机器学习中,能不能对多个目标进行预测?

比如我能否用决策树回归去预测多个类型为连续值的目标?应该怎么做,或者有没有相关的参考资料。

2个回答

可以进行多目标,比如在回归问题中,决策树和神经网络就可以同时预测多个目标值。
可以参考论文,A survey on multi‐output regression

cs123456789dn
对java有感觉 这个里面什么都没有啊?
7 个月之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
机器学习中怎么使用保存的模型进行预测

我使用一个文档中的数据训练了岭回归模型并保存,想通过这个模型来预测另一个文档中的数据(两个文档中的数据只是数量不一样) 预测的文档中有2W+条数据,但是预测结果只有6000+条。 请问各位大神怎么才能使预测结果按每条数据的顺序全部得出来。 本人完全小白,论文想做个机器学习的东西...求各位大神指导 ``` from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import pandas as pd import joblib as jb def mylinear(): """ 岭回归预测TOC :return: None """ # 获取数据 data = pd.read_csv("./NH25-4.csv") # 删除部分列 data = data.drop(["E_HORZ", "E_VERT", "PR_HORZ", "PR_VERT", "Brittle_Horz%", "Brittle_Vert%", "POR", "DEPTH"], axis=1) # 取出特征值和目标值 y = data["TOC"] x = data.drop(["TOC"], axis=1) # 分割数据集到训练集和测试集 x_train, x_test, y_train, y_test = train_test_split(x, y) # 标准化 std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) # 目标值 std_y = StandardScaler() y_train = std_y.fit_transform(y_train.values.reshape(-1, 1)) y_test = std_y.transform(y_test.values.reshape(-1, 1)) # 加载模型 model = jb.load("./test_Ridge.pkl") y_predict = std_y.inverse_transform(model.predict(x_test)) print("保存的模型预测的结果:", y_predict) if __name__ == "__main__": mylinear() ```

机器学习根据结果预测条件

各位大佬,想问一下机器学习如何根据结果预测条件是什么呀,比如预测房价,然后预测房价的条件有很多,现在让房价达到一个指定的值,需要条件达到什么值呢,这个东西可以做么,跪求各位大佬解答呀,谢谢啦!!!

机器学习中整合不同预测方法的公式的含义

我运用机器学习的方法来预测两个蛋白质是否互作,而目前有4种基于氨基酸序列的编码方法结合SVM构成4种预测方法。我参考了别人的文献用下面的公式对4种方法进行一个整合,希望整合后能够比单种预测方法的预测精度要高。 每一个样本运用的公式如下: ![图片说明](https://img-ask.csdn.net/upload/201703/06/1488786783_62217.png) 这里的s_i指的是每个样本用第i种方法预测后的得分,〖AUC〗_i指的是所有样本用第i种预测方法预测后的得分做出ROC曲线下的面积,s ̂为整合后每个样本的分数。 我不明白的地方是,这两个公式背后到底蕴含着什么意义和道理,为何要这样进行处理?

机器学习预测犯罪发生概率,但收集到的犯罪数据已经发生概率都是100%,怎么预测?

各位大神,最近在做毕设,之前没有怎么接触过机器学习,在网上找了一些机器学习的网课看,但是在做的时候还是有好多问题,麻烦帮帮这个我小白吧 # 问题详细描述 这个机器学习的任务就是:输入时间,地点等信息,预测每种犯罪类型发生的概率。但现在有个问题我一直没想通,就是我收集到的数据都是已经发生过的犯罪事实,那他们发生的概率都是100%,这样的话,不就相当于预测房价的时候,数据集里房间大小、地理位置等不一样,但房价都是一样的,然后用这样一个数据集来训练模型。这样的话,要怎么预测啊,数据集不会存在数据并不平衡的情况吗,但是我也没有办法找到犯罪发生概率在0-100之间的数据啊,发生了就是100%,没发生就是0%,这要怎么搞? <br/> 这是我稍微处理后的数据集截图,最后面还有一列Ratio,就是犯罪概率,都是赋值的100% ![图片说明](https://img-ask.csdn.net/upload/202004/20/1587352628_740938.png)

