lzl2040 2023-07-15 10:26 采纳率: 0%
浏览 9

深度学习可视化图实现方法

在论文中,有一个可视化结果的展示,请问这种可视化图如何实现?

img

  • 写回答

1条回答 默认 最新

  • CSDN-Ada助手 CSDN-AI 官方账号 2023-07-15 12:10
    关注
    • 这个问题的回答你可以参考下: https://ask.csdn.net/questions/7444533
    • 这篇博客你也可以参考下:深度强化学习算法研究中的常用对比试验及作图技巧
    • 除此之外, 这篇博客: 【动手撸深度学习】领导说你连调参都不会?中的 二阶方法 部分也许能够解决你的问题, 你可以仔细阅读以下内容或跳转源博客中阅读:
    • 逐参数适应学习率方法
      到目前为止大家看到的学习率更新方式,都是全局使用同样的学习率。调整学习率是一件很费时同时也容易出错的事情,因此大家一直希望有一种学习率自更新的方式,甚至可以细化到逐参数更新。现在确实有一些这种方法,其中大多数还需要额外的超参数设定,优势是在大多数超参数设定下,效果都比使用写死的学习率要好。在本小节我们会介绍一些在实践中可能会遇到的常用适应算法:

      Adagrad是一个由Duchi等提出的适应性学习率算法

      假设有梯度和参数向量x
      cache += dx**2
      x += - learning_rate * dx / (np.sqrt(cache) + eps)

      注意,变量cache的尺寸和梯度矩阵的尺寸是一样的,还跟踪了每个参数的梯度的平方和。这个一会儿将用来归一化参数更新步长,归一化是逐元素进行的。注意,接收到高梯度值的权重更新的效果被减弱,而接收到低梯度值的权重的更新效果将会增强。有趣的是平方根的操作非常重要,如果去掉,算法的表现将会糟糕很多。用于平滑的式子eps(一般设为1e-4到1e-8之间)是防止出现除以0的情况。Adagrad的一个缺点是,在深度学习中单调的学习率被证明通常过于激进且过早停止学习。

      RMSprop
      是一个非常高效,但没有公开发表的适应性学习率方法。有趣的是,每个使用这个方法的人在他们的论文中都引用自Geoff Hinton的Coursera课程的第六课的第29页PPT。这个方法用一种很简单的方式修改了Adagrad方法,让它不那么激进,单调地降低了学习率。具体说来,就是它使用了一个梯度平方的滑动平均:

      cache = decay_rate * cache + (1 - decay_rate) * dx**2
      x += - learning_rate * dx / (np.sqrt(cache) + eps)

      在上面的代码中,decay_rate是一个超参数,常用的值是[0.9,0.99,0.999]。其中x+=和Adagrad中是一样的,但是cache变量是不同的。因此,RMSProp仍然是基于梯度的大小来对每个权重的学习率进行修改,这同样效果不错。但是和Adagrad不同,其更新不会让学习率单调变小。

    • 您还可以看一下 吴刚老师的【吴刚大讲堂】电商视觉的排版与应用方法课程中的 订单页面的表单视觉优化及细节处理方法小节, 巩固相关知识点
    • 以下回答由chatgpt基于相关博客总结生成:

      在深度学习论文中,可视化结果的实现通常可以通过以下几种方法和工具来实现:

      1. TensorBoard:TensorBoard是TensorFlow提供的一个可视化工具,可以用于可视化深度学习模型的训练过程和结果。通过在模型的训练代码中使用TensorBoard的相关API,可以将模型的各种指标(如损失函数、准确率等)以图表的形式进行展示,从而直观地观察模型的训练过程和效果。

      以下是一个使用TensorBoard可视化训练过程的示例代码:

      import tensorflow as tf
      from tensorflow.keras import layers
      
      # 构建模型
      model = tf.keras.Sequential([
          layers.Dense(64, activation='relu', input_shape=(784,)),
          layers.Dense(64, activation='relu'),
          layers.Dense(10, activation='softmax')
      ])
      
