2 lu van Lu_van 于 2016.03.22 16:15 提问

c#已知方差和均值,求随机数

如题。
我已经获得了原始数据的方差和均值。
怎样才能用c#生成另一些满足这个方差和均值且服从正太分布的随机数呢?
谢谢各位了。

1个回答

caozhy
caozhy   Ds   Rxr 2016.03.22 16:26

http://blog.sina.com.cn/s/blog_65273bfa01013wdh.html
先生成正态分布的随机数,,然后通过每个数乘一个常数a,加上另一个常数b,把均值移动到a,把方差扩展到b

Lu_van
Lu_van b怎么给出?是用if循环一直试吗?
2 年多之前 回复
Lu_van
Lu_van 我看到链接里的代码了?这个展示的是怎样移动吗?常数a和、
2 年多之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
准确详细的回答,更有利于被提问者采纳,从而获得C币。复制、灌水、广告等回答会被删除,是时候展现真正的技术了!
其他相关推荐
C#Random得随机数求均值、方差、正态分布
06年遥感上机复试的程序:请用VC或C编写以下程序:正态分布随机数的产生。步骤如下:(1)利用随机函数rand()生成(0,1)区间的100个均匀分布随机数;提示:首先利用“srand((unsigned)time(NULL)) ”语句设置产生随机数的开始点(需要包含time.h头文件);产生随机数的函数为rand(),为了将该随机数转换为(0,1)范围内的数,利用“rand()*
置信区间(已知样本均值和总体的方差,求总体均值的置信区间)(n > 30)
例子1:糖果公司用一个100粒糖球的样本得出口味持续时间均值的点估计量为62.7分钟,同时总体方差的点估计量为25分钟,这里的均值估计量是根据样本得出的,而方差是总体方差一般来说给出一个区间比给出一个精确的值更保险一些,此例正是为了获取这个区间, P(a<μ
置信区间(已知样本均值和样本的方差,求总体均值的置信区间)(n < 30)
当样本很小时 X¯¯¯\overline{X}服从T分布T ~ t(v)样本的数量为n时,v = n-1 T = (X¯¯¯\overline{X} - μ)/(s/n√\sqrt{n})与上篇文章的置信区间相似,只不过c换成了t置信区间取值范围为(X¯¯¯\overline{X} - t(v)*s/n√\sqrt{n}, X¯¯¯\overline{X} + t(v)*s/n√\sqrt{
有相同的平均值,产生不同方差的随机数
近来需要用到根据相同的平均值,产生不同的方差的随机数。 找到一段matlab的程序,程序代码如下:% 生成20个 %X = zeros(20, 1); %k = 1; fob=fopen('data.in','w') Y=[116,108,106,110,85,89,117,115,95,103, 87,112,97,90,110,96,110,99,103,94, 111,108
产生随机整数数 并要求随机数的最大值 最小值和平均值
想了一天,郁闷呀! 其实也就是在MIn 和MAX 之间选N个数 平均值是AVER  那么可转换为在0~(MAX-MIN) 之间选N个平均值是AVER-MIN=iAver 我们先选N个数 和是Sum  但是要求和是iAve这样平均值才能保证。那么就缩放 现有数值iAver*Count/Sum倍保证整数就加上0.5.这时在求和Sum1,Sum1就接近或等于iAver*Count这时在数据上在修
使用MATLAB产生特定均值和方差的均匀分布白噪声
<br />% L 为信号长度<br />% mean为均值<br />% var为方差<br />% rand函数产生的是幅值为【0,1】均匀分布的白噪声,均值为1/2,方差为1/12<br />% 使用下面的公式可以产生指定均值和方差的均匀分布的白噪声<br />% 在matlab中,可以使用函数:mean(white_noise)来检验其均值<br />% 使用函数:var(white_noise)来检验其方差<br /> white_noise =  (rand(1,L) - 0.5
均值、方差和均方根
信号处理中均值、方差和均方根是经常会用到的概念。下面对这些概念进行详细解释。 均值:均值概念最为简单,即所有采样点的值相加再除以采样个数。 方差:代表一种平均功率的偏差,即将所有点和平均值偏差的平方相加再做平均: 需要注意的是,如公式所示,偏差功率后求平均时除以N-1而不是N。这是由于均值μ是估计值,当N越小时均值u的偏差越大。计算均值的统计噪声如下式所示: N越大
Excel在统计分析中的应用—第七章—参数估计-总体均值的估计(总体方差已知下的估计)
“参数估计(parameter estimation)是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。人们常常需要根据手中的数据,分析或推断数据反映的本质规律。即根据样本数据如何选择统计量去推断总体的分布或数字特征等。统计推断是数理统计研究的核心问题。所谓统计推断是指根据样本对总体分布或分布的数字特征等作出合理的推断。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和
期望值、均值向量和协方差矩阵
向量随机变量X的数学期望也是一个向量,其各分量是原X的各个分量的数学期望。如果f(x)是d维随机变量X的n维向量函数                                                                                                                                            
均值,方差,协方差三者的关系以及协方差矩阵
在图像中还广泛应用到协方差矩阵的一些性质,方差和均值只是一维随机变量的统计值,而协方差就不一样了,它可以表示多维随机变量之间的相关性信息。协方差矩阵的一个很出色的应用就是在PCA中,选择主方向。协方差矩阵的对角线的元素表示的是各个维度的方差,而非对角线上的元素表示的是各个维度之间的相关性,因此,在PCA中,我们尽量将非对角线上的元素化为0,即将矩阵对角化,选特征值较大的维度,去掉特征值较小的维度,来获得主方向,并且使主方向与其他方向的相关性尽量小。