python format格式化输出

图片说明

这是在网课上看到的一段代码,后面的chr(12288)用来当作空格填充进去,不太理解。chr()函数不是只能表示0-256之间的数字吗?这里为什么可以这么用

2个回答

要看你的python是什么版本的, 
http://www.runoob.com/python3/python3-func-chr-html.html

里面的数值范围是0<=i<=0x10ffff.

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
latex和python的format格式化输出冲突怎么办?
如题。想输出R平方,冲突了。 ``` ax.text(3.9, 1.95, r"Normal: coef_: {:.2f} intercept: {:.2f} R$^{2}$: {:.4f}". format(coef[0,0], intercept[0], score1), fontsize = 8) ```
python strftime格式化 三位数的年份(例如 117年)如何写?
# 问题描述: strftime对日期格式化,发现error: time data '733年3月20日' does not match format '%Y年%m月%d日' 对于三位数的年份应该如何用呢%Y or %y
python pymysql cursor.execute()格式化字符串报错
>>>conn=#连接好的数据库 >>>cursor=conn.cursor() >>>cursor.executr(sqls) 这个句子如果将sql语句作为sqls变量 ``` import pymysql conn=pymysql.connct(数据库配置) cursor=conn.cursor() sqls='selcet * from table where 条件=%s'%condition cursor.execute(sqls) #将字符串格式化的sql语句作为变量传入execute里面,如果上面的conditin是数字条件就不会报错,如果是字符串条件就会报错 #如果不用字符串格式化将sql语句作为字符串直接传入execute里面, cursor.execute("""select * from table where condition""") #就不会报错 ``` .format我试了跟上面情况一样,也不行 这个是什么原因?求大神解答 pymysql.err.InternalError: (1054, "Unknown column '兴瀚资管' in 'where clause'")
tensorflow 训练数据集时,报错InvalidArgumentError: Incompatible shapes: [15] vs. [15,6],标签的占位符与标签喂的数据格式不符,要怎么解决?
InvalidArgumentError (see above for traceback): Incompatible shapes: [15] vs. [15,6] 报错的详细信息如下所示: ``` INFO:tensorflow:Error reported to Coordinator: <class 'tensorflow.python.framework.errors_impl.CancelledError'>, Enqueue operation was cancelled [[Node: input_producer/input_producer_EnqueueMany = QueueEnqueueManyV2[Tcomponents=[DT_STRING], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input_producer, input_producer/RandomShuffle)]] Caused by op 'input_producer/input_producer_EnqueueMany', defined at: File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel_launcher.py", line 16, in <module> app.launch_new_instance() File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance app.start() File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelapp.py", line 477, in start ioloop.IOLoop.instance().start() File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start super(ZMQIOLoop, self).start() File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 888, in start handler_func(fd_obj, events) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper return fn(*args, **kwargs) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events self._handle_recv() File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv self._run_callback(callback, msg) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback callback(*args, **kwargs) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper return fn(*args, **kwargs) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher return self.dispatch_shell(stream, msg) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell handler(stream, idents, msg) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request user_expressions, allow_stdin) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute res = shell.run_cell(code, store_history=store_history, silent=silent) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2698, in run_cell interactivity=interactivity, compiler=compiler, result=result) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2802, in run_ast_nodes if self.run_code(code, result): File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-19-6fa659dba762>", line 320, in <module> batch_test(data_path, 100, 100, n_batch, train_op, loss, acc, range_num, val_batch) File "<ipython-input-19-6fa659dba762>", line 147, in batch_test tf_image,tf_label = read_records(record_file,resize_height,resize_width,type='normalization') File "<ipython-input-19-6fa659dba762>", line 84, in read_records filename_queue = tf.train.string_input_producer([filename]) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\training\input.py", line 232, in string_input_producer cancel_op=cancel_op) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\training\input.py", line 164, in input_producer enq = q.enqueue_many([input_tensor]) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\data_flow_ops.py", line 367, in enqueue_many self._queue_ref, vals, name=scope) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gen_data_flow_ops.py", line 1556, in _queue_enqueue_many_v2 name=name) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op op_def=op_def) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op original_op=self._default_original_op, op_def=op_def) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__ self._traceback = _extract_stack() CancelledError (see above for traceback): Enqueue operation was cancelled [[Node: input_producer/input_producer_EnqueueMany = QueueEnqueueManyV2[Tcomponents=[DT_STRING], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input_producer, input_producer/RandomShuffle)]] --------------------------------------------------------------------------- InvalidArgumentError Traceback (most recent call last) H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args) 1038 try: -> 1039 return fn(*args) 1040 except errors.OpError as e: H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata) 1020 feed_dict, fetch_list, target_list, -> 1021 status, run_metadata) 1022 H:\aa\Anaconda\anaconda\envs\tensorflow\lib\contextlib.py in __exit__(self, type, value, traceback) 87 try: ---> 88 next(self.gen) 89 except StopIteration: H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\errors_impl.py in raise_exception_on_not_ok_status() 465 compat.as_text(pywrap_tensorflow.TF_Message(status)), --> 466 pywrap_tensorflow.TF_GetCode(status)) 467 finally: InvalidArgumentError: Incompatible shapes: [15] vs. [15,6] [[Node: Equal = Equal[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"](Cast_1, _recv_y__0/_21)]] [[Node: Mean/_25 