阔岩 2017-12-18 14:35 采纳率: 0%
浏览 3001
已结题

mnist,自己手写一个数字总是验证不正确

jupyter上运行结果如下

导入数据

(x_train,y_train), (x_test,y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0],28,28,1).astype('float32')
x_test = x_test.reshape(x_test.shape[0],28,28,1).astype('float32')

x_train /= 255
x_test /= 255

y_train = np_utils.to_categorical(y_train,10)
y_test = np_utils.to_categorical(y_test,10)

训练网络

model = Sequential()

model.add(Conv2D(filters = 64, kernel_size = (3,3), activation = 'relu', input_shape = (28,28,1)))
model.add(MaxPooling2D(pool_size = (2,2)))

model.add(Conv2D(filters = 64, kernel_size = (3,3), activation = 'relu'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Dropout(0.5))

model.add(Flatten())

model.add(Dense(128, activation = 'relu'))
model.add(Dense(10,activation = 'softmax'))

model.compile(loss = 'categorical_crossentropy', optimizer = Adadelta(), metrics = ['accuracy'])

model.fit(x_train,y_train,batch_size=100,epochs=20)

训练结果

图片说明

用自己手写的数字验证结果总是同一个数字

# 将图片转为灰度图并调整为28*28大小
def convert_gray(f, **args):
    rgb=io.imread(f)   
    gray=color.rgb2gray(rgb)     
    dst=transform.resize(gray,(28,28))       
    return dst

test_gray_resize = convert_gray('number3.png')

图片说明

图片说明

运行结果如上,我手写的数字3,预测结果是6,后面不管我用哪个自己手写的图片验证,预测结果都是6,刚开始做深度学习,出现bug真是愁好几天,大神求解惑

  • 写回答

5条回答 默认 最新

  • devmiao 2017-12-18 15:52
    关注
    评论

报告相同问题?