为什么我在使用机器学习中的softmax来进行学习时预测时预测时间太短而且精确度一直为零

是因为我的输入数据较少吗还是算法有问题 ![图片说明](https://img-ask.csdn.net/upload/201905/03/1556844528_823169.png) ``` import math import pandas as pd import numpy as np import random import time from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score class Softmax(object): def __init__(self): self.learning_step = 0.000001 # 学习速率 self.max_iteration = 100000 # 最大迭代次数 self.weight_lambda = 0.01 # 衰退权重 def cal_e(self,x,l): ''' 计算博客中的公式3 ''' theta_l = self.w[l] product = np.dot(theta_l,x) return math.exp(product) def cal_probability(self,x,j): ''' 计算博客中的公式2 ''' molecule = self.cal_e(x,j) denominator = sum([self.cal_e(x,i) for i in range(self.k)]) return molecule/denominator def cal_partial_derivative(self,x,y,j): ''' 计算博客中的公式1 ''' first = int(y==j) # 计算示性函数 second = self.cal_probability(x,j) # 计算后面那个概率 return -x*(first-second) + self.weight_lambda*self.w[j] def predict_(self, x): result = np.dot(self.w,x) row, column = result.shape # 找最大值所在的列 _positon = np.argmax(result) m, n = divmod(_positon, column) return m def train(self, features, labels): self.k = len(set(labels)) self.w = np.zeros((self.k,len(features[0])+1)) time = 0 while time < self.max_iteration: print('loop %d' % time) time += 1 index = random.randint(0, len(labels) - 1) x = features[index] y = labels[index] x = list(x) x.append(1.0) x = np.array(x) derivatives = [self.cal_partial_derivative(x,y,j) for j in range(self.k)] for j in range(self.k): self.w[j] -= self.learning_step * derivatives[j] def predict(self,features): labels = [] for feature in features: x = list(feature) x.append(1) x = np.matrix(x) x = np.transpose(x) labels.append(self.predict_(x)) return labels if __name__ == '__main__': print('Start read data') time_1 = time.time() raw_data = pd.read_csv('E:\jiqi\jiqiqiq.CSV', header=0) data = raw_data.values imgs = data[0::, 1::] labels = data[::, 0] # 选取 2/3 数据作为训练集, 1/3 数据作为测试集 train_features, test_features, train_labels, test_labels = train_test_split( imgs, labels, test_size=0.33, random_state=23323) # print train_features.shape # print train_features.shape time_2 = time.time() print('read data cost '+ str(time_2 - time_1)+' second') print('Start training') p = Softmax() p.train(train_features, train_labels) time_3 = time.time() print('training cost '+ str(time_3 - time_2)+' second') print('Start predicting') test_predict = p.predict(test_features) time_4 = time.time() print('predicting cost ' + str(time_4 - time_3) +' second') score = accuracy_score(test_labels, test_predict) print("The accruacy socre is " + str(score)) ```

关于机器学习中垃圾图像识别的特征提取问题。

如题,想用: **决策树、朴素贝叶斯和SVM**这三个传统机器学习算法,对github上的garythung的垃圾数据集进行识别分类。 1.但是对于图像预处理的特征提取有点云里雾里的,应该选取什么特征比较好啊?看了很多大神分享的博客,发现大家都是图像预处理之后,选择神经网络CNN进行训练的,无需特征提取。 所以有点困惑,了解到的有HOG,SIFT特征。 2.对于传统的机器学习算法,一定要进行特征提取吗?一些颜色特征、边缘特征也可以吗?这些颜色边缘一类的特征如何进行提取呢?也是使用opencv吗? 万分感谢万分感谢

机器学习算法-决策树对未知类别标签数据进行分类问题

机器学习算法还处于基础阶段,对决策树分类问题疑惑已久:构建好一颗决策树后,用该决策树对未知标签的数据进行分类,只能得到绝对的类别标签吗?有什么方法可以得到分类结果的概率呢? 比如:类别标签有两个:yes,no。决策树对某条未知标签的分类结果是yes,能否求出“yes”这个结果的概率,而不是绝对的一个类别标签。

请教机器学习来做机械设备故障诊断实现的思路

目前有一个项目,采集了一批气压数据。 包括五个气压接口的气压变化数据,五个气压接口之间是有相互耦合关系的。 想用机器学习建立一个模型,当检测到一组新的五个气压数据变化后,来判断出设备是否正常。 其实感觉属于比较简单的机器学习领域,请问用哪种模型比较好呢?