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_177_Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]] During handling of the above exception, another exception occurred: InvalidArgumentError Traceback (most recent call last) <ipython-input-19-6fa659dba762> in <module>() 318 range_num = 5 319 --> 320 batch_test(data_path, 100, 100, n_batch, train_op, loss, acc, range_num, val_batch) 321 <ipython-input-19-6fa659dba762> in batch_test(record_file, resize_height, resize_width, n_batch, train_op, loss, acc, range_num, val_batch) 187 images_x = np.reshape(images, (-1, 30000)) 188 labels_y = np.reshape(labels, (-1, 6)) --> 189 _,err,ac = sess.run([train_op,loss,acc],feed_dict={x:images, y_:labels_y}) # 50% 神经元在工作中 190 train_loss = train_loss + err 191 train_acc = train_acc + ac H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata) 776 try: 777 result = self._run(None, fetches, feed_dict, options_ptr, --> 778 run_metadata_ptr) 779 if run_metadata: 780 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr) H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata) 980 if final_fetches or final_targets: 981 results = self._do_run(handle, final_targets, final_fetches, --> 982 feed_dict_string, options, run_metadata) 983 else: 984 results = [] H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata) 1030 if handle is None: 1031 return self._do_call(_run_fn, self._session, feed_dict, fetch_list, -> 1032 target_list, options, run_metadata) 1033 else: 1034 return self._do_call(_prun_fn, self._session, handle, feed_dict, H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args) 1050 except KeyError: 1051 pass -> 1052 raise type(e)(node_def, op, message) 1053 1054 def _extend_graph(self): InvalidArgumentError: Incompatible shapes: [15] vs. [15,6] [[Node: Equal = Equal[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"](Cast_1, _recv_y__0/_21)]] [[Node: Mean/_25 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_177_Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]] Caused by op 'Equal', defined at: File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel_launcher.py", line 16, in <module> app.launch_new_instance() File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance app.start() File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelapp.py", line 477, in start ioloop.IOLoop.instance().start() File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start super(ZMQIOLoop, self).start() File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 888, in start handler_func(fd_obj, events) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper return fn(*args, **kwargs) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events self._handle_recv() File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv self._run_callback(callback, msg) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback callback(*args, **kwargs) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper return fn(*args, **kwargs) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher return self.dispatch_shell(stream, msg) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell handler(stream, idents, msg) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request user_expressions, allow_stdin) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute res = shell.run_cell(code, store_history=store_history, silent=silent) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2698, in run_cell interactivity=interactivity, compiler=compiler, result=result) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2802, in run_ast_nodes if self.run_code(code, result): File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-19-6fa659dba762>", line 311, in <module> correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.float32), y_) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 672, in equal result = _op_def_lib.apply_op("Equal", x=x, y=y, name=name) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op op_def=op_def) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op original_op=self._default_original_op, op_def=op_def) File "H:\aa\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__ self._traceback = _extract_stack() InvalidArgumentError (see above for traceback): Incompatible shapes: [15] vs. [15,6] [[Node: Equal = Equal[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"](Cast_1, _recv_y__0/_21)]] [[Node: Mean/_25 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_177_Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]] ``` x,y- 占位符打印的信息如下: ``` x: Tensor("x-input:0", shape=(?, 100, 100, 3), dtype=float32) y_:Tensor("y_:0", shape=(?, 6), dtype=float32) ``` image 和 labels 的打印信息如下: ``` shape:(15, 100, 100, 3),tpye:float32,labels:[[ 0. 0. 0. 1. 0. 0.] [ 0. 0. 0. 1. 0. 0.] [ 0. 0. 0. 1. 0. 0.] [ 0. 0. 0. 0. 1. 0.] [ 1. 0. 0. 0. 0. 0.] [ 0. 0. 0. 1. 0. 0.] [ 1. 0. 0. 0. 0. 0.] [ 1. 0. 0. 0. 0. 0.] [ 1. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 1.] [ 0. 0. 1. 0. 0. 0.] [ 1. 0. 0. 0. 0. 0.] [ 1. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 1. 0.] [ 0. 0. 0. 0. 1. 