Degree Sequence of Graph G

Problem Description
Wang Haiyang is a strong and optimistic Chinese youngster. Although born and brought up in the northern inland city Harbin, he has deep love and yearns for the boundless oceans. After graduation, he came to a coastal city and got a job in a marine transportation company. There, he held a position as a navigator in a freighter and began his new life.

The cargo vessel, Wang Haiyang worked on, sails among 6 ports between which exist 9 routes. At the first sight of his navigation chart, the 6 ports and 9 routes on it reminded him of Graph Theory that he studied in class at university. In the way that Leonhard Euler solved The Seven Bridges of Knoigsberg, Wang Haiyang regarded the navigation chart as a graph of Graph Theory. He considered the 6 ports as 6 nodes and 9 routes as 9 edges of the graph. The graph is illustrated as below.

According to Graph Theory, the number of edges related to a node is defined as Degree number of this node.

Wang Haiyang looked at the graph and thought, If arranged, the Degree numbers of all nodes of graph G can form such a sequence: 4, 4, 3,3,2,2, which is called the degree sequence of the graph. Of course, the degree sequence of any simple graph (according to Graph Theory, a graph without any parallel edge or ring is a simple graph) is a non-negative integer sequence?

Wang Haiyang is a thoughtful person and tends to think deeply over any scientific problem that grabs his interest. So as usual, he also gave this problem further thought, As we know, any a simple graph always corresponds with a non-negative integer sequence. But whether a non-negative integer sequence always corresponds with the degree sequence of a simple graph? That is, if given a non-negative integer sequence, are we sure that we can draw a simple graph according to it.?

Let's put forward such a definition: provided that a non-negative integer sequence is the degree sequence of a graph without any parallel edge or ring, that is, a simple graph, the sequence is draw-possible, otherwise, non-draw-possible. Now the problem faced with Wang Haiyang is how to test whether a non-negative integer sequence is draw-possible or not. Since Wang Haiyang hasn't studied Algorithm Design course, it is difficult for him to solve such a problem. Can you help him?

Input
The first line of input contains an integer T, indicates the number of test cases. In each case, there are n+1 numbers; first is an integer n (n<1000), which indicates there are n integers in the sequence; then follow n integers, which indicate the numbers of the degree sequence.

Output
For each case, the answer should be "yes"or "no" indicating this case is "draw-possible" or "non-draw-possible"

Sample Input
2
6 4 4 3 3 2 2
4 2 1 1 1

Sample Output
yes
no

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
如何测试非负整数序列是否可以绘制,怎么利用C程序的语言的代码的编写编程的方式来做?
Problem Description Wang Haiyang is a strong and optimistic Chinese youngster. Although born and brought up in the northern inland city Harbin, he has deep love and yearns for the boundless oceans. After graduation, he came to a coastal city and got a job in a marine transportation company. There, he held a position as a navigator in a freighter and began his new life. The cargo vessel, Wang Haiyang worked on, sails among 6 ports between which exist 9 routes. At the first sight of his navigation chart, the 6 ports and 9 routes on it reminded him of Graph Theory that he studied in class at university. In the way that Leonhard Euler solved The Seven Bridges of Knoigsberg, Wang Haiyang regarded the navigation chart as a graph of Graph Theory. He considered the 6 ports as 6 nodes and 9 routes as 9 edges of the graph. The graph is illustrated as below. According to Graph Theory, the number of edges related to a node is defined as Degree number of this node. Wang Haiyang looked at the graph and thought, If arranged, the Degree numbers of all nodes of graph G can form such a sequence: 4, 4, 3,3,2,2, which is called the degree sequence of the graph. Of course, the degree sequence of any simple graph (according to Graph Theory, a graph without any parallel edge or ring is a simple graph) is a non-negative integer sequence? Wang Haiyang is a thoughtful person and tends to think deeply over any scientific problem that grabs his interest. So as usual, he also gave this problem further thought, As we know, any a simple graph always corresponds with a non-negative integer sequence. But whether a non-negative integer sequence always corresponds with the degree sequence of a simple graph? That is, if given a non-negative integer sequence, are we sure that we can draw a simple graph according to it.? Let's put forward such a definition: provided that a non-negative integer sequence is the degree sequence of a graph without any parallel edge or ring, that