您好,我是一名现在有很多困惑的大二学生。有一些问题想要向您请教。   先说一下我的基本情况,高考失利,不想复读,来到广州一所大专读计算机应用技术专业。学校是偏艺术类的,计算机专业没有实验室更不用说工作室了。而且学校的学风也不好。但我很想在计算机领...
复习一周,京东+百度一面,不小心都拿了Offer
京东和百度一面都问了啥,面试官百般刁难,可惜我全会。
Java 14 都快来了,为什么还有这么多人固守Java 8?
从Java 9开始,Java版本的发布就让人眼花缭乱了。每隔6个月,都会冒出一个新版本出来,Java 10 , Java 11, Java 12, Java 13, 到2020年3月份,...
达摩院十大科技趋势发布:2020 非同小可!
【CSDN编者按】1月2日,阿里巴巴发布《达摩院2020十大科技趋势》,十大科技趋势分别是:人工智能从感知智能向认知智能演进;计算存储一体化突破AI算力瓶颈;工业互联网的超融合;机器间大规模协作成为可能;模块化降低芯片设计门槛;规模化生产级区块链应用将走入大众;量子计算进入攻坚期;新材料推动半导体器件革新;保护数据隐私的AI技术将加速落地;云成为IT技术创新的中心 。 新的画卷,正在徐徐展开。...
轻松搭建基于 SpringBoot + Vue 的 Web 商城应用
首先介绍下在本文出现的几个比较重要的概念: 函数计算(Function Compute): 函数计算是一个事件驱动的服务,通过函数计算,用户无需管理服务器等运行情况,只需编写代码并上传。函数计算准备计算资源,并以弹性伸缩的方式运行用户代码,而用户只需根据实际代码运行所消耗的资源进行付费。Fun: Fun 是一个用于支持 Serverless 应用部署的工具,能帮助您便捷地管理函数计算、API ...
讲真,这两个IDE插件,可以让你写出质量杠杠的代码
周末躺在床上看《拯救大兵瑞恩》 周末在闲逛的时候,发现了两个优秀的 IDE 插件,据说可以提高代码的质量,我就安装了一下,试了试以后发现,确实很不错,就推荐给大家。 01、Alibaba Java 代码规范插件 《阿里巴巴 Java 开发手册》,相信大家都不会感到陌生,其 IDEA 插件的下载次数据说达到了 80 万次,我今天又贡献了一次。嘿嘿。 该项目的插件地址: https://github....
Python+OpenCV实时图像处理
目录 1、导入库文件 2、设计GUI 3、调用摄像头 4、实时图像处理 4.1、阈值二值化 4.2、边缘检测 4.3、轮廓检测 4.4、高斯滤波 4.5、色彩转换 4.6、调节对比度 5、退出系统 初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试...
2020年一线城市程序员工资大调查
人才需求 一线城市共发布岗位38115个,招聘120827人。 其中 beijing 22805 guangzhou 25081 shanghai 39614 shenzhen 33327 工资分布 2020年中国一线城市程序员的平均工资为16285元,工资中位数为14583元,其中95%的人的工资位于5000到20000元之间。 和往年数据比较: yea...
为什么猝死的都是程序员,基本上不见产品经理猝死呢?
相信大家时不时听到程序员猝死的消息,但是基本上听不到产品经理猝死的消息,这是为什么呢? 我们先百度搜一下:程序员猝死,出现将近700多万条搜索结果: 搜索一下:产品经理猝死,只有400万条的搜索结果,从搜索结果数量上来看,程序员猝死的搜索结果就比产品经理猝死的搜索结果高了一倍,而且从下图可以看到,首页里面的五条搜索结果,其实只有两条才是符合条件。 所以程序员猝死的概率真的比产品经理大,并不是错...
害怕面试被问HashMap?这一篇就搞定了!
声明:本文以jdk1.8为主! 搞定HashMap 作为一个Java从业者,面试的时候肯定会被问到过HashMap,因为对于HashMap来说,可以说是Java集合中的精髓了,如果你觉得自己对它掌握的还不够好,我想今天这篇文章会非常适合你,至少,看了今天这篇文章,以后不怕面试被问HashMap了 其实在我学习HashMap的过程中,我个人觉得HashMap还是挺复杂的,如果真的想把它搞得明明白...
毕业5年,我问遍了身边的大佬,总结了他们的学习方法
我问了身边10个大佬,总结了他们的学习方法,原来成功都是有迹可循的。
程序员如何通过造轮子走向人生巅峰?