0.]] ``` 整个运行的代码如下: ``` import tensorflow as tf import numpy as np import os import cv2 import matplotlib.pyplot as plt import random import time from PIL import Image os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' data_path = 'people_pictures_train/record/one_train_demo_people_train.tfrecords' # tfrecords 文件的地址 data_path_val = 'people_pictures_train/record/one_test_demo_people_val.tfrecords' # tfrecords 文件的地址 print("----------------------------") tf.reset_default_graph() def get_example_nums(tf_records_filenames): ''' 统计tf_records图像的个数(example)个数 :param tf_records_filenames: tf_records文件路径 :return: ''' nums= 0 for record in tf.python_io.tf_record_iterator(tf_records_filenames): nums += 1 return nums def show_image(title,image): ''' 显示图片 :param title: 图像标题 :param image: 图像的数据 :return: ''' # plt.figure("show_image") # print(image.dtype) plt.imshow(image) plt.axis('on') # 关掉坐标轴为 off plt.title(title) # 图像题目 plt.show() def get_batch_images(images,labels,batch_size,labels_nums,one_hot=False,shuffle=False,num_threads=1): ''' :param images:图像 :param labels:标签 :param batch_size: :param labels_nums:标签个数 :param one_hot:是否将labels转为one_hot的形式 :param shuffle:是否打乱顺序,一般train时shuffle=True,验证时shuffle=False :return:返回batch的images和labels ''' min_after_dequeue = 200 capacity = min_after_dequeue + 3 * batch_size # 保证capacity必须大于min_after_dequeue参数值 if shuffle: images_batch, labels_batch = tf.train.shuffle_batch([images,labels], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue, num_threads=num_threads) else: images_batch, labels_batch = tf.train.batch([images,labels], batch_size=batch_size, capacity=capacity, num_threads=num_threads) if one_hot: labels_batch = tf.one_hot(labels_batch, labels_nums, 1, 0) return images_batch,labels_batch def read_records(filename,resize_height, resize_width,type=None): ''' 解析record文件:源文件的图像数据是RGB,uint8,[0,255],一般作为训练数据时,需要归一化到[0,1] :param filename: :param resize_height: :param resize_width: :param type:选择图像数据的返回类型 None:默认将uint8-[0,255]转为float32-[0,255] normalization:归一化float32-[0,1] standardization:归一化float32-[0,1],再减均值中心化 :return: ''' # 创建文件队列,不限读取的数量 filename_queue = tf.train.string_input_producer([filename]) # create a reader from file queue reader = tf.TFRecordReader() # reader从文件队列中读入一个序列化的样本 _, serialized_example = reader.read(filename_queue) # get feature from serialized example # 解析符号化的样本 features = tf.parse_single_example( serialized_example, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'height': tf.FixedLenFeature([], tf.int64), 'width': tf.FixedLenFeature([], tf.int64), 'depth': tf.FixedLenFeature([], tf.int64), 'labels': tf.FixedLenFeature([], tf.string) } ) tf_image = tf.decode_raw(features['image_raw'], tf.uint8)#获得图像原始的数据 tf_height = features['height'] tf_width = features['width'] tf_depth = features['depth'] # tf_label = tf.cast(features['labels'], tf.float32) tf_label = tf.decode_raw(features['labels'],tf.float32) # PS:恢复原始图像数据,reshape的大小必须与保存之前的图像shape一致,否则出错 # tf_image=tf.reshape(tf_image, [-1]) # 转换为行向量 tf_image=tf.reshape(tf_image, [resize_height, resize_width, 3]) # 设置图像的维度 tf_label=tf.reshape(tf_label, [6]) # 设置图像的维度 # 恢复数据后,才可以对图像进行resize_images:输入uint->输出float32 # tf_image=tf.image.resize_images(tf_image,[224, 224]) # [3]数据类型处理 # 存储的图像类型为uint8,tensorflow训练时数据必须是tf.float32 if type is None: tf_image = tf.cast(tf_image, tf.float32) elif type == 'normalization': # [1]若需要归一化请使用: # 仅当输入数据是uint8,才会归一化[0,255] # tf_image = tf.cast(tf_image, dtype=tf.uint8) # tf_image = tf.image.convert_image_dtype(tf_image, tf.float32) tf_image = tf.cast(tf_image, tf.float32) * (1. / 255.0) # 归一化 elif type == 'standardization': # 标准化 # tf_image = tf.cast(tf_image, dtype=tf.uint8) # tf_image = tf.image.per_image_standardization(tf_image) # 标准化(减均值除方差) # 若需要归一化,且中心化,假设均值为0.5,请使用: tf_image = tf.cast(tf_image, tf.float32) * (1. / 255) - 0.5 # 中心化 # 这里仅仅返回图像和标签 # return tf_image, tf_height,tf_width,tf_depth,tf_label return tf_image,tf_label def batch_test(record_file,resize_height,resize_width,n_batch,train_op,loss,acc,range_num,val_batch): ''' :param record_file: record文件路径 :param resize_height: :param resize_width: :return: :PS:image_batch, label_batch一般作为网络的输入 ''' # 读取record函数 tf_image,tf_label = read_records(record_file,resize_height,resize_width,type='normalization') image_batch, label_batch= get_batch_images(tf_image,tf_label,batch_size=15,labels_nums=6,one_hot=False,shuffle=True) a = image_batch.get_shape() a2 = a.as_list() b = label_batch.get_shape() b2 = b.as_list() print('image_batch: '+ str(image_batch) + ' label_batch: ' + str(label_batch)) print('image_batch-len:' + str(len(a2)) + ' label_batch-len: ' + str(len(b2))) # 测试的数据 images_val,labels_val = read_records(data_path_val,100,100,type='normalization') image_batch_val, label_batch_val = get_batch_images(images_val,labels_val,batch_size=15,labels_nums=6,one_hot=False,shuffle=True) # print('image_batch_val: '+ str(image_batch_val) + ' label_batch_val: ' + str(label_batch_val)) init = tf.global_variables_initializer() with tf.Session() as sess: # 开始一个会话 sess.run(init) # train_writer = tf.summary.FileWriter('logs/train',sess.graph) # 当前目录下的 logs 文件夹,如果没有这个文件夹,会自己键, 写入graph 的图 # test_writer = tf.summary.FileWriter('logs/test',sess.graph) # 当前目录下的 logs 文件夹,如果没有这个文件夹,会自己键, 写入graph 的图 coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for epoch in range(range_num) : start_time = time.time() train_loss, train_acc = 0,0 for i in range(n_batch): images, labels = sess.run([image_batch, label_batch]) print('shape:{},tpye:{},labels:{}'.format(images.shape,images.dtype,labels)) print('images-len:' + str(len(images)) + ' labels-len: ' + str(len(labels))) for i in range(len(images)): show_image("image0", images[i, :, :, :]) a = np.zeros( (len(labels)) ) print(' a: ' +str(a)) for i in range(len(labels)): for j in range(len(labels[i])): if labels[i][j] > 0: a[i] = j print(' a: ' +str(a)) print('x: ' + str(x) + ' y_:' + str(y_)) images_x = np.reshape(images, (-1, 30000)) labels_y = np.reshape(labels, (-1, 6)) _,err,ac = sess.run([train_op,loss,acc],feed_dict={x:images, y_:labels_y}) # 50% 神经元在工作中 train_loss = train_loss + err train_acc = train_acc + ac print(" train loss: %f" % (np.sum(train_err)/n_batch)) print(" train acc: %f" % (np.sum(train_acc)/n_batch)) val_loss, val_acc = 0, 0 for i in range(val_batch): # test 在会话中取出images和labels测试数据, images_val2 主要是为了与 images_val 进行区分 images_val2, labels_val2 = sess.run([image_batch_val, label_batch_val]) val_loss, val_acc = sess.run([loss,acc], feed_dict={x:images_val_x, y_:labels_val2}) # 测试一下准确率,喂的数据是,图片和图片的标签 val_loss = val_loss + err val_acc = val_acc + ac print(" validation