is, a simple graph, the sequence is draw-possible, otherwise, non-draw-possible. Now the problem faced with Wang Haiyang is how to test whether a non-negative integer sequence is draw-possible or not. Since Wang Haiyang hasn't studied Algorithm Design course, it is difficult for him to solve such a problem. Can you help him? Input The first line of input contains an integer T, indicates the number of test cases. In each case, there are n+1 numbers; first is an integer n (n<1000), which indicates there are n integers in the sequence; then follow n integers, which indicate the numbers of the degree sequence. Output For each case, the answer should be "yes"or "no" indicating this case is "draw-possible" or "non-draw-possible" Sample Input 2 6 4 4 3 3 2 2 4 2 1 1 1 Sample Output yes no
K-Anonymous Sequence
Description The explosively increasing network data in various application domains has raised privacy concerns for the individuals involved. Recent studies show that simply removing the identities of nodes before publishing the graph/social network data does not guarantee privacy. The structure of the graph itself, along with its basic form the degree of nodes, can reveal the identities of individuals. To address this issue, we study a specific graph-anonymization problem. We call a graph k-anonymous if for every node v, there exist at least k-1 other nodes in the graph with the same degree as v. And we are interested in achieving k-anonymous on a graph with the minimum number of graph-modification operations. We simplify the problem. Pick n nodes out of the entire graph G and list their degrees in ascending order. We define a sequence k-anonymous if for every element s, there exist at least k-1 other elements in the sequence equal to s. To let the given sequence k-anonymous, you could do one operation only—decrease some of the numbers in the sequence. And we define the cost of the modification the sum of the difference of all numbers you modified. e.g. sequence 2, 2, 3, 4, 4, 5, 5, with k=3, can be modified to 2, 2, 2, 4, 4, 4, 4, which satisfy 3-anonymous property and the cost of the modification will be |3-2| + |5-4| + |5-4| = 3. Give a sequence with n numbers in ascending order and k, we want to know the modification with minimal cost among all modifications which adjust the sequence k-anonymous. Input The first line of the input file contains a single integer T (1 ≤ T ≤ 20) – the number of tests in the input file. Each test starts with a line containing two numbers n (2 ≤ n ≤ 500000) – the amount of numbers in the sequence and k (2 ≤ k ≤ n). It is followed by a line with n integer numbers—the degree sequence in ascending order. And every number s in the sequence is in the range [0, 500000]. Output For each test, output one line containing a single integer—the minimal cost. Sample Input 2 7 3 2 2 3 4 4 5 5 6 2 0 3 3 4 8 9 Sample Output 3 5
Graph Reconstruction
Let there be a simple graph with N vertices but we just know the degree of each vertex. Is it possible to reconstruct the graph only by these information? A simple graph is an undirected graph that has no loops (edges connected at both ends to the same vertex) and no more than one edge between any two different vertices. The degree of a vertex is the number of edges that connect to it. Input There are multiple cases. Each case contains two lines. The first line contains one integer N (2 ≤ N ≤ 100), the number of vertices in the graph. The second line conrains N integers in which the ith item is the degree of ith vertex and each degree is between 0 and N-1(inclusive). Output If the graph can be uniquely determined by the vertex degree information, output "UNIQUE" in the first line. Then output the graph. If there are two or more different graphs can induce the same degree for all vertices, output "MULTIPLE" in the first line. Then output two different graphs in the following lines to proof. If the vertex degree sequence cannot deduced any graph, just output "IMPOSSIBLE". The output format of graph is as follows: N E u1 u2 ... uE v1 v2 ... vE Where N is the number of vertices and E is the number of edges, and {ui,vi} is the ith edge the the graph. The order of edges and the order of vertices in the edge representation is not important since we would use special judge to verify your answer. The number of each vertex is labeled from 1 to N. See sample output for more detail. Sample Input 1 0 6 5 5 5 4 4 3 6 5 4 4 4 4 3 6 3 4 3 1 2 0 Sample Output UNIQUE 1 0 UNIQUE 6 13 3 3 3 3 3 2 2 2 2 1 1 1 5 2 1 5 4 6 1 5 4 6 5 4 6 4 MULTIPLE 6 12 1 1 1 1 1 5 5 5 6 6 2 2 5 4 3 2 6 4 3 2 4 3 4 3 6 12 1 1 1 1 1 5 5 5 6 6 3 3 5 4 3 2 6 4 3 2 4 2 4 2 IMPOSSIBLE
Strange Graph