前言:你所做的事情,也许暂时看不到成果。但不要灰心,你不是没有成长,而是在扎根。 程序员圈经常流行的一句话:“不要重复造轮子”。在计算机领域,我们将封装好的组件、库,叫做轮子。因为它可以拿来直接用,直接塞进我们的项目中,就能实现对应的功能。 有些同学会问,人家都已经做好了,你再来重新弄一遍,有什么意义?这不是在浪费时间吗。 殊不知,造轮子是一种学习方式,能快速进步,造得好,是自己超强能力的表...
推荐10个堪称神器的学习网站
每天都会收到很多读者的私信,问我:“二哥,有什么推荐的学习网站吗?最近很浮躁,手头的一些网站都看烦了,想看看二哥这里有什么新鲜货。” 今天一早做了个恶梦,梦到被老板辞退了。虽然说在我们公司,只有我辞退老板的份,没有老板辞退我这一说,但是还是被吓得 4 点多都起来了。(主要是因为我掌握着公司所有的核心源码,哈哈哈) 既然 4 点多起来,就得好好利用起来。于是我就挑选了 10 个堪称神器的学习网站,推...
这些软件太强了,Windows必装!尤其程序员!
Windows可谓是大多数人的生产力工具,集娱乐办公于一体,虽然在程序员这个群体中都说苹果是信仰,但是大部分不都是从Windows过来的,而且现在依然有很多的程序员用Windows。 所以,今天我就把我私藏的Windows必装的软件分享给大家,如果有一个你没有用过甚至没有听过,那你就赚了????,这可都是提升你幸福感的高效率生产力工具哦! 走起!???? NO、1 ScreenToGif 屏幕,摄像头和白板...
阿里面试一个ArrayList我都能跟面试官扯半小时
我是真的没想到,面试官会这样问我ArrayList。
曾经优秀的人,怎么就突然不优秀了。
职场上有很多辛酸事,很多合伙人出局的故事,很多技术骨干被裁员的故事。说来模板都类似,曾经是名校毕业,曾经是优秀员工,曾经被领导表扬,曾经业绩突出,然而突然有一天,因为种种原因,被裁员了,...
大学四年因为知道了这32个网站,我成了别人眼中的大神!
依稀记得,毕业那天,我们导员发给我毕业证的时候对我说“你可是咱们系的风云人物啊”,哎呀,别提当时多开心啦????,嗯,我们导员是所有导员中最帅的一个,真的???? 不过,导员说的是实话,很多人都叫我大神的,为啥,因为我知道这32个网站啊,你说强不强????,这次是绝对的干货,看好啦,走起来! PS:每个网站都是学计算机混互联网必须知道的,真的牛杯,我就不过多介绍了,大家自行探索,觉得没用的,尽管留言吐槽吧???? 社...
良心推荐,我珍藏的一些Chrome插件
上次搬家的时候,发了一个朋友圈,附带的照片中不小心暴露了自己的 Chrome 浏览器插件之多,于是就有小伙伴评论说分享一下我觉得还不错的浏览器插件。 我下面就把我日常工作和学习中经常用到的一些 Chrome 浏览器插件分享给大家,随便一个都能提高你的“生活品质”和工作效率。 Markdown Here Markdown Here 可以让你更愉快的写邮件,由于支持 Markdown 直接转电子邮...
看完这篇HTTP,跟面试官扯皮就没问题了
我是一名程序员,我的主要编程语言是 Java,我更是一名 Web 开发人员,所以我必须要了解 HTTP,所以本篇文章就来带你从 HTTP 入门到进阶,看完让你有一种恍然大悟、醍醐灌顶的感觉。 最初在有网络之前,我们的电脑都是单机的,单机系统是孤立的,我还记得 05 年前那会儿家里有个电脑,想打电脑游戏还得两个人在一个电脑上玩儿,及其不方便。我就想为什么家里人不让上网,我的同学 xxx 家里有网,每...
史上最全的IDEA快捷键总结
现在Idea成了主流开发工具,这篇博客对其使用的快捷键做了总结,希望对大家的开发工作有所帮助。
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
谁是华为扫地僧?
是的,华为也有扫地僧!2020年2月11-12日,“养在深闺人不知”的华为2012实验室扫地僧们,将在华为开发者大会2020(Cloud)上,和大家见面。到时,你可以和扫地僧们,吃一个洋...
Idea 中最常用的10款插件(提高开发效率),一定要学会使用!