loss: %f" % (np.sum(val_loss)/val_batch)) print(" validation acc: %f" % (np.sum(val_acc)/val_batch)) # 停止所有线程 coord.request_stop() coord.join(threads) # 每个批次的大小 batch_size = 15 #每个批次 10,一次性放入100张图,放到神经网络中进行训练,以矩阵的形式放入 # 计算一共有多少个批次 # n_batch = mnist.train.num_examples // batch_size #整除 n_batch = get_example_nums(data_path) // batch_size val_batch = get_example_nums(data_path_val) // batch_size # 测试图片的数量 转换格式时以一个batch 放所有的图片 # val_num = get_example_nums(data_path_val) # 测试图片的数量 转换格式时以一个batch 放所有的图片 # train_num = get_example_nums(data_path) # 测试图片的数量 转换格式时以一个batch 放所有的图片 print ("-----------------" + str(n_batch) + " batch------------") #将所有的图片resize成100*100 w=100 h=100 c=3 #-----------------构建网络---------------------- #占位符 #-----------------构建网络---------------------- #占位符 x = tf.placeholder(tf.float32,[None,100,100,3],name='x-input') #图片像素 转换 一维向量,行与批次有关,none 代表行,列是784 y_=tf.placeholder(tf.float32,shape=[None,6],name='y_') def inference(input_tensor, train, regularizer): with tf.variable_scope('layer1-conv1'): conv1_weights = tf.get_variable("weight",[5,5,3,32],initializer=tf.truncated_normal_initializer(stddev=0.1)) conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0)) conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME') relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases)) with tf.name_scope("layer2-pool1"): pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="VALID") with tf.variable_scope("layer3-conv2"): conv2_weights = tf.get_variable("weight",[5,5,32,64],initializer=tf.truncated_normal_initializer(stddev=0.1)) conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0)) conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME') relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases)) with tf.name_scope("layer4-pool2"): pool2 = tf.nn.max_pool(relu2, ksize=[1, 2 , 2, 1], strides=[1, 2, 2, 1], padding='VALID') with tf.variable_scope("layer5-conv3"): conv3_weights = tf.get_variable("weight",[3,3,64,128],initializer=tf.truncated_normal_initializer(stddev=0.1)) conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0)) conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME') relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases)) with tf.name_scope("layer6-pool3"): pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') with tf.variable_scope("layer7-conv4"): conv4_weights = tf.get_variable("weight",[3,3,128,128],initializer=tf.truncated_normal_initializer(stddev=0.1)) conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0)) conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding='SAME') relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases)) with tf.name_scope("layer8-pool4"): pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') nodes = 6*6*128 reshaped = tf.reshape(pool4,[-1,nodes]) with tf.variable_scope('layer9-fc1'): fc1_weights = tf.get_variable("weight", [nodes, 1024], initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights)) fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1)) fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases) if train: fc1 = tf.nn.dropout(fc1, 0.5) with tf.variable_scope('layer10-fc2'): fc2_weights = tf.get_variable("weight", [1024, 512], initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights)) fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1)) fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases) if train: fc2 = tf.nn.dropout(fc2, 0.5) with tf.variable_scope('layer11-fc3'): fc3_weights = tf.get_variable("weight", [512, 6], initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection('losses', regularizer(fc3_weights)) fc3_biases = tf.get_variable("bias", [6], initializer=tf.constant_initializer(0.1)) logit = tf.matmul(fc2, fc3_weights) + fc3_biases return logit #---------------------------网络结束--------------------------- regularizer = tf.contrib.layers.l2_regularizer(0.0001) logits = inference(x,False,regularizer) #(小处理)将logits乘以1赋值给logits_eval,定义name,方便在后续调用模型时通过tensor名字调用输出tensor b = tf.constant(value=1,dtype=tf.float32) logits_eval = tf.multiply(logits,b,name='logits_eval') # loss=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_) loss = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=logits) train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.float32), y_) acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print("----------------------------") if __name__ == '__main__': range_num = 5 batch_test(data_path, 100, 100, n_batch, train_op, loss, acc, range_num, val_batch) ```
python unicode编码问题
最近用python的mysqldb模板将数据批量的更新进数据库,然后爆了一个韩红听了想打人的错误 ``` %u format: a number is required, not unicode ``` 什么鬼。。。。%u不是格式化unicode的符合吗。。。。 ``` sql_introduce = "UPDATE experiment_attrs SET content='%u' WHERE experiment_attrs.experiment_id='%s' AND experiment_attrs.title='实验介绍';" % (change_introduce, id) cursor_1.execute(sql_introduce) conn_1.commit() ``` 然后这是我的代码的部分,change_introduce是从文件中读取的内容。。。 大神求救啊
python3爬虫遇到报错 “urlopen error no host given”
程序是爬百度图片搜索范冰冰的所有图片。Notepad已经选择了UTF8编码,URL地址也没有回车分行。 直接上代码如下: import urllib.request import re import sys import os import urllib import ssl #根据给定的网址来获取网页详细信息,得到的html就是网页的源代码 def getHtml(url): page = urllib.request.urlopen(url) html = page.read() return html.decode('utf-8') def getImg(html): imglist = re.findall('"ObjURL":"(.*?)",', html, re.S)#表示在整个网页中过滤出所有图片的地址,放在imglist中 x = 0 path = 'D:\\test' # 将图片保存到D:\\test文件夹中,如果没有test文件夹则创建 if not os.path.isdir(path): os.makedirs(path) paths = path+'\\' #保存在test路径下 for imgurl in imglist: urllib.request.urlretrieve(imgurl,'D:\\test\\%s.jpg' % x) #打开imglist中保存的图片网址,并下载图片保存在本地,format格式化字符串 x = x + 1 return imglist url="http://image.baidu.com/search/index?tn=baiduimage&ps=1&ct=201326592&lm=-1&cl=2&nc=1&ie=utf-8&word=%E8%8C%83%E5%86%B0%E5%86%B0" html=getHtml(url) print (getImg(html)) #从网页源代码中分析并下载保存图片
求大神一个Python问题 实在不知道了?