机器学习中分类器验证AUC值不理想,能否比较验证集实际频率和预测概率均值来说明模型准确性。

大家好,我目前在用一批土壤数据做二分类模型,尝试了随机森林、SVM、逻辑斯蒂回归、朴素贝叶斯等常用分类算法,但是结果不太理想。不理想指的是采用常规的ROC曲线法进行模型精度验证时,曲线基本就在0.5随机线附近,AUC也就0.53左右的样子。 之前看到过一篇关于贝叶斯概率预测模型的文章(Wu Bo, 2018),他在检验模型准确性时没有采取ROC曲线法或类似基于混淆矩阵的方法,而是把验证数据集当作一个整体,计算了两个分类各自的频率,然后将验证数据集参数的平均值带入训练好的贝叶斯模型,求出一个后验概率,通过比较后验概率与实际频率,来说明模型的好坏。 于是尝试用这种思路,去把我的验证数据集每个样本带入模型计算得到的那个数字(例如贝叶斯和逻辑斯蒂回归都可以给出后验概率)求平均,发现这个平均数确实和实际两个类别的频率很接近。我又通过改变数据的分类阈值(比如说原来是170cm以上算高个,现在调整成160就是高个儿),发现不同阈值下求得的这个平均数和相应的实际频率都很一致。 本人数学底子挺差的,不知道这种验证方法是否可行?如果可行的话,后面是什么原理?能否指点个参考文献?如果不行的话,又是为什么呢?

怎样用机器学习识别图片中的重要部分

新手,最近在做一个项目,想以一定尺寸裁剪所给图片,使得裁剪出来的部分是图片的重点内容,想请教怎样用机器学习完成这项工作。

spark 机器学习 模型上线

现在我使用spark mllib的逻辑回归算法计算点击率的模型快上线了。 但之后导师需要我使用决策树和因子分解机模型计算点击率预测。 我想请问这种情况下我应该怎么让这两个模型构建线上服务,并且有没有可能不和spark交互就能够构建线上服务呢?谢谢!

如何进行机器学习算法的实验?

学习了很多的机器学习算法,但是理解的还是不够透彻,想自己跑实验试试,但是有不知如何下手?! 请教各位大神该如何深入理解和运用?

关于机器学习模型调参的正确步骤是怎样的?

机器学习的模型,要涉及到不少参数的调参。。那其正确的步骤应该是怎样的呢? 第一种做法是,对一个个或一组组参数去调,其他参数使用默认值。。调出一个或一组参数后,记录下来。下一次继续调另外一个或一组参数。。直至所有要调的参数全部调节完毕。然后将所获得的最优参数一股脑传入模型中,正式训练。 第二种做法是,先对一个或一组参数进行调参,得出最优值后,传入模型中,再调第二个或第二组参数。与前面一种的区别就是,前面那种调出最优参数后,并没有马上传入模型训练,而只是记录下来,到最后一股脑传入。而这种则是一步步地固定最优参数组合,直到最后。。 当然,还有的做法是一股脑对所有参数调参,这种做法相对较少,只能针对简单的模型。对复杂的模型而言,调参耗时过大。。 因此,想请教下各位,正确的做法,应该是怎样的呢??

机器学习到底要不要大数据的支持,如果要数据的支持,支持到哪一步?

机器学习到底要不要大数据的支持,如果要数据的支持,支持到哪一步? 众所周知AlphaGo是需要大量的数据来进行学习的,ZERO却只需要少量的数据样本即可达到甚至超过AlphaGo的水准,那么问题来了,这个数据量的多少从科学的角度来说它的一个标准是什么,或者说它怎么来度量? ———————————————————————————————— 谢谢各位的回答,实际上我对我自己提出的两个问题中的前一个和大家的看法是差不多的,但实际上我希望得到第二个问题的解答。 我们的共识是,机器学习在大部分时候都是需要大量数据的(实际上我没有见过不需要大量数据就能训练出来的智能),然而在现实操作中总会面临数据量不是不够就是浪费的情况(且不说数据的质量),所以去预测一个具体需要的数据量就是极其必要的。打个比方,在运用人工智能对医学影像进行分析的时候,我们需要极其大量的数据,但我们不可能去向医院索取它的全部数据,所以就会想要通过计算得到一个大概的数据量的值,而不需要三番五次地去向医院申请数据。 再举一个例子,比如我们在打磨一个适用于某处的齿轮,我们当然可以一边打磨一边拿去比较大小是否合适,但这一点也不方便,我们通常通过测量来获取需要的数据,然后直接按照这个数据来打磨齿轮。 所以精确计算每次训练时所需要的数据量,这显然是极其必要的,既可以让我们避免数据不足的情况又不至于让我们一直盲目地收集数据。 可问题就出在这里,这个数据量如何去测量? ———————————————————————————————— 回复caozhy:感谢你的回答:)。是的,数据的获取存在困难是一个现实存在的问题,例如医院里病人的数据签了保密协议,要取出是很麻烦的,其他领域也是一样,只有用钱把数据砸出来,从这方面来说估计一个需要的数据的量也是必要的。即使是能够获取到大量的数据,我们也希望能通过计算直接得到一个最优的数据量,如果这个计算方法真的存在并且被发现,自然是一桩好事。 ———————————————————————————————— 说明一下,这个问题是在最近的第194期双清论坛上由高文院士提出的,我有幸听到教授的转述,才会对此有所思考,当然才疏学浅,对人工智能的理解也不够深入,只能做上述的一些浅层解读,请点拨指正。