Description Let us consider an undirected graph G = < V,E >. Let us denote by N(v) the set of vertices connected to vertex v (i.e. the set of neighbours of v). Recall that the number of vertices connected to v is called the degree of this vertex and is denoted by deg v. We will call graph G strange if it is connected and for its every vertex v the following conditions are satisfied: 1. deg v >= 2 (i.e. there are at least two vertices connected to v) 2. If deg v = 2 then the two neighbours of v are not connected by an edge 3. If degv > 2 then there is u ∈ N(v), such that the following is true: (a) deg u = 2 (b) Any two different vertices w1,w2 ∈ N(v) \ {u} are connected, i.e. (w1,w2) ∈ E. You are given some strange graph G. Find hamiltonian cycle in it, i.e. find such cycle that it goes through every vertex of G exactly once. Input The first line of the input file contains two integer numbers N and M -- the number of vertices and edges in G respectively (3 <= N <= 10 000, M <= 100 000). 2M integer numbers follow -- each pair represents vertices connected by the corresponding edge (vertices are numbered from 1 to N). It is guaranteed that each edge occurs exactly once in the input file and that there are no loops (i.e. ends of each edge are distinct). Output If there is no hamiltonian cycle in G, print -1 on the first line of the output file. In the other case output N numbers -- the sequence of vertices of G as they appear in the hamiltonian cycle found (note that the last vertex must be connected to the first one). If there are several solutions, output any one. Sample Input 4 4 1 2 2 3 3 4 4 1 Sample Output 1 2 3 4
Octagons 的问题
Problem Description Below is a picture of an infinite hyperbolic tessellation of octagons. If we think of this as a graph of vertices (of degree three), then there exists an isomorphism of the graph which maps any vertex x onto any other vertex y. Every edge is given a label from the set {a,b,c} in such a way that every vertex has all three types of edges incident on it, and the labels alternate around each octagon. Part of this labeling is illustrated in the diagram. So a path in this graph (starting from any vertex) can be specified by a sequence of edge labels. Your job is to write a program which, given a squence of labels such as "abcbcbcabcaccabb", returns "closed" if the path ends on the same vertex where it starts, and returns "open" otherwise. Input The input will begin with a number Z ≤ 200 on a line by itself. This is followed by Z lines, each of which is a squence of length at least 1 and at most 40 of 'a's 'b's and 'c's. Output For each input instance, the output will be the words "closed" or "open", each on a single line. Sample Input 2 abababab abcbcbcbcba Sample Output closed open
Octagons 的打开
Problem Description Below is a picture of an infinite hyperbolic tessellation of octagons. If we think of this as a graph of vertices (of degree three), then there exists an isomorphism of the graph which maps any vertex x onto any other vertex y. Every edge is given a label from the set {a,b,c} in such a way that every vertex has all three types of edges incident on it, and the labels alternate around each octagon. Part of this labeling is illustrated in the diagram. So a path in this graph (starting from any vertex) can be specified by a sequence of edge labels. Your job is to write a program which, given a squence of labels such as "abcbcbcabcaccabb", returns "closed" if the path ends on the same vertex where it starts, and returns "open" otherwise. Input The input will begin with a number Z ≤ 200 on a line by itself. This is followed by Z lines, each of which is a squence of length at least 1 and at most 40 of 'a's 'b's and 'c's. Output For each input instance, the output will be the words "closed" or "open", each on a single line. Sample Input 2 abababab abcbcbcbcba Sample Output closed open
The Postal Worker Rings Once
Description Graph algorithms form a very important part of computer science and have a lineage that goes back at least to Euler and the famous Seven Bridges of Konigsberg problem. Many optimization problems involve determining efficient methods for reasoning about graphs. This problem involves determining a route for a postal worker so that all mail is delivered while the postal worker walks a minimal distance, so as to rest weary legs. Given a sequence of streets (connecting given intersections) you are to write a program that determines the minimal cost tour that traverses every street at least once. The tour must begin and end at the same intersection. The ``real-life'' analogy concerns a postal worker who parks a truck at an intersection and then walks all streets on the postal delivery route (delivering mail) and returns to the truck to continue with the next route. The cost of traversing a street is a function of the length of the street (there is a cost associated with delivering mail to houses and with walking even if no delivery occurs). In this problem the number of streets