import re import requests from operator import itemgetter url='https://s.taobao.com/search?q=%E7%B1%B36&imgfile=&commend=all&ssid=s5-e&search_type=item&sourceId=tb.index&spm=a21bo.50862.201856-taobao-item.1&ie=utf8&initiative_id=tbindexz_20170813' def getHtmlText(url): try: r=requests.get(url,timeout=30) r.raise_for_status() r.encoding=r.apparent_encoding return r.text except: return '' def parsePage(ilt,html): try: plt=re.findall(r'"view_price":"[\d.]*"',html) tlt=re.findall(r'"raw_title":".*?"',html) for i in range(len(plt)): price=eval(plt[i].split(':')[1]) title = eval(tlt[i].split(':')[1]) ilt.append([price,title]) ilt=sorted(ilt,key=itemgetter(0)) print(ilt) except: print('异常?') def printGoodsList(ilt): tplt='{:4}\t{:8}\t{:16}' print(tplt.format('序号','价格','商品名称')) count=0 for g in ilt: count=count+1 print(tplt.format(count,g[0],g[1])) def main(): goods='小米6' depth=1 start_url='https://s.taobao.com/search?q='+goods infoList=[] for i in range(depth): try: url=start_url+'&s='+str(44*i) html=getHtmlText(url) parsePage(infoList,html) except: pass printGoodsList(infoList) main() 我明明对ilt列表进行了排序 第一次输出ilt价格是从小到大 为什么格式化输出之后又不排序了 帮我解决下吧 我真的好痛苦
动态规划入门到熟悉,看不懂来打我啊
持续更新。。。。。。 2.1斐波那契系列问题 2.2矩阵系列问题 2.3跳跃系列问题 3.1 01背包 3.2 完全背包 3.3多重背包 3.4 一些变形选讲 2.1斐波那契系列问题 在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n&gt;=2,n∈N*)根据定义,前十项为1, 1, 2, 3...
终于明白阿里百度这样的大公司,为什么面试经常拿ThreadLocal考验求职者了
点击上面↑「爱开发」关注我们每晚10点,捕获技术思考和创业资源洞察什么是ThreadLocalThreadLocal是一个本地线程副本变量工具类,各个线程都拥有一份线程私...
对计算机专业来说学历真的重要吗?
我本科学校是渣渣二本,研究生学校是985,现在毕业五年,校招笔试、面试,社招面试参加了两年了,就我个人的经历来说下这个问题。 这篇文章很长,但绝对是精华,相信我,读完以后,你会知道学历不好的解决方案,记得帮我点赞哦。 先说结论,无论赞不赞同,它本质就是这样:对于技术类工作而言,学历五年以内非常重要,但有办法弥补。五年以后,不重要。 目录: 张雪峰讲述的事实 我看到的事实 为什么会这样 ...
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它是一个过程,是一个不断累积、不断沉淀、不断总结、善于传达自己的个人见解以及乐于分享的过程。
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
Python 植物大战僵尸代码实现(2):植物卡片选择和种植
这篇文章要介绍的是: - 上方植物卡片栏的实现。 - 点击植物卡片,鼠标切换为植物图片。 - 鼠标移动时,判断当前在哪个方格中,并显示半透明的植物作为提示。
防劝退!数据结构和算法难理解?可视化动画带你轻松透彻理解!
大家好,我是 Rocky0429,一个连数据结构和算法都不会的蒟蒻… 学过数据结构和算法的都知道这玩意儿不好学,没学过的经常听到这样的说法还没学就觉得难,其实难吗?真难! 难在哪呢?当年我还是个小蒟蒻,初学数据结构和算法的时候,在忍着枯燥看完定义原理,之后想实现的时候,觉得它们的过程真的是七拐八绕,及其难受。 在简单的链表、栈和队列这些我还能靠着在草稿上写写画画理解过程,但是到了数论、图...
【搞定 Java 并发面试】面试最常问的 Java 并发基础常见面试题总结!
本文为 SnailClimb 的原创,目前已经收录自我开源的 JavaGuide 中(61.5 k Star!【Java学习 面试指南】 一份涵盖大部分Java程序员所需要掌握的核心知识。欢迎 Star!)。 另外推荐一篇原创:终极推荐!可能是最适合你的Java学习路线 方法 网站 书籍推荐! Java 并发基础常见面试题总结 1. 什么是线程和进程? 1.1. 何为进程? 进程是程...
西游记团队中如果需要裁掉一个人,会先裁掉谁?
