将稀疏矩阵压缩时用的tensorflow.sparse_to_tense函数,报错Cannot create a tensor proto whose content is larger than 2GB,这个问题要怎么解决啊?老师给我们的数据集最大的一个有10GB,才接触TensorFlow,不知道怎么处理,麻烦大神们帮帮忙!
1条回答 默认 最新
COCO_AS 2017-12-05 13:42关注这里有解决办法
https://stackoverflow.com/questions/38087342/use-large-dataset-in-tensorflow搬过来供你参考
Do not load data to constant, it will be part of your computational graph.
You should rather:
Create an op which is loading your data in stream fashion Load data in python part, and use feed_dict to pass the batch into the graphFor TensorFlow 1.x and Python 3, there is my simple solution:
X_init = tf.placeholder(tf.float32, shape=(m_input, n_input)) X = tf.Variable(X_init) sess.run(tf.global_variables_initializer(), feed_dict={X_init: data_for_X})In practice, you will mostly specify Graph and Session for continuous computation, this following code will help you:
my_graph = tf.Graph() sess = tf.Session(graph=my_graph) with my_graph.as_default(): X_init = tf.placeholder(tf.float32, shape=(m_input, n_input)) X = tf.Variable(X_init) sess.run(tf.global_variables_initializer(), feed_dict={X_init: data_for_X}) .... # build your graph with X here .... # Do some other things here with my_graph.as_default(): output_y = sess.run(your_graph_output, feed_dict={other_placeholder: other_data})本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报