that meet at a given intersection is called the degree of the intersection. There will be at most two intersections with odd degree. All other intersections will have even degree, i.e., an even number of streets meeting at that intersection. Input The input consists of a sequence of one or more postal routes. A route is composed of a sequence of street names (strings), one per line, and is terminated by the string ``deadend'' which is NOT part of the route. The first and last letters of each street name specify the two intersections for that street, the length of the street name indicates the cost of traversing the street. All street names will consist of lowercase alphabetic characters. For example, the name foo indicates a street with intersections f and o of length 3, and the name computer indicates a street with intersections c and r of length 8. No street name will have the same first and last letter and there will be at most one street directly connecting any two intersections. As specified, the number of intersections with odd degree in a postal route will be at most two. In each postal route there will be a path between all intersections, i.e., the intersections are connected. Output For each postal route the output should consist of the cost of the minimal tour that visits all streets at least once. The minimal tour costs should be output in the order corresponding to the input postal routes. Sample Input one two three deadend mit dartmouth linkoping tasmania york emory cornell duke kaunas hildesheim concord arkansas williams glasgow deadend Sample Output 11 114
The Postal Worker Rings Once
Description Graph algorithms form a very important part of computer science and have a lineage that goes back at least to Euler and the famous Seven Bridges of Konigsberg problem. Many optimization problems involve determining efficient methods for reasoning about graphs. This problem involves determining a route for a postal worker so that all mail is delivered while the postal worker walks a minimal distance, so as to rest weary legs. Given a sequence of streets (connecting given intersections) you are to write a program that determines the minimal cost tour that traverses every street at least once. The tour must begin and end at the same intersection. The ``real-life'' analogy concerns a postal worker who parks a truck at an intersection and then walks all streets on the postal delivery route (delivering mail) and returns to the truck to continue with the next route. The cost of traversing a street is a function of the length of the street (there is a cost associated with delivering mail to houses and with walking even if no delivery occurs). In this problem the number of streets that meet at a given intersection is called the degree of the intersection. There will be at most two intersections with odd degree. All other intersections will have even degree, i.e., an even number of streets meeting at that intersection. Input The input consists of a sequence of one or more postal routes. A route is composed of a sequence of street names (strings), one per line, and is terminated by the string ``deadend'' which is NOT part of the route. The first and last letters of each street name specify the two intersections for that street, the length of the street name indicates the cost of traversing the street. All street names will consist of lowercase alphabetic characters. For example, the name foo indicates a street with intersections f and o of length 3, and the name computer indicates a street with intersections c and r of length 8. No street name will have the same first and last letter and there will be at most one street directly connecting any two intersections. As specified, the number of intersections with odd degree in a postal route will be at most two. In each postal route there will be a path between all intersections, i.e., the intersections are connected. Output For each postal route the output should consist of the cost of the minimal tour that visits all streets at least once. The minimal tour costs should be output in the order corresponding to the input postal routes. Sample Input one two three deadend mit dartmouth linkoping tasmania york emory cornell duke kaunas hildesheim concord arkansas williams glasgow deadend Sample Output 11 114
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
在中国程序员是青春饭吗?
今年,我也32了 ,为了不给大家误导,咨询了猎头、圈内好友,以及年过35岁的几位老程序员……舍了老脸去揭人家伤疤……希望能给大家以帮助,记得帮我点赞哦。 目录: 你以为的人生 一次又一次的伤害 猎头界的真相 如何应对互联网行业的「中年危机」 一、你以为的人生 刚入行时,拿着傲人的工资,想着好好干,以为我们的人生是这样的: 等真到了那一天,你会发现,你的人生很可能是这样的: ...
《MySQL 性能优化》之理解 MySQL 体系结构
本文介绍 MySQL 的体系结构,包括物理结构、逻辑结构以及插件式存储引擎。
python自动下载图片
近日闲来无事,总有一种无形的力量萦绕在朕身边,让朕精神涣散,昏昏欲睡。 可是,像朕这么有职业操守的社畜怎么能在上班期间睡瞌睡呢,我不禁陷入了沉思。。。。 突然旁边的IOS同事问:‘嘿,兄弟,我发现一个网站的图片很有意思啊,能不能帮我保存下来提升我的开发灵感?’ 作为一个坚强的社畜怎么能说自己不行呢,当时朕就不假思索的答应:‘oh, It’s simple. Wait for me for a ...