机器学习knn算法中目标变量转换为factor

向大神们请教:1,学习knn算法中将目标变量转换为factor,目的是什么?且他的level设定有什么具体的要求么?使用knn算法时,变量必须要处理成有序分类变量么?

分类模型预测的类别如何进行识别

我的模型数据中,原始目标变量设置了类别,分别是3,4,5(原来的标准是1-6,但是数据实际分类出来只符合了3,4,5三种类别,其他类别没有数据匹配到); 而模型预测出来的类别却自动命名为0,1,2。 那我该如何得知他们之间的对应关系呢? 我的代码该如何写?

对于机器学习数据集的归一化问题

我是先将训练集进行归一化,再将训练集的归一化方法适用到测试集上,这样建立SVM模型效果很好。 但是,当我想用该模型进行预测的时候,发现对一个新的数据集进行归一化,出现了数值大于1的情况(原因是训练集中已经明确了在该维度上的最大值,比如2,但是新的数据集在该维度出现了大于2的情况)这样归一化结果很影响预测结果,想问问大家遇到这种问题应该如何解决

推荐系统或者机器学习中,怎样划分数据集

如何把一个完整的数据文件,分成一个训练集和测试集,有没有高效一点的办法啊

机器学习中的基于实例的问题

**局部加权回归处理完一个实例的分类,这个实例加到训练样例中吗?**

2019 AI开发者大会

2019 AI开发者大会(AI ProCon 2019)是由中国IT社区CSDN主办的AI技术与产业年度盛会。多年经验淬炼,如今蓄势待发:2019年9月6-7日,大会将有近百位中美顶尖AI专家、知名企业代表以及千余名AI开发者齐聚北京,进行技术解读和产业论证。我们不空谈口号,只谈技术,诚挚邀请AI业内人士一起共铸人工智能新篇章!

实现简单的文件系统

实验内容: 通过对具体的文件存储空间的管理、文件的物理结构、目录结构和文件操作的实现,加深对文件系统内部功能和实现过程的理解。 要求: 1.在内存中开辟一个虚拟磁盘空间作为文件存储器,在其上实现一个简

MIPS单周期CPU-组成原理实验-华中科技大学

使用logisim布线完成的MIPS单周期CPU,可支持28条指令。跑马灯的代码已经装入了寄存器,可以直接开启时钟运行。

2019数学建模A题高压油管的压力控制 省一论文即代码

2019数学建模A题高压油管的压力控制省一完整论文即详细C++和Matlab代码,希望对同学们有所帮助

基于QT和OpenCV的五子棋实现源码

一个简单的五子棋应用,基于QT和OpenCV的实现源码,通过相邻棋子判断是否获胜,不包含人工智能算法,适合新手入门

Git 实用技巧

这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。

实用主义学Python(小白也容易上手的Python实用案例)

