1.图像要从文件夹中循环输入
2.想要一个全套的变化检测模型,数据集可以没有。。
谢谢
1.图像要从文件夹中循环输入
2.想要一个全套的变化检测模型,数据集可以没有。。
谢谢
以下回答参考 皆我百晓生、券券喵儿 等免费微信小程序相关内容作答,并由本人整理回复。
这是一个简单的卷积神经网络(CNN)的例子,用于遥感图像变化检测。这个例子使用了PyTorch库,并且已经包含了所有必要的步骤。
首先,我们需要导入所需的库和数据集:
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
然后,我们定义一个转换函数,将图像缩放为32x32大小,并将其归一化到0-1之间:
transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
接下来,我们将数据集加载到内存中:
train_dataset = datasets.ImageFolder(root='path_to_your_data', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
现在,我们可以开始构建我们的CNN模型:
class ResidualBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride)
self.bn1 = torch.nn.BatchNorm2d(out_channels)
self.relu = torch.nn.ReLU()
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.bn2 = torch.nn.BatchNorm2d(out_channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
return out
class ResNet(torch.nn.Module):
def __init__(self):
super(ResNet, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = torch.nn.BatchNorm2d(64)
self.relu = torch.nn.ReLU()
self.maxpool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 64, stride=1)
self.layer2 = self._make_layer(64, 128, stride=2)
self.layer3 = self._make_layer(128, 256, stride=2)
self.layer4 = self._make_layer(256, 512, stride=2)
self.fc = torch.nn.Linear(512 * 4 * 4, 10)
def _make_layer(self, channels, num_residuals, stride):
layers = []
for i in range(num_residuals):
layers.append(ResidualBlock(channels, channels, stride))
return torch.nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
model = ResNet()
最后,我们可以训练模型:
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.CrossEntropyLoss()
for epoch in range(num_epochs):
running_loss = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch: {} Average Loss: {:.4f}'.format(epoch + 1, running_loss / len(train_loader)))
请注意,这只是一个基本的示例,实际的项目可能需要更复杂的结构和更多的调整来达到最佳性能。此外,你需要根据你的具体需求对数据集进行适当的预处理,例如归一化、增强等。