一名大专同学的四个问题
【前言】   收到一封来信,赶上各种事情拖了几日,利用今天要放下工作的时机,做个回复。   2020年到了,就以这一封信,作为开年标志吧。 【正文】   您好,我是一名现在有很多困惑的大二学生。有一些问题想要向您请教。   先说一下我的基本情况,高考失利,不想复读,来到广州一所大专读计算机应用技术专业。学校是偏艺术类的,计算机专业没有实验室更不用说工作室了。而且学校的学风也不好。但我很想在计算机领...
复习一周,京东+百度一面,不小心都拿了Offer
京东和百度一面都问了啥,面试官百般刁难,可惜我全会。
达摩院十大科技趋势发布:2020 非同小可!
【CSDN编者按】1月2日,阿里巴巴发布《达摩院2020十大科技趋势》,十大科技趋势分别是:人工智能从感知智能向认知智能演进;计算存储一体化突破AI算力瓶颈;工业互联网的超融合;机器间大规模协作成为可能;模块化降低芯片设计门槛;规模化生产级区块链应用将走入大众;量子计算进入攻坚期;新材料推动半导体器件革新;保护数据隐私的AI技术将加速落地;云成为IT技术创新的中心 。 新的画卷,正在徐徐展开。...
轻松搭建基于 SpringBoot + Vue 的 Web 商城应用
首先介绍下在本文出现的几个比较重要的概念: 函数计算(Function Compute): 函数计算是一个事件驱动的服务,通过函数计算,用户无需管理服务器等运行情况,只需编写代码并上传。函数计算准备计算资源,并以弹性伸缩的方式运行用户代码,而用户只需根据实际代码运行所消耗的资源进行付费。Fun: Fun 是一个用于支持 Serverless 应用部署的工具,能帮助您便捷地管理函数计算、API ...
Python+OpenCV实时图像处理
目录 1、导入库文件 2、设计GUI 3、调用摄像头 4、实时图像处理 4.1、阈值二值化 4.2、边缘检测 4.3、轮廓检测 4.4、高斯滤波 4.5、色彩转换 4.6、调节对比度 5、退出系统 初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试...
2020年一线城市程序员工资大调查
人才需求 一线城市共发布岗位38115个,招聘120827人。 其中 beijing 22805 guangzhou 25081 shanghai 39614 shenzhen 33327 工资分布 2020年中国一线城市程序员的平均工资为16285元,工资中位数为14583元,其中95%的人的工资位于5000到20000元之间。 和往年数据比较: yea...
为什么猝死的都是程序员,基本上不见产品经理猝死呢?
相信大家时不时听到程序员猝死的消息,但是基本上听不到产品经理猝死的消息,这是为什么呢? 我们先百度搜一下:程序员猝死,出现将近700多万条搜索结果: 搜索一下:产品经理猝死,只有400万条的搜索结果,从搜索结果数量上来看,程序员猝死的搜索结果就比产品经理猝死的搜索结果高了一倍,而且从下图可以看到,首页里面的五条搜索结果,其实只有两条才是符合条件。 所以程序员猝死的概率真的比产品经理大,并不是错...
害怕面试被问HashMap?这一篇就搞定了!
声明:本文以jdk1.8为主! 搞定HashMap 作为一个Java从业者,面试的时候肯定会被问到过HashMap,因为对于HashMap来说,可以说是Java集合中的精髓了,如果你觉得自己对它掌握的还不够好,我想今天这篇文章会非常适合你,至少,看了今天这篇文章,以后不怕面试被问HashMap了 其实在我学习HashMap的过程中,我个人觉得HashMap还是挺复杂的,如果真的想把它搞得明明白...