原价169,限时立减100元! 系统掌握Python核心语法16点,轻松应对工作中80%以上的Python使用场景! 69元=72讲+源码+社群答疑+讲师社群分享会&nbsp; 【哪些人适合学习这门课程?】 1)大学生,平时只学习了Python理论,并未接触Python实战问题; 2)对Python实用技能掌握薄弱的人,自动化、爬虫、数据分析能让你快速提高工作效率; 3)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; 4)想修炼更好的编程内功,优秀的工程师肯定不能只会一门语言,Python语言功能强大、使用高效、简单易学。 【超实用技能】 从零开始 自动生成工作周报 职场升级 豆瓣电影数据爬取 实用案例 奥运冠军数据分析 自动化办公:通过Python自动化分析Excel数据并自动操作Word文档,最终获得一份基于Excel表格的数据分析报告。 豆瓣电影爬虫:通过Python自动爬取豆瓣电影信息并将电影图片保存到本地。 奥运会数据分析实战 简介:通过Python分析120年间奥运会的数据,从不同角度入手分析,从而得出一些有趣的结论。 【超人气老师】 二两 中国人工智能协会高级会员 生成对抗神经网络研究者 《深入浅出生成对抗网络:原理剖析与TensorFlow实现》一书作者 阿里云大学云学院导师 前大型游戏公司后端工程师 【超丰富实用案例】 0)图片背景去除案例 1)自动生成工作周报案例 2)豆瓣电影数据爬取案例 3)奥运会数据分析案例 4)自动处理邮件案例 5)github信息爬取/更新提醒案例 6)B站百大UP信息爬取与分析案例 7)构建自己的论文网站案例

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

C/C++跨平台研发从基础到高阶实战系列套餐

一 专题从基础的C语言核心到c++ 和stl完成基础强化; 二 再到数据结构,设计模式完成专业计算机技能强化; 三 通过跨平台网络编程,linux编程,qt界面编程,mfc编程,windows编程,c++与lua联合编程来完成应用强化 四 最后通过基于ffmpeg的音视频播放器,直播推流,屏幕录像,

三个项目玩转深度学习(附1G源码)

从事大数据与人工智能开发与实践约十年,钱老师亲自见证了大数据行业的发展与人工智能的从冷到热。事实证明,计算机技术的发展,算力突破,海量数据,机器人技术等,开启了第四次工业革命的序章。深度学习图像分类一直是人工智能的经典任务,是智慧零售、安防、无人驾驶等机器视觉应用领域的核心技术之一,掌握图像分类技术是机器视觉学习的重中之重。针对现有线上学习的特点与实际需求,我们开发了人工智能案例实战系列课程。打造:以项目案例实践为驱动的课程学习方式,覆盖了智能零售,智慧交通等常见领域,通过基础学习、项目案例实践、社群答疑,三维立体的方式,打造最好的学习效果。

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

Python界面版学生管理系统

前不久上传了一个控制台版本的学生管理系统,这个是Python界面版学生管理系统,这个是使用pycharm开发的一个有界面的学生管理系统,基本的增删改查,里面又演示视频和完整代码,有需要的伙伴可以自行下

Vue.js 2.0之全家桶系列视频课程

基于新的Vue.js 2.3版本, 目前新全的Vue.js教学视频,让你少走弯路,直达技术前沿! 1. 包含Vue.js全家桶(vue.js、vue-router、axios、vuex、vue-cli、webpack、ElementUI等) 2. 采用笔记+代码案例的形式讲解,通俗易懂

linux“开发工具三剑客”速成攻略

工欲善其事,必先利其器。Vim+Git+Makefile是Linux环境下嵌入式开发常用的工具。本专题主要面向初次接触Linux的新手,熟练掌握工作中常用的工具,在以后的学习和工作中提高效率。

JAVA初级工程师面试36问(完结)

第三十一问: 说一下线程中sleep()和wait()区别? 1 . sleep()是让正在执行的线程主动让出CPU,当时间到了,在回到自己的线程让程序运行。但是它并没有释放同步资源锁只是让出。 2.wait()是让当前线程暂时退让出同步资源锁,让其他线程来获取到这个同步资源在调用notify()方法,才会让其解除wait状态,再次参与抢资源。 3. sleep()方法可以在任何地方使用,而wait()只能在同步方法或同步块使用。 ...

java jdk 8 帮助文档 中文 文档 chm 谷歌翻译

JDK1.8 API 中文谷歌翻译版 java帮助文档 JDK API java 帮助文档 谷歌翻译 JDK1.8 API 中文 谷歌翻译版 java帮助文档 Java最新帮助文档 本帮助文档是使用谷

