搞深学的程序员 2021-03-18 14:20 采纳率: 0%
浏览 36

求使用卷积网络实现遥感图像变化检测的代码。。符合要求并运行良好追加几十块报酬

1.图像要从文件夹中循环输入

2.想要一个全套的变化检测模型,数据集可以没有。。

谢谢

  • 写回答

1条回答 默认 最新

  • 你知我知皆知 2024-07-24 01:02
    关注

    以下回答参考 皆我百晓生券券喵儿 等免费微信小程序相关内容作答,并由本人整理回复。

    这是一个简单的卷积神经网络(CNN)的例子,用于遥感图像变化检测。这个例子使用了PyTorch库,并且已经包含了所有必要的步骤。

    首先,我们需要导入所需的库和数据集:

    import torch
    from torchvision import datasets, transforms
    from torch.utils.data import DataLoader
    

    然后,我们定义一个转换函数,将图像缩放为32x32大小,并将其归一化到0-1之间:

    transform = transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    ])
    

    接下来,我们将数据集加载到内存中:

    train_dataset = datasets.ImageFolder(root='path_to_your_data', transform=transform)
    train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
    

    现在,我们可以开始构建我们的CNN模型:

    class ResidualBlock(torch.nn.Module):
        def __init__(self, in_channels, out_channels, stride=1):
            super(ResidualBlock, self).__init__()
            self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride)
            self.bn1 = torch.nn.BatchNorm2d(out_channels)
            self.relu = torch.nn.ReLU()
            self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
            self.bn2 = torch.nn.BatchNorm2d(out_channels)
    
        def forward(self, x):
            residual = x
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            out = self.conv2(out)
            out = self.bn2(out)
            out += residual
            out = self.relu(out)
            return out
    
    
    class ResNet(torch.nn.Module):
        def __init__(self):
            super(ResNet, self).__init__()
            self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
            self.bn1 = torch.nn.BatchNorm2d(64)
            self.relu = torch.nn.ReLU()
            self.maxpool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            self.layer1 = self._make_layer(64, 64, stride=1)
            self.layer2 = self._make_layer(64, 128, stride=2)
            self.layer3 = self._make_layer(128, 256, stride=2)
            self.layer4 = self._make_layer(256, 512, stride=2)
            self.fc = torch.nn.Linear(512 * 4 * 4, 10)
    
        def _make_layer(self, channels, num_residuals, stride):
            layers = []
            for i in range(num_residuals):
                layers.append(ResidualBlock(channels, channels, stride))
            return torch.nn.Sequential(*layers)
    
        def forward(self, x):
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            out = self.maxpool(out)
            out = self.layer1(out)
            out = self.layer2(out)
            out = self.layer3(out)
            out = self.layer4(out)
            out = out.view(out.size(0), -1)
            out = self.fc(out)
            return out
    
    
    model = ResNet()
    

    最后,我们可以训练模型:

    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    criterion = torch.nn.CrossEntropyLoss()
    
    for epoch in range(num_epochs):
        running_loss = 0.0
        for inputs, labels in train_loader:
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
        print('Epoch: {} Average Loss: {:.4f}'.format(epoch + 1, running_loss / len(train_loader)))
    

    请注意,这只是一个基本的示例,实际的项目可能需要更复杂的结构和更多的调整来达到最佳性能。此外,你需要根据你的具体需求对数据集进行适当的预处理,例如归一化、增强等。

    评论

报告相同问题?

悬赏问题

  • ¥30 STM32 INMP441无法读取数据
  • ¥100 求汇川机器人IRCB300控制器和示教器同版本升级固件文件升级包
  • ¥15 用visualstudio2022创建vue项目后无法启动
  • ¥15 x趋于0时tanx-sinx极限可以拆开算吗
  • ¥500 把面具戴到人脸上,请大家贡献智慧
  • ¥15 任意一个散点图自己下载其js脚本文件并做成独立的案例页面,不要作在线的,要离线状态。
  • ¥15 各位 帮我看看如何写代码,打出来的图形要和如下图呈现的一样,急
  • ¥30 c#打开word开启修订并实时显示批注
  • ¥15 如何解决ldsc的这条报错/index error
  • ¥15 VS2022+WDK驱动开发环境