      # 编译模型
      model.compile(optimizer='adam',
                    loss='sparse_categorical_crossentropy',
                    metrics=['accuracy'])
      
      # 创建TensorBoard回调函数
      tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs")
      
      # 训练模型,并将TensorBoard回调函数传入
      model.fit(train_data, train_labels, epochs=10, callbacks=[tensorboard_callback])
      

      在代码中,tf.keras.callbacks.TensorBoard函数用于创建一个TensorBoard回调函数,log_dir参数指定了输出日志文件的目录。使用callbacks=[tensorboard_callback]将TensorBoard回调函数传入模型的fit方法中,即可将训练过程的日志数据写入指定目录。

      1. Matplotlib:Matplotlib是一个Python的数据可视化库,可以用于绘制各种图表,如折线图、柱状图、散点图等。在深度学习论文中,可以使用Matplotlib将模型的中间输出、损失函数曲线、预测结果等以图表的形式进行展示。

      以下是一个使用Matplotlib绘制损失函数曲线的示例代码:

      import matplotlib.pyplot as plt
      
      # 训练模型,并记录每个epoch的损失函数值
      losses = []
      for epoch in range(num_epochs):
          # 训练模型的代码
          # ...
      
          # 计算损失函数值,并记录到列表中
          loss = compute_loss(model, data)
          losses.append(loss)
      
      # 绘制损失函数曲线
      plt.plot(range(num_epochs), losses)
      plt.xlabel('Epoch')
      plt.ylabel('Loss')
      plt.title('Training Loss')
      plt.show()
      

      在代码中,首先定义了一个空列表losses来保存每个epoch的损失函数值。然后在训练过程中,通过调用compute_loss函数计算每个epoch的损失函数值,并将其添加到losses列表中。最后使用Matplotlib的绘图函数绘制损失函数曲线。

      1. OpenCV:OpenCV是一个计算机视觉库,可以应用于图像、视频处理等领域。在深度学习论文中,可以使用OpenCV对模型的输出结果进行图像处理和可视化,如直线检测、图像分割等。

      以下是一个使用OpenCV进行直线检测的示例代码:

      import cv2
      import numpy as np
      
      # 读取图像
      image = cv2.imread('image.jpg')
      
      # 转换为灰度图像
      gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
      
      # 使用Canny边缘检测算法检测边缘
      edges = cv2.Canny(gray, 50, 150)
      
      # 使用Hough直线检测算法检测直线
      lines = cv2.HoughLines(edges, 1, np.pi/180, threshold=100)
      
      # 绘制直线
      if lines is not None:
          for line in lines:
              rho, theta = line[0]
              a = np.cos(theta)
              b = np.sin(theta)
              x0 = a * rho
              y0 = b * rho
              x1 = int(x0 + 1000 * (-b))
              y1 = int(y0 + 1000 * (a))
              x2 = int(x0 - 1000 * (-b))
              y2 = int(y0 - 1000 * (a))
              cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
      
      # 显示图像
      cv2.imshow('image', image)
      cv2.waitKey(0)
      cv2.destroyAllWindows()
      

      在代码中,首先使用cv2.imread函数读取一张图像,并通过cv2.cvtColor将其转换为灰度图像。然后使用cv2.Canny函数进行边缘检测,通过调整阈值可以控制边缘的检测结果。接下来使用cv2.HoughLines函数进行直线检测,通过调整参数可以控制直线的检测结果。最后使用cv2.line函数将检测到的直线绘制在图像上,并通过cv2.imshow函数显示图像。

      通过以上几种方法和工具,可以实现深度学习论文中的可视化结果。具体使用哪种方法和工具,需要根据具体需求和数据类型来选择。

    评论

报告相同问题?

问题事件

  • 创建了问题 7月15日