学习使用一些插件,可以提高开发效率。对于我们开发人员很有帮助。这篇博客介绍了开发中使用的插件。
AI 没让人类失业,搞 AI 的人先失业了
最近和几个 AI 领域的大佬闲聊 根据他们讲的消息和段子 改编出下面这个故事 如有雷同 都是巧合 1. 老王创业失败,被限制高消费 “这里写我跑路的消息实在太夸张了。” 王葱葱哼笑一下,把消息分享给群里。 阿杰也看了消息,笑了笑。在座几位也都笑了。 王葱葱是个有名的人物,21岁那年以全额奖学金进入 KMU 攻读人工智能博士,累计发表论文 40 余篇,个人技术博客更是成为深度学习领域内风向标。 ...
2020年,冯唐49岁:我给20、30岁IT职场年轻人的建议
点击“技术领导力”关注∆每天早上8:30推送 作者|Mr.K 编辑| Emma 来源|技术领导力(ID:jishulingdaoli) 前天的推文《冯唐:职场人35岁以后,方法论比经验重要》,收到了不少读者的反馈,觉得挺受启发。其实,冯唐写了不少关于职场方面的文章,都挺不错的。可惜大家只记住了“春风十里不如你”、“如何避免成为油腻腻的中年人”等不那么正经的文章。 本文整理了冯...
最全最强!世界大学计算机专业排名总结!
我正在参与CSDN200进20,希望得到您的支持,扫码续投票5次。感谢您! (为表示感谢,您投票后私信我,我把我总结的人工智能手推笔记和思维导图发送给您,感谢!) 目录 泰晤士高等教育世界大学排名 QS 世界大学排名 US News 世界大学排名 世界大学学术排名(Academic Ranking of World Universities) 泰晤士高等教育世界大学排名 中国共...
作为一名大学生,如何在B站上快乐的学习?
B站是个宝,谁用谁知道???? 作为一名大学生,你必须掌握的一项能力就是自学能力,很多看起来很牛X的人,你可以了解下,人家私底下一定是花大量的时间自学的,你可能会说,我也想学习啊,可是嘞,该学习啥嘞,不怕告诉你,互联网时代,最不缺的就是学习资源,最宝贵的是啥? 你可能会说是时间,不,不是时间,而是你的注意力,懂了吧! 那么,你说学习资源多,我咋不知道,那今天我就告诉你一个你必须知道的学习的地方,人称...
那些年,我们信了课本里的那些鬼话
教材永远都是有错误的,从小学到大学,我们不断的学习了很多错误知识。 斑羚飞渡 在我们学习的很多小学课文里,有很多是错误文章,或者说是假课文。像《斑羚飞渡》: 随着镰刀头羊的那声吼叫,整个斑羚群迅速分成两拨,老年斑羚为一拨,年轻斑羚为一拨。 就在这时,我看见,从那拨老斑羚里走出一只公斑羚来。公斑羚朝那拨年轻斑羚示意性地咩了一声,一只半大的斑羚应声走了出来。一老一少走到伤心崖,后退了几步,突...
一个程序在计算机中是如何运行的?超级干货!!!
强烈声明:本文很干,请自备茶水!???? 开门见山,咱不说废话! 你有没有想过,你写的程序,是如何在计算机中运行的吗?比如我们搞Java的,肯定写过这段代码 public class HelloWorld { public static void main(String[] args) { System.out.println("Hello World!"); } ...
【蘑菇街技术部年会】程序员与女神共舞,鼻血再次没止住。(文末内推)
蘑菇街技术部的年会,别开生面,一样全是美女。
那个在阿里养猪的工程师,5年了……
简介: 在阿里,走过1825天,没有趴下,依旧斗志满满,被称为“五年陈”。他们会被授予一枚戒指,过程就叫做“授戒仪式”。今天,咱们听听阿里的那些“五年陈”们的故事。 下一个五年,猪圈见! 我就是那个在养猪场里敲代码的工程师,一年多前我和20位工程师去了四川的猪场,出发前总架构师慷慨激昂的说:同学们,中国的养猪产业将因为我们而改变。但到了猪场,发现根本不是那么回事:要个WIFI,没有;...
为什么程序猿都不愿意去外包?
