class NN1(nn.Module):
def __init__(self, d_in, d_hidden, d_out):
super(Actor, self).__init__()
self.linear1 = nn.Linear(d_in, d_hidden)
self.linear2 = nn.Linear(d_hidden, d_hidden)
self.linear3 = nn.Linear(d_hidden, d_hidden)
self.linear4 = nn.Linear(d_hidden, d_hidden)
self.linear5 = nn.Linear(d_hidden, d_out)
def forward(self, x):
x = self.linear1(x)
x = F.sigmoid(x)
x = self.linear2(x)
x = F.sigmoid(x)
x = self.linear3(x)
x = F.sigmoid(x)
x = self.linear4(x)
x = F.sigmoid(x)
x = self.linear5(x)
x = F.relu(x)
output = x.type(torch.float64)
return output
肯定的是softmax是不能用的(需求原因),我查了能输出在0-1之间的激活函数只有Sigmoid。
跑出来结果收敛不了,收敛图一直在横幅震荡没有梯度。
我查了有关资料,说是Sigmoid和tanh都是会产生梯度消失的,请问大佬们有没有办法将relu的输出控制在0-1之间或者有别的办法,小弟毕业论文很赶跪谢...