我以为我对Mysql事务很熟,直到我遇到了阿里面试官

太惨了,面试又被吊打

智鼎(附答案).zip

并不是完整题库,但是有智鼎在线2019年9、10、11三个月的试题,有十七套以上题目,普通的网申行测题足以对付,可以在做题时自己总结一些规律,都不是很难

Visual Assist X 破解补丁

vs a's'sixt插件 支持vs2008-vs2019 亲测可以破解,希望可以帮助到大家

150讲轻松搞定Python网络爬虫

【为什么学爬虫?】 &nbsp; &nbsp; &nbsp; &nbsp;1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到! &nbsp; &nbsp; &nbsp; &nbsp;2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。 &nbsp; 从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑

JavaWEB商城项目(包括数据库)

功能描述:包括用户的登录注册,以及个人资料的修改.商品的分类展示,详情,加入购物车,生成订单,到银行支付等!另外还有收货地址的和我的收藏等常用操作.环境(JDK 1.7 ,mysql 5.5,Ecli

Python数据挖掘简易入门

&nbsp; &nbsp; &nbsp; &nbsp; 本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。

一学即懂的计算机视觉(第一季)

图像处理和计算机视觉的课程大家已经看过很多,但总有“听不透”,“用不了”的感觉。课程致力于创建人人都能听的懂的计算机视觉,通过生动、细腻的讲解配合实战演练,让学生真正学懂、用会。 【超实用课程内容】 课程内容分为三篇,包括视觉系统构成,图像处理基础,特征提取与描述,运动跟踪,位姿估计,三维重构等内容。课程理论与实战结合,注重教学内容的可视化和工程实践,为人工智能视觉研发及算法工程师等相关高薪职位就业打下坚实基础。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/26281 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,但是大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/26281,点击右下方课程资料、代码、课件等打包下载

软件测试2小时入门

本课程内容系统、全面、简洁、通俗易懂,通过2个多小时的介绍,让大家对软件测试有个系统的理解和认识,具备基本的软件测试理论基础。 主要内容分为5个部分: 1 软件测试概述,了解测试是什么、测试的对象、原则、流程、方法、模型;&nbsp; 2.常用的黑盒测试用例设计方法及示例演示;&nbsp; 3 常用白盒测试用例设计方法及示例演示;&nbsp; 4.自动化测试优缺点、使用范围及示例‘;&nbsp; 5.测试经验谈。

初级玩转Linux+Ubuntu(嵌入式开发基础课程)

课程主要面向嵌入式Linux初学者、工程师、学生 主要从一下几方面进行讲解: 1.linux学习路线、基本命令、高级命令 2.shell、vi及vim入门讲解 3.软件安装下载、NFS、Samba、FTP等服务器配置及使用

2019 Python开发者日-培训

本次活动将秉承“只讲技术,拒绝空谈”的理念,邀请十余位身处一线的Python技术专家,重点围绕Web开发、自动化运维、数据分析、人工智能等技术模块,分享真实生产环境中使用Python应对IT挑战的真知灼见。此外,针对不同层次的开发者,大会还安排了深度培训实操环节,为开发者们带来更多深度实战的机会。

快速入门Android开发 视频 教程 android studio

这是一门快速入门Android开发课程,顾名思义是让大家能快速入门Android开发。 学完能让你学会如下知识点: Android的发展历程 搭建Java开发环境 搭建Android开发环境 Android Studio基础使用方法 Android Studio创建项目 项目运行到模拟器 项目运行到真实手机 Android中常用控件 排查开发中的错误 Android中请求网络 常用Android开发命令 快速入门Gradle构建系统 项目实战:看美图 常用Android Studio使用技巧 项目签名打包 如何上架市场

机器学习初学者必会的案例精讲

通过六个实际的编码项目,带领同学入门人工智能。这些项目涉及机器学习(回归,分类,聚类),深度学习(神经网络),底层数学算法,Weka数据挖掘,利用Git开源项目实战等。

4小时玩转微信小程序——基础入门与微信支付实战

这是一个门针对零基础学员学习微信小程序开发的视频教学课程。课程采用腾讯官方文档作为教程的唯一技术资料来源。杜绝网络上质量良莠不齐的资料给学员学习带来的障碍。 视频课程按照开发工具的下载、安装、使用、程序结构、视图层、逻辑层、微信小程序等几个部分组织课程,详细讲解整个小程序的开发过程

相关热词 c#中如何设置提交按钮 c#帮助怎么用 c# 读取合并单元格的值 c#带阻程序 c# 替换span内容 c# rpc c#控制台点阵字输出 c#do while循环 c#调用dll多线程 c#找出两个集合不同的
立即提问