2019年互联网寒冬,大批企业开始裁员,下图是网上流传的一张截图: 裁员不可避免,那如何才能做到不管大环境如何变化,自身不受影响呢? 我们先来看一个有意思的故事,如果西游记取经团队需要裁员一名,会裁掉谁呢,为什么? 西游记团队组成: 1.唐僧 作为团队teamleader,有很坚韧的品性和极高的原则性,不达目的不罢休,遇到任何问题,都没有退缩过,又很得上司支持和赏识(直接得到唐太宗的任命,既给
shell脚本:备份数据库、代码上线
备份MySQL数据库 场景: 一台MySQL服务器,跑着5个数据库,在没有做主从的情况下,需要对这5个库进行备份 需求: 1)每天备份一次,需要备份所有的库 2)把备份数据存放到/data/backup/下 3)备份文件名称格式示例:dbname-2019-11-23.sql 4)需要对1天以前的所有sql文件压缩,格式为gzip 5)本地数据保留1周 6)需要把备份的数据同步到远程备份中心,假如...
iOS Bug 太多,苹果终于坐不住了!
开源的 Android 和闭源的 iOS,作为用户的你,更偏向哪一个呢? 整理 | 屠敏 出品 | CSDN(ID:CSDNnews) 毋庸置疑,当前移动设备操作系统市场中,Android 和 iOS 作为两大阵营,在相互竞争的同时不断演进。不过一直以来,开源的 Android 吸引了无数的手机厂商涌入其中,为其生态带来了百花齐放的盛景,但和神秘且闭源的 iOS 系统相比,不少网友...
神经⽹络可以计算任何函数的可视化证明
《Neural Networks and Deep Learning》读书笔记第四篇本章其实和前面章节的关联性不大,所以大可将本章作为小短文来阅读,当然基本的深度学习基础还是要有的。主要介绍了神经⽹络拥有的⼀种普遍性,比如说不管目标函数是怎样的,神经网络总是能够对任何可能的输入,其值(或者说近似值)是网络的输出,哪怕是多输入和多输出也是如此,我们大可直接得出一个结论:不论我们想要计算什么样的函数,...
聊聊C语言和指针的本质
坐着绿皮车上海到杭州,24块钱,很宽敞,在火车上非正式地聊几句。 很多编程语言都以 “没有指针” 作为自己的优势来宣传,然而,对于C语言,指针却是与生俱来的。 那么,什么是指针,为什么大家都想避开指针。 很简单, 指针就是地址,当一个地址作为一个变量存在时,它就被叫做指针,该变量的类型,自然就是指针类型。 指针的作用就是,给出一个指针,取出该指针指向地址处的值。为了理解本质,我们从计算机模型说起...
为什么你学不过动态规划?告别动态规划,谈谈我的经验
动态规划难吗?说实话,我觉得很难,特别是对于初学者来说,我当时入门动态规划的时候,是看 0-1 背包问题,当时真的是一脸懵逼。后来,我遇到动态规划的题,看的懂答案,但就是自己不会做,不知道怎么下手。就像做递归的题,看的懂答案,但下不了手,关于递归的,我之前也写过一篇套路的文章,如果对递归不大懂的,强烈建议看一看:为什么你学不会递归,告别递归,谈谈我的经验 对于动态规划,春招秋招时好多题都会用到动态...
程序员一般通过什么途径接私活?
二哥,你好,我想知道一般程序猿都如何接私活,我也想接,能告诉我一些方法吗? 上面是一个读者“烦不烦”问我的一个问题。其实不止是“烦不烦”,还有很多读者问过我类似这样的问题。 我接的私活不算多,挣到的钱也没有多少,加起来不到 20W。说实话,这个数目说出来我是有点心虚的,毕竟太少了,大家轻喷。但我想,恰好配得上“一般程序员”这个称号啊。毕竟苍蝇再小也是肉,我也算是有经验的人了。 唾弃接私活、做外...
字节跳动面试官这样问消息队列:分布式事务、重复消费、顺序消费,我整理了一下
你知道的越多,你不知道的越多 点赞再看,养成习惯 GitHub上已经开源 https://github.com/JavaFamily 有一线大厂面试点脑图、个人联系方式和人才交流群,欢迎Star和完善 前言 消息队列在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在消息队列的使用和原理方面对小伙伴们进行360°的刁难。 作为一个在互联网公司面一次拿一次Offer的面霸...
如何安装 IntelliJ IDEA 最新版本——详细教程
IntelliJ IDEA 简称 IDEA,被业界公认为最好的 Java 集成开发工具,尤其在智能代码助手、代码自动提示、代码重构、代码版本管理(Git、SVN、Maven)、单元测试、代码分析等方面有着亮眼的发挥。IDEA 产于捷克,开发人员以严谨著称的东欧程序员为主。IDEA 分为社区版和付费版两个版本。 我呢,一直是 Eclipse 的忠实粉丝,差不多十年的老用户了。很早就接触到了 IDEA...
面试还搞不懂redis,快看看这40道面试题(含答案和思维导图)
Redis 面试题 1、什么是 Redis?. 2、Redis 的数据类型? 3、使用 Redis 有哪些好处? 4、Redis 相比 Memcached 有哪些优势? 5、Memcache 与 Redis 的区别都有哪些? 6、Redis 是单进程单线程的? 7、一个字符串类型的值能存储最大容量是多少? 8、Redis 的持久化机制是什么?各自的优缺点? 9、Redis 常见性...
大学四年自学走来,这些珍藏的「实用工具/学习网站」我全贡献出来了
知乎高赞:文中列举了互联网一线大厂程序员都在用的工具集合,涉及面非常广,小白和老手都可以进来看看,或许有新收获。
为什么要推荐大家学习字节码?