分享外包的组织架构,盈利模式,亲身经历,以及根据一些外包朋友的反馈,写了这篇文章 ,希望对正在找工作的老铁有所帮助
Java校招入职华为,半年后我跑路了
何来 我,一个双非本科弟弟,有幸在 19 届的秋招中得到前东家华为(以下简称 hw)的赏识,当时秋招签订就业协议,说是入了某 java bg,之后一系列组织架构调整原因等等让人无法理解的神操作,最终毕业前夕,被通知调往其他 bg 做嵌入式开发(纯 C 语言)。 由于已至于校招末尾,之前拿到的其他 offer 又无法再收回,一时感到无力回天,只得默默接受。 毕业后,直接入职开始了嵌入式苦旅,由于从未...
世界上有哪些代码量很少,但很牛逼很经典的算法或项目案例?
点击上方蓝字设为星标下面开始今天的学习~今天分享四个代码量很少,但很牛逼很经典的算法或项目案例。1、no code 项目地址:https://github.com/kelseyhight...
​两年前不知如何编写代码的我,现在是一名人工智能工程师
全文共3526字,预计学习时长11分钟 图源:Unsplash 经常有小伙伴私信给小芯,我没有编程基础,不会写代码,如何进入AI行业呢?还能赶上AI浪潮吗? 任何时候努力都不算晚。 下面,小芯就给大家讲一个朋友的真实故事,希望能给那些处于迷茫与徘徊中的小伙伴们一丝启发。(下文以第一人称叙述) 图源:Unsplash 正如Elsa所说,职业转换是...
强烈推荐10本程序员必读的书
很遗憾,这个春节注定是刻骨铭心的,新型冠状病毒让每个人的神经都是紧绷的。那些处在武汉的白衣天使们,尤其值得我们的尊敬。而我们这些窝在家里的程序员,能不外出就不外出,就是对社会做出的最大的贡献。 有些读者私下问我,窝了几天,有点颓丧,能否推荐几本书在家里看看。我花了一天的时间,挑选了 10 本我最喜欢的书,你可以挑选感兴趣的来读一读。读书不仅可以平复恐惧的压力,还可以对未来充满希望,毕竟苦难终将会...
非典逼出了淘宝和京东,新冠病毒能够逼出什么?
loonggg读完需要5分钟速读仅需 2 分钟大家好,我是你们的校长。我知道大家在家里都憋坏了,大家可能相对于封闭在家里“坐月子”,更希望能够早日上班。今天我带着大家换个思路来聊一个问题...
Spring框架|JdbcTemplate介绍
文章目录一、JdbcTemplate 概述二、创建对象的源码分析三、JdbcTemplate操作数据库 一、JdbcTemplate 概述 在之前的web学习中,学习了手动封装JDBCtemplate,其好处是通过(sql语句+参数)模板化了编程。而真正的JDBCtemplete类,是Spring框架为我们写好的。 它是 Spring 框架中提供的一个对象,是对原始 Jdbc API 对象的简单...
谁说程序员不懂浪漫——我的C语言结婚请柬(附源码)
前言:但行好事,莫问前程——《增广贤文》 从上学起开始学C++,后面也做过H5,现在做Android。无论是学习用的,还是工作用的,上百个软件不止。但最另我骄傲的是,我用程序烂漫了一把。 用C++语言,利用WIN32框架写一个结婚请柬,文末附源码和使用方法,大家可以自行修改,记得帮我点赞哦。 点开程序,你的电脑像中毒一般,漫天的樱花从屏幕上方,伴随着歌声《今天你要嫁给我》,缓缓落下。 ...
为什么说程序员做外包没前途?
之前做过不到3个月的外包,2020的第一天就被释放了,2019年还剩1天,我从外包公司离职了。我就谈谈我个人的看法吧。首先我们定义一下什么是有前途 稳定的工作环境 不错的收入 能够在项目中不断提升自己的技能(ps:非技术上的认知也算) 找下家的时候能找到一份工资更高的工作 如果你目前还年轻,但高不成低不就,只有外包offer,那请往下看。 外包公司你应该...
终于!疫情之下,第一批企业没能熬住面临倒闭,员工被遣散,没能等来春暖花开!
先来看一个图: 这个春节,我同所有人一样,不仅密切关注这次新型肺炎,还同时关注行业趋势和企业。在家憋了半个月,我选择给自己看书充电。因为在疫情之后,行业竞争会更加加剧,必须做好未雨绸缪,时刻保持充电。 看了今年的情况,突然想到大佬往年经典语录: 马云:未来无业可就,无工可打,无商可务 李彦宏:人工智能时代,有些专业将被淘汰,还没毕业就失业 马化腾:未来3年将大洗牌,迎21世界以来最大失业潮 王...
立即提问