毕业5年,我问遍了身边的大佬,总结了他们的学习方法
我问了身边10个大佬,总结了他们的学习方法,原来成功都是有迹可循的。
python爬取百部电影数据,我分析出了一个残酷的真相
2019年就这么匆匆过去了,就在前几天国家电影局发布了2019年中国电影市场数据,数据显示去年总票房为642.66亿元,同比增长5.4%;国产电影总票房411.75亿元,同比增长8.65%,市场占比 64.07%;城市院线观影人次17.27亿,同比增长0.64%。 看上去似乎是一片大好对不对?不过作为一名严谨求实的数据分析师,我从官方数据中看出了一点端倪:国产票房增幅都已经高达8.65%了,为什...
推荐10个堪称神器的学习网站
每天都会收到很多读者的私信,问我:“二哥,有什么推荐的学习网站吗?最近很浮躁,手头的一些网站都看烦了,想看看二哥这里有什么新鲜货。” 今天一早做了个恶梦,梦到被老板辞退了。虽然说在我们公司,只有我辞退老板的份,没有老板辞退我这一说,但是还是被吓得 4 点多都起来了。(主要是因为我掌握着公司所有的核心源码,哈哈哈) 既然 4 点多起来,就得好好利用起来。于是我就挑选了 10 个堪称神器的学习网站,推...
这些软件太强了,Windows必装!尤其程序员!
Windows可谓是大多数人的生产力工具,集娱乐办公于一体,虽然在程序员这个群体中都说苹果是信仰,但是大部分不都是从Windows过来的,而且现在依然有很多的程序员用Windows。 所以,今天我就把我私藏的Windows必装的软件分享给大家,如果有一个你没有用过甚至没有听过,那你就赚了????,这可都是提升你幸福感的高效率生产力工具哦! 走起!???? NO、1 ScreenToGif 屏幕,摄像头和白板...
阿里面试,面试官没想到一个ArrayList,我都能跟他扯半小时
我是真的没想到,面试官会这样问我ArrayList。
曾经优秀的人,怎么就突然不优秀了。
职场上有很多辛酸事,很多合伙人出局的故事,很多技术骨干被裁员的故事。说来模板都类似,曾经是名校毕业,曾经是优秀员工,曾经被领导表扬,曾经业绩突出,然而突然有一天,因为种种原因,被裁员了,...
大学四年因为知道了这32个网站,我成了别人眼中的大神!
依稀记得,毕业那天,我们导员发给我毕业证的时候对我说“你可是咱们系的风云人物啊”,哎呀,别提当时多开心啦????,嗯,我们导员是所有导员中最帅的一个,真的???? 不过,导员说的是实话,很多人都叫我大神的,为啥,因为我知道这32个网站啊,你说强不强????,这次是绝对的干货,看好啦,走起来! PS:每个网站都是学计算机混互联网必须知道的,真的牛杯,我就不过多介绍了,大家自行探索,觉得没用的,尽管留言吐槽吧???? 社...
良心推荐,我珍藏的一些Chrome插件
上次搬家的时候,发了一个朋友圈,附带的照片中不小心暴露了自己的 Chrome 浏览器插件之多,于是就有小伙伴评论说分享一下我觉得还不错的浏览器插件。 我下面就把我日常工作和学习中经常用到的一些 Chrome 浏览器插件分享给大家,随便一个都能提高你的“生活品质”和工作效率。 Markdown Here Markdown Here 可以让你更愉快的写邮件,由于支持 Markdown 直接转电子邮...
看完这篇HTTP,跟面试官扯皮就没问题了
我是一名程序员,我的主要编程语言是 Java,我更是一名 Web 开发人员,所以我必须要了解 HTTP,所以本篇文章就来带你从 HTTP 入门到进阶,看完让你有一种恍然大悟、醍醐灌顶的感觉。 最初在有网络之前,我们的电脑都是单机的,单机系统是孤立的,我还记得 05 年前那会儿家里有个电脑,想打电脑游戏还得两个人在一个电脑上玩儿,及其不方便。我就想为什么家里人不让上网,我的同学 xxx 家里有网,每...
史上最全的IDEA快捷键总结
现在Idea成了主流开发工具,这篇博客对其使用的快捷键做了总结,希望对大家的开发工作有所帮助。
C++(数据结构与算法):62---搜索树(二叉搜索树、索引二叉搜索树)
一、搜索树的复杂度分析 本文考察二叉搜索树和索引二叉搜索树 二叉搜索树的渐进性能可以和跳表媲美: 查找、插入、删除操作所需的平均时间为Θ(logn) 查找、插入、删除操作的最坏情况的时间为Θ(n) 元素按升序输出时所需时间为Θ(n) 虽然在最坏情况下的查找、插入、删除操作,散列表和二叉搜索树的时间性能相同,但是散列表在最好的情况下具有超级性能Θ(1) 不过,对于一个指定的关键...