配套视频: 为什么推荐大家学习Java字节码 https://www.bilibili.com/video/av77600176/ 一、背景 本文主要探讨:为什么要学习 JVM 字节码? 可能很多人会觉得没必要,因为平时开发用不到,而且不学这个也没耽误学习。 但是这里分享一点感悟,即人总是根据自己已经掌握的知识和技能来解决问题的。 这里有个悖论,有时候你觉得有些技术没用恰恰是...
互联网公司的裁员,能玩出多少种花样?
裁员,也是一门学问,可谓博大精深!以下,是互联网公司的裁员的多种方法:-正文开始-135岁+不予续签的理由:千禧一代网感更强。95后不予通过试用期的理由:已婚已育员工更有责任心。2通知接下来要过苦日子,让一部分不肯同甘共苦的员工自己走人,以“兄弟”和“非兄弟”来区别员工。3强制996。员工如果平衡不了工作和家庭,可在离婚或离职里二选一。4不布置任何工作,但下班前必须提交千字工作日报。5不给活干+...
【超详细分析】关于三次握手与四次挥手面试官想考我们什么?
在面试中,三次握手和四次挥手可以说是问的最频繁的一个知识点了,我相信大家也都看过很多关于三次握手与四次挥手的文章,今天的这篇文章,重点是围绕着面试,我们应该掌握哪些比较重要的点,哪些是比较被面试官给问到的,我觉得如果你能把我下面列举的一些点都记住、理解,我想就差不多了。 三次握手 当面试官问你为什么需要有三次握手、三次握手的作用、讲讲三次三次握手的时候,我想很多人会这样回答: 首先很多人会先讲下握...
新程序员七宗罪
当我发表这篇文章《为什么每个工程师都应该开始考虑开发中的分析和编程技能呢?》时,我从未想到它会对读者产生如此积极的影响。那些想要开始探索编程和数据科学领域的人向我寻求建议;还有一些人问我下一篇文章的发布日期;还有许多人询问如何顺利过渡到这个职业。我非常鼓励大家继续分享我在这个旅程的经验,学习,成功和失败,以帮助尽可能多的人过渡到一个充满无数好处和机会的职业生涯。亲爱的读者,谢谢你。 -罗伯特。 ...
活到老,学到老,程序员也该如此
全文共2763字,预计学习时长8分钟 图片来源:Pixabay 此前,“网传阿里巴巴要求尽快实现P8全员35周岁以内”的消息闹得沸沸扬扬。虽然很快被阿里辟谣,但苍蝇不叮无缝的蛋,无蜜不招彩蝶蜂。消息从何而来?真相究竟怎样?我们无从而知。我们只知道一个事实:不知从何时开始,程序猿也被划在了“吃青春饭”行业之列。 饱受“996ICU”摧残后,好不容易“头秃了变强了”,即将步入为“高...
Vue快速实现通用表单验证
本文开篇第一句话,想引用鲁迅先生《祝福》里的一句话,那便是:“我真傻,真的,我单单知道后端整天都是CRUD,我没想到前端整天都是Form表单”。这句话要从哪里说起呢?大概要从最近半个月的“全栈工程师”说起。项目上需要做一个城市配载的功能,顾名思义,就是通过框选和拖拽的方式在地图上完成配载。博主选择了前后端分离的方式,在这个过程中发现:首先,只要有依赖jQuery的组件,譬如Kendoui,即使使用...
2019年Spring Boot面试都问了什么?快看看这22道面试题!
Spring Boot 面试题 1、什么是 Spring Boot? 2、Spring Boot 有哪些优点? 3、什么是 JavaConfig? 4、如何重新加载 Spring Boot 上的更改,而无需重新启动服务器? 5、Spring Boot 中的监视器是什么? 6、如何在 Spring Boot 中禁用 Actuator 端点安全性? 7、如何在自定义端口上运行 Sprin...
【图解】记一次手撕算法面试:字节跳动的面试官把我四连击了
字节跳动这家公司,应该是所有秋招的公司中,对算法最重视的一个了,每次面试基本都会让你手撕算法,今天这篇文章就记录下当时被问到的几个算法题,并且每个算法题我都详细着给出了最优解,下面再现当时的面试场景。看完一定让你有所收获 一、小牛试刀:有效括号 大部分情况下,面试官都会问一个不怎么难的问题,不过你千万别太开心,因为这道题往往可以拓展出更多有难度的问题,或者一道题看起来很简单,但是给出最优解,确实很...
关于裁员几点看法及建议
最近网易裁员事件引起广泛关注,昨天网易针对此事,也发了声明,到底谁对谁错,孰是孰非?我们作为吃瓜观众实在是知之甚少,所以不敢妄下定论。身处软件开发这个行业,近一两年来,对...
面试官:关于Java性能优化,你有什么技巧
通过使用一些辅助性工具来找到程序中的瓶颈,然后就可以对瓶颈部分的代码进行优化。 一般有两种方案:即优化代码或更改设计方法。我们一般会选择后者,因为不去调用以下代码要比调用一些优化的代码更能提高程序的性能。而一个设计良好的程序能够精简代码,从而提高性能。 下面将提供一些在JAVA程序的设计和编码中,为了能够提高JAVA程序的性能,而经常采用的一些方法和技巧。 1.对象的生成和大小的调整。 J...
【图解算法面试】记一次面试:说说游戏中的敏感词过滤是如何实现的?
版权声明:本文为苦逼的码农原创。未经同意禁止任何形式转载,特别是那些复制粘贴到别的平台的,否则,必定追究。欢迎大家多多转发,谢谢。 小秋今天去面试了,面试官问了一个与敏感词过滤算法相关的问题,然而小秋对敏感词过滤算法一点也没听说过。于是,有了下下事情的发生… 面试官开怼 面试官:玩过王者荣耀吧?了解过敏感词过滤吗?,例如在游戏里,如果我们发送“你在干嘛?麻痹演员啊你?”,由于“麻痹”是一个敏感词,...
程序员需要了解的硬核知识之汇编语言(一)
之前的系列文章从 CPU 和内存方面简单介绍了一下汇编语言,但是还没有系统的了解一下汇编语言,汇编语言作为第二代计算机语言,会用一些容易理解和记忆的字母,单词来代替一个特定的指令,作为高级编程语言的基础,有必要系统的了解一下汇编语言,那么本篇文章希望大家跟我一起来了解一下汇编语言。 汇编语言和本地代码 我们在之前的文章中探讨过,计算机 CPU 只能运行本地代码(机器语言)程序,用 C 语言等高级语...
GitHub 标星 1.6w+,我发现了一个宝藏项目,作为编程新手有福了!
大家好,我是 Rocky0429,一个最近老在 GitHub 上闲逛的蒟蒻… 特别惭愧的是,虽然我很早就知道 GitHub,但是学会逛 GitHub 的时间特别晚。当时一方面是因为菜,看着这种全是英文的东西难受,不知道该怎么去玩,另一方面是一直在搞 ACM,没有做一些工程类的项目,所以想当然的以为和 GitHub 也没什么关系(当然这种想法是错误的)。 后来自己花了一个星期看完了 Pyt...
java知识体系整理,学会了,月入过万不是梦
欢迎关注个人公众号:程序猿学社 前言: 一转眼,工作4年了,正式写博客也有一年多了,之前就有整理和总结的习惯,只是都记录在有道云,感觉知识点都是很凌乱,花时间系统整理下,该文会一直同步更新,有不足之处,希望各位同行指正,既然,选择做技术这行,就得有分享的精神,而不是抱着别人会超过你的心理。希望各位博友们互相交流,互相进步。 目录 java系统学习 小白也能...
2020年去一线大厂面试先过SSM框架源码这一关!
SSM框架介绍 (1)持久层(Mybatis):Dao层(mapper) DAO层:DAO层主要是做数据持久层的工作,负责与数据库进行联络的一些任务都封装在此。 DAO层的设计首先是设计DAO的接口。 然后在Spring的配置文件中定义此接口的实现类。 然后就可在模块中调用此接口来进行数据业务的处理,而不用关心此接口的具体实现类是哪个类,显得结构非常清晰。 DAO层的数据源配置,以及有...
教你一键快速生成后台代码,这样和测试小姐姐聊天的时间又多了
教你一键快速生成后台代码,咋们作为开发人员,应该把时间精力放在业务逻辑的实现上面。
Java程序员必备基础:内部类解析
前言 整理了一下内部类的相关知识,算是比较全,比较基础的,希望大家一起学习进步。 一、什么是内部类? 在Java中,可以将一个类的定义放在另外一个类的定义内部,这就是内部类。内部类本身就是类的一个属性,与其他属性 定义方式一致。 一个内部类的例子: public class Outer { private int radius = 1; public static int co...
北漂女程序员工作6年面试JD要价28K
写在开头: 上周面试了一位女程序员,上午10::30来我们部门面试,2B哥接待了她. 大家来看看她的简历: 个人简历 个人技能: ● 熟悉spring mvc 、spring、mybatis 等框架 ● 熟悉 redis 、rocketmq、dubbo、zookeeper、netty 、nginx、tomcat、mysql。 ● 阅读过juc 中的线程池、锁的源码以及netty 中的主从多线程...
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
人脸生成黑科技:实现人脸转变特效,让人脸自动戴墨镜
上一节我们通过VAE网络完成了人脸生成效果。VAE网络一个特性是会把人脸编码成一个含有200个分量的向量,反过来说在特定分布范围内的含有200个分量的向量就对应一张人脸。由于向量之间可以进行运算,这就意味着我们把两张不同人脸A,B分布转换成两个不同向量z_A,z_B,然后我们使用向量运算例如z_AB = z_A *(1 - alpha) + z_B *alpha,就能将两个向量以一定比例合成一个新...
Java9到Java13各版本新特性代码全部详解(全网独家原创)
Java现在已经发展到了Java13了(正式版本),相信很多朋友还对各个版本还不是很熟悉,这里面专门把Java9到Java13各个版本的一些新特性做了一些详细讲解。我在网上也找了很多,但基本都是官方文档的CV,没有任何代码演示,而且官方的示例代码也不是很好找得到,官方API目前还是Java10,官方文档真是坑啊。所以我在这里专门写了一篇文章,主要针对平时开发与有关的功能Java9到Java13各...
一文带你看清 HTTP 所有概念
上一篇文章我们大致讲解了一下 HTTP 的基本特征和使用,大家反响很不错,那么本篇文章我们就来深究一下 HTTP 的特性。我们接着上篇文章没有说完的 HTTP 标头继续来介绍(此篇文章会介绍所有标头的概念,但没有深入底层) HTTP 标头 先来回顾一下 HTTP1.1 标头都有哪几种 HTTP 1.1 的标头主要分为四种,通用标头、实体标头、请求标头、响应标头,现在我们来对这几种标头进行介绍 通用...
相关热词 c# 时间比天数 c# oracle查询 c# 主动推送 事件 c# java 属性 c# 控制台 窗体 c# 静态类存值 c#矢量作图 c#窗体调用外部程式 c# enum是否合法 c# 如何卸载引用
立即提问