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
谁是华为扫地僧?
是的,华为也有扫地僧!2020年2月11-12日,“养在深闺人不知”的华为2012实验室扫地僧们,将在华为开发者大会2020(Cloud)上,和大家见面。到时,你可以和扫地僧们,吃一个洋...
AI 没让人类失业,搞 AI 的人先失业了
最近和几个 AI 领域的大佬闲聊 根据他们讲的消息和段子 改编出下面这个故事 如有雷同 都是巧合 1. 老王创业失败,被限制高消费 “这里写我跑路的消息实在太夸张了。” 王葱葱哼笑一下,把消息分享给群里。 阿杰也看了消息,笑了笑。在座几位也都笑了。 王葱葱是个有名的人物,21岁那年以全额奖学金进入 KMU 攻读人工智能博士,累计发表论文 40 余篇,个人技术博客更是成为深度学习领域内风向标。 ...
2020年,冯唐49岁:我给20、30岁IT职场年轻人的建议
点击“技术领导力”关注∆每天早上8:30推送 作者|Mr.K 编辑| Emma 来源|技术领导力(ID:jishulingdaoli) 前天的推文《冯唐:职场人35岁以后,方法论比经验重要》,收到了不少读者的反馈,觉得挺受启发。其实,冯唐写了不少关于职场方面的文章,都挺不错的。可惜大家只记住了“春风十里不如你”、“如何避免成为油腻腻的中年人”等不那么正经的文章。 本文整理了冯...
最全最强!世界大学计算机专业排名总结!
我正在参与CSDN200进20,希望得到您的支持,扫码续投票5次。感谢您! (为表示感谢,您投票后私信我,我把我总结的人工智能手推笔记和思维导图发送给您,感谢!) 目录 泰晤士高等教育世界大学排名 QS 世界大学排名 US News 世界大学排名 世界大学学术排名(Academic Ranking of World Universities) 泰晤士高等教育世界大学排名 中国共...
作为一名大学生,如何在B站上快乐的学习?
B站是个宝,谁用谁知道???? 作为一名大学生,你必须掌握的一项能力就是自学能力,很多看起来很牛X的人,你可以了解下,人家私底下一定是花大量的时间自学的,你可能会说,我也想学习啊,可是嘞,该学习啥嘞,不怕告诉你,互联网时代,最不缺的就是学习资源,最宝贵的是啥? 你可能会说是时间,不,不是时间,而是你的注意力,懂了吧! 那么,你说学习资源多,我咋不知道,那今天我就告诉你一个你必须知道的学习的地方,人称...
那些年,我们信了课本里的那些鬼话
教材永远都是有错误的,从小学到大学,我们不断的学习了很多错误知识。 斑羚飞渡 在我们学习的很多小学课文里,有很多是错误文章,或者说是假课文。像《斑羚飞渡》: 随着镰刀头羊的那声吼叫,整个斑羚群迅速分成两拨,老年斑羚为一拨,年轻斑羚为一拨。 就在这时,我看见,从那拨老斑羚里走出一只公斑羚来。公斑羚朝那拨年轻斑羚示意性地咩了一声,一只半大的斑羚应声走了出来。一老一少走到伤心崖,后退了几步,突...
一个程序在计算机中是如何运行的?超级干货!!!
强烈声明:本文很干,请自备茶水!???? 开门见山,咱不说废话! 你有没有想过,你写的程序,是如何在计算机中运行的吗?比如我们搞Java的,肯定写过这段代码 public class HelloWorld { public static void main(String[] args) { System.out.println("Hello World!"); } ...
那个在阿里养猪的工程师,5年了……
简介: 在阿里,走过1825天,没有趴下,依旧斗志满满,被称为“五年陈”。他们会被授予一枚戒指,过程就叫做“授戒仪式”。今天,咱们听听阿里的那些“五年陈”们的故事。 下一个五年,猪圈见! 我就是那个在养猪场里敲代码的工程师,一年多前我和20位工程师去了四川的猪场,出发前总架构师慷慨激昂的说:同学们,中国的养猪产业将因为我们而改变。但到了猪场,发现根本不是那么回事:要个WIFI,没有;...
为什么程序猿都不愿意去外包?
分享外包的组织架构,盈利模式,亲身经历,以及根据一些外包朋友的反馈,写了这篇文章 ,希望对正在找工作的老铁有所帮助
leetcode88. 合并两个有序数组
给定两个有序整数数组nums1 和 nums2,将 nums2 合并到nums1中,使得num1 成为一个有序数组。 说明: 初始化nums1 和 nums2 的元素数量分别为m 和 n。 你可以假设nums1有足够的空间(空间大小大于或等于m + n)来保存 nums2 中的元素。 示例: 输入: nums1 = [1,2,3,0,0,0], m = 3 nums2 = ...
Java校招入职华为,半年后我跑路了
何来 我,一个双非本科弟弟,有幸在 19 届的秋招中得到前东家华为(以下简称 hw)的赏识,当时秋招签订就业协议,说是入了某 java bg,之后一系列组织架构调整原因等等让人无法理解的神操作,最终毕业前夕,被通知调往其他 bg 做嵌入式开发(纯 C 语言)。 由于已至于校招末尾,之前拿到的其他 offer 又无法再收回,一时感到无力回天,只得默默接受。 毕业后,直接入职开始了嵌入式苦旅,由于从未...
世界上有哪些代码量很少,但很牛逼很经典的算法或项目案例?
点击上方蓝字设为星标下面开始今天的学习~今天分享四个代码量很少,但很牛逼很经典的算法或项目案例。1、no code 项目地址:https://github.com/kelseyhight...
Python全栈 Linux基础之3.Linux常用命令
Linux对文件(包括目录)有很多常用命令,可以加快开发效率:ls是列出当前目录下的文件列表,选项有-a、-l、-h,还可以使用通配符;c功能是跳转目录,可以使用相对路径和绝对路径;mkdir命令创建一个新的目录,有-p选项,rm删除文件或目录,有-f、-r选项;cp用于复制文件,有-i、-r选项,tree命令可以将目录结构显示出来(树状显示),有-d选项,mv用来移动文件/目录,有-i选项;cat查看文件内容,more分屏显示文件内容,grep搜索内容;>、>>将执行结果重定向到一个文件;|用于管道输出。
​两年前不知如何编写代码的我,现在是一名人工智能工程师
全文共3526字,预计学习时长11分钟 图源:Unsplash 经常有小伙伴私信给小芯,我没有编程基础,不会写代码,如何进入AI行业呢?还能赶上AI浪潮吗? 任何时候努力都不算晚。 下面,小芯就给大家讲一个朋友的真实故事,希望能给那些处于迷茫与徘徊中的小伙伴们一丝启发。(下文以第一人称叙述) 图源:Unsplash 正如Elsa所说,职业转换是...
强烈推荐10本程序员必读的书
很遗憾,这个春节注定是刻骨铭心的,新型冠状病毒让每个人的神经都是紧绷的。那些处在武汉的白衣天使们,尤其值得我们的尊敬。而我们这些窝在家里的程序员,能不外出就不外出,就是对社会做出的最大的贡献。 有些读者私下问我,窝了几天,有点颓丧,能否推荐几本书在家里看看。我花了一天的时间,挑选了 10 本我最喜欢的书,你可以挑选感兴趣的来读一读。读书不仅可以平复恐惧的压力,还可以对未来充满希望,毕竟苦难终将会...
非典逼出了淘宝和京东,新冠病毒能够逼出什么?
loonggg读完需要5分钟速读仅需 2 分钟大家好,我是你们的校长。我知道大家在家里都憋坏了,大家可能相对于封闭在家里“坐月子”,更希望能够早日上班。今天我带着大家换个思路来聊一个问题...
Spring框架|JdbcTemplate介绍
文章目录一、JdbcTemplate 概述二、创建对象的源码分析三、JdbcTemplate操作数据库 一、JdbcTemplate 概述 在之前的web学习中,学习了手动封装JDBCtemplate,其好处是通过(sql语句+参数)模板化了编程。而真正的JDBCtemplete类,是Spring框架为我们写好的。 它是 Spring 框架中提供的一个对象,是对原始 Jdbc API 对象的简单...
立即提问